3F1: Signals and Systems

INFORMATION THEORY

Examples Paper

1. The output of a discrete memoryless source consists of the possible letters X_1, X_2, \cdots, X_n, which occur with probabilities P_1, P_2, \cdots, P_n, respectively. Prove that the entropy $H(X)$ of the source is at most $\log_2(n)$.

2. A discrete memoryless source has an alphabet of eight letters, $x_i, i = 1, 2, \cdots, 8$ with probabilities 0.25, 0.20, 0.15, 0.12, 0.10, 0.08, 0.05 and 0.05.

 (a) Use the Huffman encoding to determine a binary code for the source output.
 (b) Determine the average codeword length L.
 (c) Determine the entropy of the source and hence its efficiency.

3. Show that for statistically independent events

 $$H(X_1, X_2, \cdots, X_n) = \sum_{i=1}^{n} H(X_i)$$

4. A five-level non-uniform quantizer for a zero-mean signal results in the 5 levels $-b, -a, 0, a, b$ with corresponding probabilities of occurrence $p_{-b} = p_b = 0.05$, $p_{-a} = p_a = 0.1$ and $p_0 = 0.7$.

 (a) Design a Huffman code that encodes one signal sample at a time and determine the average bit rate per sample.
 (b) Design a Huffman code that encodes two output samples at a time and determine the average bit rate per sample.
 (c) What are the efficiencies of these two codes?

5. Given two random variables X and Y, $I(X; Y)$ is defined as:

 $$I(X; Y) = \sum_{x \in X, y \in Y} P(x, y) \log_2 \left(\frac{P(x|y)}{P(x)} \right)$$

 Show that $I(X; Y) = I(Y; X)$
6. What is the entropy of the following continuous probability density functions?

(a) \[P(x) = \begin{cases}
0 & x < -2 \\
0.25 & -2 < x < 2 \\
0 & x > 2
\end{cases} \]

(b) \[P(x) = \frac{1}{2} e^{-\lambda|x|} \]

(c) \[P(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-x^2/2\sigma^2} \]

7. Continuous variables \(X \) and \(Y \) are independent and normally distributed with standard deviation \(\sigma = 1 \).

\[P(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \quad P(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \]

A variable \(Z \) is defined by \(z = x + y \). What is the mutual information of \(X \) and \(Z \)?

8. A symmetric binary communications channel operates with signalling levels of \(\pm 2 \) volts at the detector in the receiver, and the rms noise level at the detector is 0.5 volts. The binary symbol rate is 100 kbit/s.

(a) Determine the probability of error on this channel and hence, based on mutual information, calculate the theoretical capacity of this channel for error-free communication.

(b) If the binary signalling were replaced by symbols drawn from a continuous process with a Gaussian (normal) pdf with zero mean and the same mean power at the detector, determine the theoretical capacity of this new channel, assuming the symbol rate remains at 100 ksym/s and the noise level is unchanged.

Numerical Answers

2. b) 2.83 bits; c) 2.798 bits, 98.9%

4. a) 1.6 bit / sample; b) 1.465 bit / sample; c) 91.05%, 99.44%

6. a) \(\log_2(4) = 2 \); b) \(\log_2(2e/\lambda) \); c) \(\log_2(\sigma\sqrt{2\pi e}) \)

7. 0.5 bit

8. a) \(p_e = 3.17 \times 10^{-5}, \quad 99.948 \text{ kbit/s.} \); b) 204.37 kbit/s.

Nick Kingsbury, November 12, 2012.