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Pre-requisites

This course assumes familiarity with the following Part IB courses:

• Linear Algebra and Numerical Analysis (Paper 7);

• Probability (Paper 7);

• Signal and Data Analysis (Paper 6);

• Linear Systems and Control (Paper 6).

Booklist

• Peebles, P.Z. Jr., ‘Probability, Random Variables and Random Signal Principles’
(McGraw Hill, 4th Edn., 2001).
This is a good, readable text which covers most of the course material.

• Papoulis, A., ‘Probability and Statistics’
(Prentice Hall, 1990).
A good basic text which covers most of the course material.

• Papoulis, A. and Pillai, S.U., ‘Probability, Random Variables and Stochastic
Processes’ (McGraw Hill, 4th Edn., 2002).
A more advanced but excellent text on the subject, containing a wealth of material on
this course and beyond.

• Gray, R.M. and Davisson, L.D., ‘An Introduction to Statistical Signal Processing’
(CUP, Aug 2004).
This text explores the deeper mathematical issues underlying Random Signal Theory in
a very approachable form, referring the interested reader to more advanced texts. It goes
well beyond exam requirements in 3F1, but will be very useful for those interested in a
broader understanding of the subject. The book is downloadable FREE in pdf (2.7 MB)
from:

http://ee.stanford.edu/∼gray/sp.html

A previous version of the book: ‘Random Processes: A Mathematical Approach for
Engineers’ (Prentice Hall, 1986) may still be available in libraries etc. A new printed
version has been produced by CU Press in 2005, but the free web version is still available.
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Notation

Obscure mathematical notation will be avoided where possible. However, the following glossary
of set-theoretic notation may be a useful reference:

A = {a1, . . . , aM} - the set A, containing M elements

A ∪B - ‘Union’: the combined contents of sets A and B

A ∩B - ‘Intersection’: the elements common to A and B

Ac - ‘Complement’: elements not in A

∅ - The empty set: ∅ = {}

a ∈ A - Element a is a member of set A

A ⊂ B - ‘Subset’: set A is completely contained within set B

{ω : E} - the set of ω’s such that expression E is True

[a, b] - the set of real numbers x such that a ≤ x ≤ b (i.e. {x : a ≤ x ≤ b})

(a, b) - the set of real numbers x such that a < x < b (i.e. {x : a < x < b})

ℜ - the real numbers: ℜ = (−∞,+∞)

Z - the integers: {−∞, . . . ,−1, 0, 1, . . . ,∞}.

Acknowledgement

This course is developed from an earlier course on Random Signals and Estimation, given by
Simon Godsill as part of the old E4 paper (prior to modularisation of the 3rd year). I would
like to thank him very much for his help and advice, and for allowing me to base much of this
course on his lecture notes and examples.

Nick Kingsbury.
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1 Probability Distributions

1.1 Aims and Motivation for the Course

We aim to:

• Develop a theory which can characterize the behaviour of real-world Random Signals
and Processes;

• Use standard Probability Theory for this.

Random signal theory is important for

• Analysis of signals;

• Inference of underlying system parameters from noisy observed data;

• Design of optimal systems (digital and analogue signal recovery, signal classification,
estimation...);

• Predicting system performance (error-rates, signal-to-noise ratios, ...).

Examples:

• Speech signals (see fig. 1.1) - use probability theory to characterize that some sequences
of vowels and consonants are more likely than others, some waveforms more likely than
others for a given vowel or consonant.
Use this to achieve: speech recognition, speech coding, speech enhancement, ...

• Digital communications (see fig. 1.2) – characterise the properties of the digital data
source (mobile phone, digital television transmitter, ...), characterize the noise/distortions
present in the transmission channel.
Use this to achieve: accurate regeneration of the digital signal at the receiver, analysis of
the channel characteristics...

Probability theory is used to give a mathematical description of the behaviour of real-world
systems which involve elements of randomness. Such a system might be as simple as a coin-
flipping experiment, in which we are interested in whether ‘Heads’ or ‘Tails’ is the outcome,
or it might be more complex, as in the study of random errors in a coded digital data stream
(e.g. a digital TV signal or mobile phone signal).

The basics of probability theory should be familiar from the IB Probability and Statistics
course. Here we summarize the main results from that course and develop them into a frame-
work that can encompass random signals and processes.
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Fig. 1.1: Four utterances of the vowel sound ‘Aah’.
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Fig. 1.2: Digital data stream from a noisy communications Channel.
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1.2 Probability Distributions

The distribution PX of a random variable X is simply a probability measure which assigns
probabilities to events on the real line. The distribution PX answers questions of the form:

What is the probability that X lies in some subset F of the real line?

In practice we summarize PX by its Probability Mass Function – pmf (for discrete vari-
ables only), Probability Density Function – pdf (mainly for continuous variables), or
Cumulative Distribution Function – cdf (for either discrete or continuous variables).

1.2.1 Probability Mass Function (pmf)

Suppose the discrete random variable X can take a set of M real values {x1, . . . xM}, then the

pmf is defined as:

pX(xi) = Pr{X = xi} = PX({xi}), where
M∑
i=1

pX(xi) = 1 (1.1)

e.g. For a normal 6-sided die, M = 6 and pX(xi) =
1
6
. For a pair of dice being thrown, M = 11

and the pmf is as shown in fig. 1.3(a).

1.2.2 Cumulative Distribution Function (cdf)

The cdf can describe discrete, continuous or mixed distributions of X and is defined as:

FX(x) = Pr{X ≤ x } = PX( (−∞, x] ) (1.2)

For discrete X:

FX(x) =
∑

{pX(xi) : xi ≤ x} (1.3)

giving step-like cdfs as in the example of fig. 1.3(b).

Properties follow directly from the Axioms of Probability:

1. 0 ≤ FX(x) ≤ 1

2. FX(−∞) = 0, FX(∞) = 1

3. FX(x) is non-decreasing as x increases

4. Pr{x1 < X ≤ x2} = FX(x2)− FX(x1)

5. Pr{X > x} = 1− FX(x)

Where there is no ambiguity we will often drop the subscript X and refer to the cdf as F (x).
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1.2.3 Probability Density Function (pdf)

The pdf of X is defined as the derivative of the cdf:

fX(x) =
d
dxFX(x) (1.4)

The pdf can also be interpreted in derivative form as:

fX(x) δx = Pr{x < X ≤ x+ δx} = FX(x+ δx)− FX(x) as δx → 0 (1.5)

For a discrete random variable with pmf given by pX(xi):

fX(x) =
M∑
i=1

pX(xi) δ(x− xi) (1.6)

An example of the pdf of the 2-dice discrete random process is shown in fig. 1.3(c). (Strictly
the delta functions should extend vertically to infinity, but we show them only reaching the
values of their areas, pX(xi).)

The pdf and cdf of a continuous distribution (in this case the normal orGaussian distribution)
are shown in fig. 1.3(d,e). Note that the cdf is the integral of the pdf and should always go
from zero to unity for a valid probabilty distribution.

Properties of pdfs:

1. fX(x) ≥ 0

2.
∫ ∞

−∞
fX(x) dx = 1

3. FX(x) =
∫ x

−∞
fX(β) dβ

4. Pr{x1 < X ≤ x2} =
∫ x2

x1

fX(β) dβ

As for the cdf, we will often drop the subscript X and refer simply to f(x) when no confusion
can arise.
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Fig. 1.3: Examples of pmfs, cdfs and pdfs: (a) to (c) for a discrete process, the sum of two
dice; (d) and (e) for a continuous process with a normal or Gaussian distribution, whose mean
= 2 and variance = 3.
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1.3 Conditional probabilities and Bayes’ Rule

If A and B are two separate but possibly dependent random events, then:

1. The joint probability of A and B occurring together = Pr{A,B}

2. The conditional probability of A, given that B occurs = Pr{A|B}

3. The conditional probability of B, given that A occurs = Pr{B|A}

From elementary rules of probability (Venn diagrams):

Pr{A,B} = Pr{A|B} Pr{B} = Pr{B|A} Pr{A} (1.7)

Dividing the right-hand pair of expressions by Pr{B} gives Bayes’ rule:

Pr{A|B} =
Pr{B|A} Pr{A}

Pr{B}
(1.8)

In problems of probabilistic inference, we are often trying to estimate the most probable un-
derlying model for a random process, based on some observed data or evidence. If A represents
a given set of model parameters, and B represents the set of observed data values, then the
terms in equation (1.8) are given the following terminology:

• Pr{A} is the prior probability of the model being A (in the absence of
any evidence);

• Pr{B} is the probability of the evidence being B;

• Pr{B|A} is the likelihood that the evidence would be B, given that the
model was A;

• Pr{A|B} is the posterior probability of the model being A, given that
the evidence is B.

Quite often, we try to find the model A which maximises the posterior Pr{A|B}. This is known
as maximum a posteriori or MAP model selection.

The following example illustrates the concepts of Bayesian model selection.
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1.3.1 Example – Loaded Dice

Problem:

Given a tub containing 100 six-sided dice, in which one die is known to be loaded towards
the six to a specified extent, derive an expression for the probability that, after a given set of
throws, an arbitrarily chosen die is the loaded one? Assume the other 99 dice are all fair (not
loaded in any way). The loaded die is known to have the following pmf:

pL(1) = 0.05; pL(2) . . . pL(5) = 0.15; pL(6) = 0.35.

Hence derive a good serial testing strategy for finding the loaded die from the tub.

Solution:

The pmfs of the fair dice may be assumed to be: pF (i) =
1
6

for i = 1 . . . 6.

Let each die have one of two states, S = L if it is loaded and S = F if it is fair. These
are our two possible models for the random process and they have underlying pmfs given by
{pL(1), . . . pL(6)} and {pF (1), . . . pF (6)} respectively.

After N throws of the chosen die, let the sequence of throws be ΘN = {θ1, . . . θN}, where each
θi ∈ {1, . . . 6}. This is our evidence.

We shall now calculate the probability that this die is the loaded one. We therefore wish to
find the posterior Pr{S = L|ΘN}.

We cannot evaluate this directly, but we can evaluate the likelihoods, Pr{ΘN |S = L} and

Pr{ΘN |S = F}, since we know the expected pmfs in each case. We also know the prior

probabilities Pr{S = L} and Pr{S = F} before we have carried out any throws, and these are

{0.01, 0.99} since only one die in the tub of 100 is loaded. Hence we can use Bayes’ rule:

Pr{S = L|ΘN} =
Pr{ΘN |S = L} Pr{S = L}

Pr{ΘN}
(1.9)

Similarly:

Pr{S = F |ΘN} =
Pr{ΘN |S = F} Pr{S = F}

Pr{ΘN}
(1.10)

The denominator term Pr{ΘN} ensures that Pr{S = L|ΘN} and Pr{S = F |ΘN} sum to

unity (as they must). It can most easily be calculated from the numerators of the above two

expressions:

Pr{ΘN} = Pr{ΘN , S = L} + Pr{ΘN , S = F}
= Pr{ΘN |S = L} Pr{S = L} + Pr{ΘN |S = F} Pr{S = F}

(1.11)

so that

Pr{S = L|ΘN} =
Pr{ΘN |S = L} Pr{S = L}

Pr{ΘN |S = L} Pr{S = L}+ Pr{ΘN |S = F} Pr{S = F}

=
1

1 +RN
(1.12)
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where

RN =
Pr{ΘN |S = F} Pr{S = F}
Pr{ΘN |S = L} Pr{S = L}

(1.13)

To calculate the likelihoods, Pr{ΘN |S = L} and Pr{ΘN |S = F}, we simply take the product

of the probabilities of each throw occurring in the sequence of throws ΘN , given each of the

two models respectively (since each new throw is independent of all previous throws, given the

model). So, after N throws, these likelihoods will be given by:

Pr{ΘN |S = L} =
N∏
i=1

pL(θi) and Pr{ΘN |S = F} =
N∏
i=1

pF (θi) (1.14)

We can now substitute these probabilities into the above expression for RN and include
Pr{S = L} = 0.01 and Pr{S = F} = 0.99 (see previous page) to get the desired a pos-
teriori probability Pr{S = L|ΘN} after N throws using equ. (1.12).

We may calculate this iteratively by noting that

Pr{ΘN |S = L} = Pr{ΘN−1|S = L} × pL(θN)

and Pr{ΘN |S = F} = Pr{ΘN−1|S = F} × pF (θN) (1.15)

so that

RN = RN−1
pF (θN)

pL(θN)
where R0 =

Pr{S = F}
Pr{S = L}

= 99 (1.16)

If we calculate this after every throw of the current die being tested (i.e. as N increases), then
we can either move on to test the next die from the tub if Pr{S = L|ΘN} becomes sufficiently
small (say < 10−4) or continue to test the current die. We finally accept the current die as
the loaded one when Pr{S = L|ΘN} becomes large enough (say > 0.995). (These thresholds
correspond approximately to RN > 104 and RN < 5 . 10−3 respectively.)

The choice of these thresholds for Pr{S = L|ΘN} is a function of the desired tradeoff between
speed of searching versus the probability of failure to find the loaded die, either by moving on
to the next die even when the current die is the loaded one, or by incorrectly selecting a fair
die as the loaded one.

The lower threshold, p1 = 10−4, is the more critical, because it affects how long we spend
before discarding each fair die. The probability of correctly detecting all the fair dice before
the loaded die is reached is (1 − p1)

n ≈ 1 − np1, where n ≈ 50 is the expected number of
fair dice tested before the loaded one is found. So the failure probability due to incorrectly
assuming the loaded die to be fair ≈ np1 ≈ 0.005.

The upper threshold, p2 = 0.995, is much less critical on search speed, since the ‘loaded’ result
occurs only once, so it is a good idea to set it very close to unity. The failure probability
caused by selecting a fair die to be the loaded one is is just 1−p2 = 0.005. Hence, for the given
thresholds, the overall failure probability = 0.005 + 0.005 = 0.01.

We could make the failure probability 0.001 by choosing p1 = 10−5 and p2 = 0.9995, but this
would slow down the search (by about 30% - try to explain this factor!).
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Note on computation:

In problems with significant amounts of evidence (e.g. large N), the evidence probability and
the likelihoods can both get very very small, sufficient to cause floating-point underflow on many
computers if equations such as (1.14) are computed directly. However the ratio of likelihood to
evidence probability still remains a reasonable size and is an important quantity which must
be calculated correctly.

One solution to this problem is to compute only the ratio of likelihoods, as in equ. (1.16). A
more generally useful solution is to compute log(likelihoods) instead. The product operations
in the expressions for the likelihoods then become sums of logarithms. Even the calculation of
likelihood ratios such as RN and comparison with appropriate thresholds can be done in the
log domain. After this, it is OK to return to the linear domain if necessary since RN should
be a reasonable value as it is the ratio of very small quantities.
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Fig. 1.4: Probability of the current die being ‘loaded’ as the throws progress (in this case die
20 is the loaded one). A new die is selected whenever the probability falls below p1.
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1.4 Joint and Conditional cdfs and pdfs

1.4.1 Cumulative distribution functions

We define the joint cdf to be

FX,Y (x, y) = Pr{ (X ≤ x) AND (Y ≤ y)} (1.17)

and conditional cdf to be

FX|Y (x|y) = Pr{ (X ≤ x)|(Y ≤ y)} (1.18)

Hence we get the following rules:

Conditional probability (cdf):

FX|Y (x|y) = Pr{ (X ≤ x)|(Y ≤ y)} =
FX,Y (x, y)

FY (y)
(1.19)

Bayes Rule (cdf):

FX|Y (x|y) =
FY |X(y|x)FX(x)

FY (y)
(1.20)

Total probability (cdf):

FX,Y (x,+∞) = FX(x) since FY (+∞) = 1 (1.21)

Conditional cdf’s have similar properties to standard cdf’s, i.e.

FX|Y (−∞|y) = 0, FX|Y (+∞|y) = 1 etc. (1.22)
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1.4.2 Probability density functions

We define joint and conditional pdfs in terms of corresponding cdfs. The joint pdf is defined

to be

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
(1.23)

and the conditional pdf is defined to be

fX|Y (x|y) = ∂
∂xF

′(x |Y = y) where F ′(x |Y = y) = Pr{X ≤ x |Y = y}
(1.24)

Note that F ′(x |Y = y) is different from the conditional cdf F (x | y) = Pr{X ≤ x |Y ≤ y},
defined in equ. (1.18).

However there is a slight problem. The event, Y = y, has zero probability for continuous ran-

dom variables, hence probability conditional on Y = y is not directly defined and F ′(x |Y = y)

cannot be found by direct application of event-based probability. However all is OK if we

consider it as a limiting case, as is usual in calculus:

F ′(x|Y = y) = lim
δy→0

Pr{X ≤ x | y < Y ≤ y + δy}

= lim
δy→0

FX,Y (x, y + δy)− FX,Y (x, y)

FY (y + δy)− FY (y)
=

∂
∂yFX,Y (x, y)

fY (y)
(1.25)

Joint and conditional pdfs have similar properties and interpretation to ordinary pdfs:

f(x, y) ≥ 0,
∫ ∫

f(x, y) dx dy = 1, f(x|y) ≥ 0,
∫
f(x|y) dx = 1 (1.26)

[N.B. - from now on interpret
∫

as
∫ ∞

−∞
unless otherwise stated.]

For pdfs we get the following rules:

Conditional pdf: (from equations (1.23) to (1.25))

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
(1.27)

Bayes Rule (pdf):

fX|Y (x|y) =
fY |X(y|x) fX(x)

fY (y)
(1.28)

Total Probability (pdf):∫
fY |X(y|x)fX(x) dx =

∫
fY,X(y, x) dx = fY (y)

∫
fX|Y (x|y) dx = fY (y) (1.29)

This final result is often referred to as the Marginalisation Integral and fY (y) as the
Marginal Probability.
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2 Random Vectors, Signals and Functions

2.1 Random Vectors

Random Vectors are simply groups of random variables, arranged as vectors. E.g.:

X = [X1 . . . Xn]
T (2.1)

where X1, . . . Xn are n separate random variables.

In general, all of the previous results can be applied to random vectors as well as to random
scalars, but vectors allow some interesting new results too.

−4
−2

0
2

4

−4
−2

0
2

4
0

0.05

0.1

0.15

0.2

x1

(a) pdf of 2−D normal distribution: mean = 0, var = 1

x2 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) pdf of Rayleigh distribution: var = 2

r

Fig. 2.1: pdfs of (a) a 2-D normal distribution, and (b) a Rayleigh distribution, corresponding
to the magnitude of the 2-D random vectors in (a).

2.1.1 Example – Arrows on a target

Suppose that arrows are shot at a target and land at random distances from the target centre.
The horizontal and vertical components of these distances are formed into a 2-D random error
vector. If each component of this error vector is an independent variable with zero-mean
Gaussian pdf of variance σ2, calculate the pdf’s of the radial magnitude and the phase angle
of the error vector.

Let the error vector be

X = [X1 X2]
T (2.2)

X1 and X2 each have a zero-mean Gaussian pdf given by

f(x) = 1√
2πσ2

e−x2/2σ2

(2.3)

Since X1 and X2 are independent, the 2-D pdf of X is

fX(x1, x2) = f(x1) f(x2) =
1

2πσ2 e−(x2
1+x2

2)/2σ
2

(2.4)
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In polar coordinates

x1 = r cos θ and x2 = r sin θ (2.5)

Hence

fX(x1, x2) =
1

2πσ2 e−(x2
1+x2

2)/2σ
2

= 1
2πσ2 e−r2/2σ2

(2.6)

To calculate the radial pdf, we first calculate the probability of the arrows landing in a narrow

ring of radius r0 and width δr:

Pr{r0 < r < r0 + δr} =
∫ r0+δr

r=r0

∫ π

θ=−π
fX(x1, x2) r dθ dr

=
∫ r0+δr

r=r0

∫ π

θ=−π

1
2πσ2 e−r2/2σ2

r dθ dr

=
∫ r0+δr

r=r0

2π
2πσ2 e−r2/2σ2

r dr

≃ 1
σ2 r0 e

−r20/2σ
2

δr

This probability is the radial pdf times the ring width, fR(r0) δr. Therefore, taking the limit

as δr → 0, the radial pdf of the error vector is:

fR(r) =
1
σ2 r e−r2/2σ2

where r ≥ 0 (2.7)

This is known as a Rayleigh distribution and is shown in fig. 2.1(b).

The 2-D pdf of X in (2.6) depends only on r and not on θ, so the angular pdf of the error

vector is constant over any 2π interval and is therefore

fΘ(θ) =
1
2π so that

∫ π

−π
fΘ(θ) dθ = 1 (2.8)

2.2 Random Signals

Random signals are random variables which evolve, often with time (e.g. audio noise), but also
with distance (e.g. intensity in an image of a random texture), or sometimes another parameter.

They can be described as usual by their cdf and either their pmf (if the amplitude is discrete, as
in a digitised signal) or their pdf (if the amplitude is continuous, as in most analogue signals).

However a very important additional property is how rapidly a random signal fluctuates.
Clearly a slowly varying signal such as the waves in an ocean is very different from a more
rapidly varying signal such as vibrations in a vehicle. We will see later in section 4 how to deal
with these frequency dependent characteristics of randomness.

For the moment we shall assume that random signals are sampled at regular intervals and that
each signal is equivalent to a sequence of samples of a given random process, as in the following
example.
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Fig. 2.2: Detection of signals in noise: (a) the transmitted binary signal; (b) the binary signal
after filtering with a half-sine receiver filter; (c) the channel noise after filtering with the same
filter; (d) the filtered signal plus noise at the detector in the receiver.



20 3F1 Random Processes Course - Section 2 (supervisor copy)

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8
data = +1data = −1

prob. of error

pdfs of signal + noise at the detector

R

Fig. 2.3: The pdfs of the signal plus noise at the detector for the two data states, ±1. The
vertical dashed line is the detector threshold and the shaded area to the left of the origin
represents the probability of error when data = +1.

2.2.1 Example – Detection of a binary signal in noise

We now consider the example of detecting a binary signal after it has passed through a channel
which adds noise. The transmitted signal is typically as shown in fig. 2.2(a).

In order to reduce the channel noise, the receiver will include a lowpass filter. The aim of the

filter is to reduce the noise as much as possible without reducing the peak values of the signal

significantly. A good filter for this has a half-sine impulse response of the form:

h(t) =


π

2Tb
sin

(
πt

Tb

)
if 0 ≤ t ≤ Tb (Tb = bit period)

0 elsewhere
(2.9)

This filter will convert the rectangular data bits into sinusiodally shaped pulses as shown
in fig. 2.2(b) and it will also convert wide bandwidth channel noise into the form shown in
fig. 2.2(c). Bandlimited noise of this form will usually have an approximately Gaussian pdf.

Because this filter has an impulse response limited to just one bit period and has unit gain at
zero frequency (the area under h(t) is unity), the signal values at the centre of each bit period
at the detector will still be ±1. If we choose to sample each bit at the detector at this optimal
mid point, the pdfs of the signal plus noise at the detector will be as shown in fig. 2.3.

Let the filtered data signal be D(t) and the filtered noise be V (t), then the detector signal is

R(t) = D(t) + V (t) (2.10)

If we assume that +1 and −1 bits are equiprobable and the noise is a symmetric zero-mean

process, the optimum detector threshold is clearly midway between these two states, i.e. at

zero. The probability of error when the data = +1 is then given by:

Pr{error|D = +1} = Pr{R(t) < 0|D = +1} = FV (−1) =
∫ −1

−∞
fV (v) dv (2.11)
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where FV and fV are the cdf and pdf of the noise voltage V . This is the shaded area in fig. 2.3.

Similarly the probability of error when the data = −1 is then given by:

Pr{error|D = −1} = Pr{R(t) > 0|D = −1} = 1− FV (+1) =
∫ ∞

1
fV (v) dv

(2.12)

Hence the overall probability of error is:

Pr{error} = Pr{error|D = +1} Pr{D = +1}+ Pr{error|D = −1} Pr{D = −1}

=
∫ −1

−∞
fV (v) dv Pr{D = +1}+

∫ ∞

1
fV (v) dv Pr{D = −1}

=
∫ ∞

1
fV (v) dv (Pr{D = +1}+ Pr{D = −1})

(since fV is symmetric about zero)

=
∫ ∞

1
fV (v) dv (2.13)

To be a little more general and to account for signal attenuation over the channel, we shall
assume that the signal values at the detector are ±v0 (rather than ±1) and that the filtered
noise at the detector has a zero-mean Gaussian pdf with variance σ2.

Hence:

fV (v) =
1√
2πσ2

e−v2/2σ2

(2.14)

and so, letting v = σu where u is a unit variance Gaussian process:

Pr{error} =
∫ ∞

v0
fV (v) dv =

∫ ∞

v0/σ
fV (σu) σ du

= 1√
2π

∫ ∞

v0/σ
e−u2/2 du = Q

(
v0
σ

)
(2.15)

where

Q(x) = 1√
2π

∫ ∞

x
e−u2/2 du (2.16)

This integral has no analytic solution, but a good (and reasonably simple) approximation to it
exists and is discussed in some detail in section 2.4 and plotted in fig. 2.6.

From equ. (2.15) we may obtain the probability of error in the binary detector, which is often
expressed as the bit error rate or BER. For example, if Pr{error} = 2 . 10−3, this would
often be expressed as a bit error rate of 2 . 10−3, or alternatively as 1 error in 500 bits (on
average).

The argument (v0/σ) in (2.15) is the signal-to-noise voltage ratio (SNR) at the detector, and
the BER rapidly diminishes with increasing SNR (see fig. 2.6).
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2.3 Functions of Random Variables

Problem:

If the random variable Y is a monotonic increasing function of random variable X such that

Y = g(X) and X = g−1(Y ) (2.17)

(inversion of g(.) requires it to be monotonic so that there is only one value of X for every
valid value of Y ) then, given the cdf FX(x) and the function g(.), what are FY (y) and fY (y),
the cdf and pdf of Y ?

Solution:

If g(.) is monotonic increasing, the cdf of Y is given by

FY (y) = Pr{Y ≤ y} = Pr{g(X) ≤ g(x)} = Pr{X ≤ x} = FX(x) (2.18)

since Y = g(X) and y = g(x).

The pdf of Y may be found as follows:

fY (y) =
d
dy FY (y) =

d
dy FX(x) =

(
d
dx FX(x)

)
dx
dy = fX(x)

dx
dy (2.19)

Defining dy
dx = g′(x), fY (y) =

fX(x)

g′(x)
(2.20)

This relation is illustrated in fig. 2.4, using a geometric construction to relate fY to fX via
Y = g(X). The area under each of the pdfs between a given pair of dashed lines must be
the same, because the probability of being in a given range of X must be the same as the
probability of being in the equivalent range of Y .

If g(.) is monotonic decreasing (instead of increasing), then equ. (2.18) becomes

FY (y) = Pr{g(X) ≤ g(x)} = Pr{X ≥ x} = 1− FX(x) (2.21)

and by a similar argument we find that

fY (y) =
fX(x)

−g′(x)
(2.22)

In principle, any non-monotonic function g(.) can be split into a finite number of monotonic

sections and in that case the pdf result can be generalised to

fY (y) =
∑
i

 fX(x)
|g′(x)|


x=xi

(2.23)

where the xi are all the solutions of g(x) = y at any given y. However care is needed in this
case, because if g(x) is smooth then g′(x) will become zero at the section boundaries and so
fY (y) will tend to infinity at these points.
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Fig.2.4: Illustration of monotonic mapping of pdfs by plotting fY (y) rotated by 90◦. The
non-linearity in this case is g(X) = 0.4X2 +X − 0.4, which is monotonic for −1 ≤ X ≤ 1 .
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2.3.1 Example – Generation of a Gaussian pdf from a uniform pdf

If X has a uniform pdf from 0 to 1 (and zero elsewhere), and we wish to generate Y using
Y = g(X) such that Y has a Gaussian (normal) pdf of unit variance and zero mean, what is
the required function g(.) ?

(This function is often needed in computers, because standard random number generators tend
to have uniform pdfs, while simulation of noise from the real world requires Gaussian pdfs.)

For these pdfs:

fX(x) =

 1 for 0 ≤ x ≤ 1
0 elsewhere

(2.24)

fY (y) =
1√
2π

e−y2/2 (2.25)

The corresponding cdfs are

FX(x) =
∫ x

−∞
fX(u) du =


0 for x < 0
x for 0 ≤ x ≤ 1
1 for x > 1

(2.26)

FY (y) =
∫ y

−∞
fY (u) du (2.27)

From our previous analysis

FY (y) = FX(g
−1(y)) = g−1(y) if 0 ≤ g−1(y) ≤ 1 (2.28)

.
.
. g−1(y) =

∫ y

−∞
fY (u) du (2.29)

This integral has no analytic solution, so we cannot easily invert this result to get g(.). However
a numerical (or graphical) solution is shown in fig. 2.5(a).
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Fig.2.5: Conversion of a uniform pdf to (a) a Gaussian pdf and (b) a Rayleigh pdf. A numerical
solution for g(X) was required for (a) in order to invert equ. (2.29), whereas (b) uses the analytic
solution for g(X), given in equ. (2.32).
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We can get an analytic solution to this problem as follows. If we generate a 2-D Gaussian from
polar coordinates, we need to use two random variables to generate r and θ with the correct
distributions. In particular (see section 2.1.1), r requires a Rayleigh distribution which can be
integrated analytically and hence gives a relatively simple analytic solution for g(.).

Assuming that we start with a uniform pdf from 0 to 1 as before, generating θ is easy as we
just scale the variable by 2π to get random phases uniformly distributed from 0 to 2π.

Once we have {r, θ}, we can convert to cartesian components {x1, x2} to obtain two variables,
both with Gaussian pdfs as desired.

To generate r correctly, we need a Rayleigh pdf with variance = 2 (to generate 2 unit-variance
processes {x1, x2}).

Hence:

fR(r) =

 r e−r2/2 for r ≥ 0
0 elsewhere

(2.30)

and from equ. (2.29):

g−1(y) =
∫ y

−∞
fR(r) dr =

∫ y

0
r e−r2/2 dr =

[
−e−r2/2

]y
0
= 1− e−y2/2 (2.31)

To get y = g(x), we just invert the formula for x = g−1(y). Hence

x = 1− e−y2/2

−y2/2 = ln(1− x)

.
.
. y = g(x) =

√
−2 ln(1− x) (only for 0 ≤ x < 1) (2.32)

This conversion is illustrated in fig. 2.5(b).

Summarising the complete algorithm to convert uniform pdfs to Gaussian pdfs:

1. Generate a 2-D random vector x = [x1, x2]
T with uniform pdfs from [0, 0]T to [1, 1]T ,

by two calls to a standard random number generator function (e.g. rand() in Matlab;
although this whole procedure is unnecessary in Matlab as there is already a built-in
Gaussian random generator, randn(), which most probably uses this algorithm!).

2. Convert x1 into r with Rayleigh pdf using

r = g(x1) =
√
−2 ln(1− x1) (2.33)

3. Convert x2 into θ with uniform pdf from 0 to 2π using

θ = 2πx2 (2.34)

4. Generate two independent random variables with Gaussian pdfs of unit variance and zero

mean using

y1 = r cos θ and y2 = r sin θ (2.35)

5. Repeat steps 1 to 4 for each new pair of Gaussian variables required.

Note y1 and y2 may be scaled by σ to adjust their variance to be σ2, and an offset µ may be
added to them in order to produce a non-zero mean equal to µ.
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2.4 Approximation Formulae for the Gaussian Error Integral, Q(x)

A Gaussian pdf with unit variance is given by:

f(x) =
1√
2π

e−x2/2 (2.36)

The probability that a signal with a pdf given by f(x) lies above a given threshold x is given

by the Gaussian Error Integral or Q function:

Q(x) =
∫ ∞

x
f(u) du (2.37)

There is no analytical solution to this integral, but it has a simple relationship to the error

function, erf(x), or its complement, erfc(x), which are tabulated in many books of mathematical

tables.

erf(x) =
2√
π

∫ x

0
e−u2

du and erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x
e−u2

du

(2.38)

.
.
. Q(x) = 1

2 erfc

(
x√
2

)
= 1

2

[
1− erf

(
x√
2

)]
(2.39)

Note that erf(0) = 0 and erf(∞) = 1, and therefore Q(0) = 0.5 and Q(x) → 0 very rapidly as
x becomes large.

It is useful to derive simple approximations to Q(x) which can be used on a calculator and
avoid the need for tables.

Let v = u− x, then:

Q(x) =
∫ ∞

0
f(v+x) dv =

1√
2π

∫ ∞

0
e−(v2+2vx+x2)/2 dv =

e−x2/2

√
2π

∫ ∞

0
e−vx e−v2/2 dv

(2.40)
Now if x ≫ 1, we may obtain an approximate solution by replacing the e−v2/2 term in the

integral by unity, since it will initially decay much slower than the e−vx term.

.
.
. Q(x) <

e−x2/2

√
2π

∫ ∞

0
e−vx dv =

e−x2/2

√
2π x

(2.41)

This approximation is an upper bound since e−v2/2 ≤ 1, but its ratio to the true value of

Q(x) becomes less than 1.1 only when x > 3, as shown in fig. 2.6. Empirically we obtain

a much better approximation to Q(x) by altering the denominator above from (
√
2π x) to

(1.64x+
√
0.76x2 + 4) to give:

Q(x) ≈ e−x2/2

1.64x+
√
0.76x2 + 4

(2.42)

This improved approximation (developed originally by Borjesson and Sundberg, IEEE Trans.
on Communications, March 1979, p 639) gives a curve indistinguishable from Q(x) in fig. 2.6
and its ratio to the true Q(x) is now within ±0.3% of unity for all x ≥ 0 as shown in fig. 2.7.
This accuracy is sufficient for nearly all practical problems.
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3 Expectations, Moments and Characteristic Functions

3.1 Expectation

Expectations form a fundamental part of random signal theory. In simple terms

the Expectation Operator calculates the mean of a random quantity

although the concept turns out to be much more general and useful than just this.

If X has pdf fX(x) (correctly normalised so that
∫ +∞

−∞
fX(x) dx = 1), its expectation is given

by:

E[X] =
∫ +∞

−∞
x fX(x) dx = X (3.1)

For discrete processes, we substitute equ. (1.6) in here to get

E[X] =
∫ +∞

−∞
x

M∑
i=1

pX(xi) δ(x− xi) dx =
M∑
i=1

xi pX(xi) = X (3.2)

Now, what is the mean value of some function, Y = g(X)?

Using the result of equ. (2.19) for pdfs of related processes Y and X:

fY (y) dy = fX(x) dx (3.3)

Hence (again assuming infinite integral limits unless stated otherwise)

E[g(X)] = E[Y ] =
∫
y fY (y) dy =

∫
g(x) fX(x) dx (3.4)

This is an important result which allows us to use the Expectation Operator for many purposes
including the calculation of moments and other related parameters of a random process.

Note, expectation is a Linear Operator:

E[a g1(X) + b g2(X)] = aE[g1(X)] + bE[g2(X)] (3.5)
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3.2 Important examples of Expectation

We get Moments of a pdf by setting g(X) = Xn in equ. (3.4):

nth order moment: E[Xn] =
∫
xn fX(x) dx (3.6)

n = 1: 1st order moment, E(X) = Mean value

n = 2: 2nd order moment, E[X2] = Mean-squared value (Power or energy)

n > 2: Higher order moments, E[Xn], give more detail about fX(x).

3.2.1 Central Moments:

Central moments are moments about the centre or mean of a distribution

nth order central moment: E[(X −X)n] =
∫
(x−X)n fX(x) dx (3.7)

Some important parameters from central moments of a pdf are:

• Variance, n = 2:

σ2 = E[(X −X)2] =
∫
(x−X)2 fX(x) dx

=
∫
x2 fX(x) dx− 2X

∫
x fX(x) dx+X

2
∫
fX(x) dx

= E[X2]− 2X
2
+X

2
= E[X2]−X

2
(3.8)

• Standard deviation, σ =
√
variance .

• Skewness, n = 3:

γ =
E[(X −X)3]

σ3
(3.9)

γ = 0 if the pdf of X is symmetric about X, and becomes more positive if the tail of the
distribution is heavier when X > X than when X < X.

• Kurtosis (or excess), n = 4:

κ =
E[(X −X)4]

σ4
− 3 (3.10)

κ = 0 for a Gaussian pdf and becomes more positive for distributions with heavier tails.

Note that skewness and kurtosis are normalised by dividing the central moments by appropriate
powers of σ to make them dimensionless. Kurtosis is usually offset by −3 (as above) to make
it zero for Gaussian pdfs.
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3.2.2 Example: Central Moments of a Normal Distribution

The normal (or Gaussian) pdf with zero mean is given by:

fX(x) =
1√
2πσ2

e−x2/2σ2

(3.11)

What is the nth order central moment for the Gaussian?

Since the mean is zero, the nth order central moment is given by

E[Xn] =
∫
xn fX(x) dx = 1√

2πσ2

∫
xn e−x2/2σ2

dx (3.12)

fX(x) is a function of x2 and therefore is symmetric about zero. So all the odd-order moments

will integrate to zero (including the 1st-order moment, giving zero mean). The even-order

moments are then given by:

E[Xn] = 2√
2πσ2

∫ ∞

0
xn e−x2/2σ2

dx for n even (3.13)

The integral is calculated by substituting u = x2/2σ2, and hence du = x/σ2 dx, to give:∫ ∞

0
xn e−x2/2σ2

dx = 1
2(2σ

2)
n+1
2

∫ ∞

0
u

n−1
2 e−u du = 1

2(2σ
2)

n+1
2 Γ(n+1

2 ) (3.14)

Here Γ(z) is the Gamma function, which is defined as an integral for all real z > 0 and is like

the factorial function but generalised to allow non-integer arguments. Values of the Gamma

function can be found in mathematical tables. It is defined as follows:

Γ(z) =
∫ ∞

0
uz−1e−u du (3.15)

Using integration by parts, Γ(z) has the important factorial-like property that

Γ(z + 1) = zΓ(z) for all z ̸= 0 (3.16)

= z! if z ∈ Z and z > 0 (3.17)

The following results hold for the Gamma function (see below for a way to evaluate Γ(1
2
) etc.):

Γ(12) =
√
π, Γ(1) = 1, and hence Γ(32) =

√
π
2 , Γ(2) = 1, . . . (3.18)

Hence

E[Xn] =

 0 n odd
1√
π
(2σ2)

n
2 Γ(n+1

2 ) n even
(3.19)

Valid pdf, n = 0:

E[X0] = 1√
π Γ(12) = 1 as required for a valid pdf. (3.20)

Note that the normalisation factor 1/
√
2πσ2 in the expression for the pdf of a unit variance

Gaussian (e.g. equ. (3.11)) arises directly from the above result.

Mean, n = 1:

E[X] = 0 so the mean is zero. (3.21)
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Variance, n = 2:

E[(X −X)2] = E[X2] = 1√
π(2σ

2) Γ(32) =
1√
π(2σ

2)
√
π
2 = σ2 (3.22)

Therefore standard deviation =
√
variance = σ.

Skewness, n = 3:

E[X3] = 0 so the skewness is zero. (3.23)

Kurtosis, n = 4:

E[(X −X)4] = E[X4] = 1√
π
(2σ2)2 Γ(52) =

1√
π
(2σ2)2 3

√
π

4 = 3σ4 (3.24)

Hence

κ =
E[(X −X)4]

σ4
− 3 = 3− 3 = 0 (3.25)

3.2.3 Evaluation of Γ(1
2
),Γ(1) etc.

From the definition of Γ and substituting u = x2:

Γ(12) =
∫ ∞

0
u−1/2 e−u du =

∫ ∞

0
x−1 e−x2

2x dx

= 2
∫ ∞

0
e−x2

dx =
∫ ∞

−∞
e−x2

dx (3.26)

Using the following squaring trick to convert this to a 2-D integral in polar coordinates:

Γ2(12) =
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2 dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy

=
∫ ∞

0

∫ π

−π
e−r2 r dθ dr =

[
−1

2 2π e−r2
]∞
0

= π (3.27)

and so (ignoring the negative square root since e−x2 ≥ 0 everywhere):

Γ(12) =
√
π ≃ 1.7725 (3.28)

Hence, using Γ(z + 1) = zΓ(z):

Γ({3
2 ,

5
2 ,

7
2 ,

9
2 , . . .}) = {1

2

√
π, 34

√
π, 158

√
π, 10516

√
π, . . .} (3.29)

The case for z = 1 is straightforward:

Γ(1) =
∫ ∞

0
u0 e−u du =

[
−e−u

]∞
0

= 1 (3.30)

so

Γ({2, 3, 4, 5, . . .}) = {1, 2, 6, 24, . . .} (3.31)
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3.3 Sums of random variables

Consider the random variable Y formed as the sum of two independent random variables X1

and X2:

Y = X1 +X2 (3.32)

where X1 has pdf f1(x1) and X2 has pdf f2(x2).

We can write the joint pdf for y and x1 by rewriting the conditional probability formula:

f(y, x1) = f(y|x1) f1(x1) (3.33)

It is clear that the event ‘Y takes the value y conditional upon X1 = x1’ is equivalent to X2

taking a value y − x1 (since X2 = Y −X1). Hence

f(y|x1) = f2(y − x1) (3.34)

Now f(y) may be obtained using the Marginal Probability formula (equ. (1.29) from section

1.4.2). Hence

f(y) =
∫
f(y|x1) f1(x1) dx1

=
∫
f2(y − x1) f1(x1) dx1

= f2 ∗ f1 (Convolution) (3.35)

This result may be extended to sums of three or more random variables by repeated application

of the above arguments for each new variable in turn. Since convolution is a commutative

operation, for n independent variables we get:

f(y) = fn ∗ (fn−1 ∗ . . . ∗ f2 ∗ f1) = fn ∗ fn−1 ∗ . . . ∗ f2 ∗ f1 (3.36)

An example of this effect occurs when multiple dice are thrown and the scores are added
together. In the 2-dice example of fig. 1.3(a,b,c) we saw how the pmf approximated a triangular
shape. This is just the convolution of two uniform 6-point pmfs for each of the two dice.

Similarly if two variables with Gaussian pdfs are added together, we shall show in section 3.4.2
that this produces another Gaussian pdf whose variance is the sum of the two input variances.
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3.4 Characteristic Functions

You have already encountered the Moment Generating Function of a pdf in the Part IB
probability course. This function was closely related to the Laplace Transform of the pdf.

Now we introduce theCharacteristic Function for a random variable, which is closely related
to the Fourier Transform of the pdf.

In the same way that Fourier Transforms allow easy manipulation of signals when they are con-
volved with linear system impulse responses, Characteristic Functions allow easy manipulation
of convolved pdfs when they represent sums of random processes.

The Characteristic Function of a pdf is defined as:

ΦX(u) = E[ejuX ] =
∫ ∞

−∞
ejux fX(x) dx = F(−u) (3.37)

where F(u) is the Fourier Transform of the pdf.

Note that whenever fX is a valid pdf, Φ(0) =
∫

fX(x) dx = 1

Properties of Fourier Transforms apply with −u substituted for ω. In particular:

1. Convolution - (sums of independent rv’s)

Y =
N∑
i=1

Xi

⇒ fY = fX1
∗ fX2

. . . ∗ fXN

⇒ ΦY (u) =
N∏
i=1

ΦXi
(u) (3.38)

2. Inversion

fX(x) =
1
2π

∫
e−jux ΦX(u) du (3.39)

3. Moments

dnΦX(u)

dun
=

∫
(jx)n ejux fX(x) dx

⇒ E[Xn] =
∫
xn fX(x) dx =

1

jn
dnΦX(u)

dun

∣∣∣∣∣∣
u=0

(3.40)

4. Scaling

If Y = aX, fY (y) =
fX(x)

a
from equ. (2.20)

then ΦY (u) =
∫
ejuy fY (y) dy

=
∫
ejuax fX(x) dx

= ΦX(au) (3.41)
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3.4.1 Characteristic Function of a Gaussian pdf

The Gaussian or normal distribution is very important, largely because of the Central Limit
Theorem which we shall prove below. Because of this (and as part of the proof of this theorem)
we shall show here that a Gaussian pdf has a Gaussian characteristic function too.

A Gaussian distribution with mean µ and variance σ2 has pdf:

f(x) = 1√
2πσ2

e−(x−µ)2 / 2σ2

(3.42)

Its characteristic function is obtained as follows, using a trick known as completing the

square of the exponent:

ΦX(u) = E[ejuX ] =
∫
fX(x) e

jux dx

= 1√
2πσ2

∫
e−(x2−2µx+µ2−2σ2jux) / 2σ2

dx

=
(

1√
2πσ2

∫
e−(x−(µ+juσ2))2 / 2σ2

dx
)

e(2jµuσ
2−u2σ4) / 2σ2

=
(

1√
2πσ2

∫
e−y2 / 2σ2

dy
)

e(2jµu−u2σ2) / 2 where y = x− (µ+ juσ2)

= ejµu e−σ2u2/ 2 (3.43)

since the integral in brackets is equivalent to that of a Gaussian pdf and integrates to unity.

Thus the characteristic function of a Gaussian pdf is also Gaussian in magnitude, e−σ2u2/ 2, with
standard deviation 1/σ, and with a linear phase rotation term, ejµu, whose rate of rotation
equals the mean µ of the pdf. This coincides with standard results from Fourier analysis of
Gaussian waveforms and their spectra (e.g. Fourier transform of a Gaussian waveform with
time shift).

3.4.2 Summation of two or more Gaussian random variables

If two variables, X1 and X2, with Gaussian pdfs are summed to produce X, their characteristic

functions will be multiplied together (equivalent to convolving their pdfs) to give

ΦX(u) = ΦX1
(u) ΦX2

(u) = eju(µ1+µ2) e−u2(σ2
1+σ2

2) / 2 (3.44)

This is the characteristic function of a Gaussian pdf with mean (µ1+µ2) and variance (σ2
1+σ2

2).

Further Gaussian variables can be added and the pdf will remain Gaussian with further terms
added to the above expressions for the combined mean and variance.
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3.4.3 Central Limit Theorem

The central limit theorem states broadly that if a large number N of independent random
variables of arbitrary pdf, but with equal variance σ2 and zero mean, are summed together
and scaled by 1/

√
N to keep the total energy independent of N , then the pdf of the resulting

variable will tend to a zero-mean Gaussian with variance σ2 as N tends to infinity.

This result is obvious from the previous result if the input pdfs are also Gaussian, but it
is the fact that it applies for arbitrary input pdfs that is remarkable, and is the reason for
the importance of the Gaussian (or normal) pdf. Noise generated in nature is nearly always
the result of summing many tiny random processes (e.g. noise from electron energy transitions
in a resistor or transistor, or from distant worldwide thunder storms at a radio antenna) and
hence tends to a Gaussian pdf.

Although for simplicity, we shall prove the result only for the case when all the summed
processes have the same variance and pdfs, the central limit result is more general than this
and applies in many cases even when the variances and pdfs are not all the same.

Proof:

Let Xi (i = 1 to N) be the N independent random processes, each with zero mean and variance

σ2, which are combined to give

X = 1√
N

N∑
i=1

Xi (3.45)

Then, if the characteristic function of each input process before scaling is Φ(u) and we use

equ. (3.41) to include the scaling by 1/
√
N , the characteristic function of X is

ΦX(u) =
N∏
i=1

ΦXi

(
u√
N

)
= ΦN

(
u√
N

)
(3.46)

Taking logs:

ln(ΦX(u)) = N ln
(
Φ
(

u√
N

))
(3.47)

Using Taylor’s theorem to expand Φ
(

u√
N

)
in terms of its derivatives at u = 0 (and hence its

moments) gives

Φ
(

u√
N

)
= Φ(0) + u√

N
Φ′(0) + 1

2

(
u√
N

)2
Φ′′(0)

+ 1
6

(
u√
N

)3
Φ′′′(0) + 1

24

(
u√
N

)4
Φ′′′′(0) + . . . (3.48)
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From the Moments property of characteristic functions with zero mean:

Φ(0) = E[X0
i ] = 1 valid pdf

Φ′(0) = jE[Xi] = 0 zero mean

Φ′′(0) = j2E[X2
i ] = −σ2 variance

Φ′′′(0) = j3E[X3
i ] = −jγσ3 scaled skewness

Φ′′′′(0) = j4E[X4
i ] = (κ+ 3)σ4 scaled kurtosis

etc. (3.49)

These are all constants, independent of N , and dependent only on the shape of the pdfs fXi
.

Substituting these moments into equations (3.47) and (3.48) and using the series expansion,

ln(1 + x) = x + (terms of order x2 or smaller), gives

ln(ΦX(u)) = N ln
(
Φ
(

u√
N

))
= N ln

(
1− u2

2N σ2 + (terms of order N−3/2 or smaller)
)

= N
(
−u2σ2

2N + (terms of order N−3/2 or smaller)
)

= −u2σ2

2 + (terms of order N−1/2 or smaller)

→ −u2σ2

2 as N → ∞ (3.50)

.
.
. ΦX(u) → e−u2σ2 / 2 as N → ∞ (3.51)

Note that, if the input pdfs are symmetric, the skewness will be zero and the error terms will
decay as N−1 rather than N−1/2; and so convergence to a Gaussian characteristic function will
be more rapid.

Hence we may now infer from equations (3.42), (3.43) and (3.51) that the pdf of X as N → ∞
will be given by

fX(x) =
1√
2πσ2

e−x2 / 2σ2

(3.52)

Thus we have proved the required central limit result.

Fig. 3.1(a) shows an example of convergence when the input pdfs are uniform, and N is
gradually increased from 1 to 50. By N = 12, convergence is good, and this is how some
‘Gaussian’ random generator functions operate – by summing typically 12 uncorrelated random
numbers with uniform pdfs.

For some less smooth or more skewed pdfs, convergence can be slower, as shown for a highly
skewed triangular pdf in fig. 3.1(b); and pdfs of discrete processes are particularly problematic
in this respect, as illustrated in fig. 3.1(c).
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(a) Uniform pdf, N = 50
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(b) Triangular pdf with high skew, N = 50

N = 1

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3
(c) Approximate binary pdf, N = 50

N = 1

Fig.3.1: Convergence towards a Gaussian pdf (Central Limit Theorem) for 3 different input
pdfs for N = 1 to 50. Note that the uniform pdf (a) with smallest higher-order moments
converges fastest. Curves are shown for N = {1, 2, 3, 4, 6, 8, 10, 12, 15, 20, 30, 50}.
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4 Correlation Functions and Power Spectra

4.1 Random Processes

We met Random Signals briefly in section 2.2 and now we return to consider them in detail.
We shall assume that they evolve continuously with time t, although they may equally well
evolve with distance (e.g. a random texture in image processing) or some other parameter.

We can imagine a generalization of our previous ideas about random experiments so that the
outcome of an experiment can be a ‘Random Object’, an example of which is a signal waveform
chosen at random from a set of possible signal waveforms, which we term an Ensemble. This
ensemble of random signals is known as a Random Process.

Two examples of a Random Process X(t, α) are shown in fig. 4.1, where t is time and α is an
index to the various members of the ensemble. The first example (a) shows several samples
from a process whose statistics do not vary with time (a stationary process), while the second
example (b) shows a time-dependent process such as different instances of similar speech sounds.

• t is assumed to belong to some set T (the time axis).

• α is assumed to belong to some set A (the sample space).

• If T is a continuous set, such as ℜ or [0,∞), then the process is termed a Continuous
Time random process.

• If T is a discrete set of time values, such as the integers Z, the process is termed a
Discrete Time Process or Time Series.

• The members of the ensemble can be the result of different random events, such as
different instances of the sound ‘ah’ during the course of this lecture. In this case α is
discrete.

• Alternatively the ensemble members are often just different portions of a single random
signal. If the signal is a continuous waveform, then α may also be a continuous variable,
indicating the starting point of each ensemble waveform.

We will often drop the explicit dependence on α for notational convenience, referring simply
to random process {X(t)}.

If we consider the process {X(t)} at one particular time t = t1, then we have a random
variable X(t1).

If we consider the process {X(t)} at N time instants {t1, t2, . . . , tN}, then we have a random
vector:

X = [X(t1), X(t2), . . . X(tN)]
T

We can study the properties of a random process by considering the behaviour of random
variables and random vectors extracted from the process, using the probability theory derived
earlier in this course.
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(a) Ensemble of stationary Random Signals

α1

α2

α i

α i+1

t1 t2 t  −>

X(t,α1)

X(t ,α2)

X(t ,α i )

X(t ,α i+1)

(b) Ensemble of non−stationary Random Signals

α1

α2

α i

α i+1

t1 t2 t  −>

X(t,α1)

X(t ,α2)

X(t ,α i )

X(t ,α i+1)

Fig. 4.1: Ensemble representations of a random process:
(a) with stationary properties; (b) with time-varying properties.
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4.2 Correlation and Covariance

Correlation and covariance are techniques for measuring the similarity of one set of signal
samples to another. For a random process X(t, α) they are defined as follows.

• Auto-correlation function:

rXX(t1, t2) = E[X(t1, α)X(t2, α)] =
∫ ∫

x1 x2 f(x1, x2) dx1 dx2 (4.1)

where the expectation is performed over all α ∈ A (i.e. the whole ensemble), and f(x1, x2)
is the joint pdf when x1 and x2 are samples taken at times t1 and t2 from the same
random event α of the random process X.

• Auto-covariance function:

cXX(t1, t2) = E[(X(t1, α)−X(t1))(X(t2, α)−X(t2))]

=
∫
x1

∫
x2

(x1 −X(t1))(x2 −X(t2)) f(x1, x2) dx1 dx2

using equ (1.29): = rXX(t1, t2)−X(t1)
∫
x2 f2(x2) dx2

− X(t2)
∫
x1 f1(x1) dx1 +X(t1) X(t2)

= rXX(t1, t2)−X(t1) X(t2) (4.2)

where the same conditions apply as for auto-correlation and the means X(t1) and X(t2)
are taken over all α ∈ A . Covariances are equivalent to correlations except that the
means are removed from the data first.

• Cross-correlation function:

If we have two different processes, X(t, α) and Y (t, α), both arising as a result of the

same random event α, then cross-correlation is defined as

rXY (t1, t2) = E[X(t1, α)Y (t2, α)] =
∫ ∫

x1 y2 f(x1, y2) dx1 dy2 (4.3)

where f(x1, y2) is the joint pdf when x1 and y2 are samples of X and Y taken at times
t1 and t2 as a result of the same random event α. Again the expectation is performed
over all α ∈ A.

• Cross-covariance function:

cXY (t1, t2) = E[(X(t1, α)−X(t1))(Y (t2, α)− Y (t2))]

=
∫
x1

∫
y2
(x1 −X(t1))(y2 − Y (t2)) f(x1, y2) dx1 dy2

= rXY (t1, t2)−X(t1) Y (t2) (4.4)

For Deterministic Random Processes in which X (and Y ) depend deterministically on the

random variable α (or some function of it), we can simplify the above integrals by expressing

the joint pdf in that space. E.g. for auto-correlation:

rXX(t1, t2) = E[X(t1, α)X(t2, α)] =
∫
A
x(t1, α) x(t2, α) f(α) dα (4.5)
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4.3 Stationarity

Stationarity in a Random Process implies that its statistical characteristics do not change
with time. Put another way, if one were to observe a stationary random process at some time
t it would be impossible to distinguish the statistical characteristics at that time from those
at some other time t′. Fig. 4.1(a) shows a stationary process.

4.3.1 Strict Sense Stationarity (SSS)

Choose a Random Vector of length N from a Random Process:

X = [X(t1), X(t2), . . . , X(tN)]
T (4.6)

Its Nth order cdf is

FX(t1), ... X(tN )(x1, . . . xN) = Pr{X(t1) ≤ x1, . . . X(tN) ≤ xN} (4.7)

X(t) is defined to be Strict Sense Stationary iff:

FX(t1), ... X(tN )(x1, . . . xN) = FX(t1+c), ... X(tN+c)(x1, . . . xN) (4.8)

for all time shifts c, all finite N and all sets of time points {t1, . . . tN}.

4.3.2 Wide Sense (Weak) Stationarity (WSS)

If we are only interested in the properties of moments up to 2nd order (mean, autocorrelation,
covariance, ...), which is the case for many practical applications, a weaker form of stationarity
can be useful:

X(t) is defined to be Wide Sense Stationary (or Weakly Stationary) iff:

1. The mean value is independent of t

E[X(t)] = µ for all t (4.9)

2. Autocorrelation depends only upon τ = t2 − t1

E[X(t1)X(t2)] = E[X(t1)X(t1 + τ)] = rXX(τ) for all t1 (4.10)

Note that, since 2nd-order moments are defined in terms of 2nd-order probability distributions,
strict sense stationary processes are always wide-sense stationary, but not necessarily vice
versa.
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4.4 Ergodicity

Many stationary random processes are also Ergodic. For an Ergodic Random Process we can
exchange Ensemble Averages for Time Averages. This is equivalent to assuming that our
ensemble of random signals is just composed of all possible time shifts of a single signal X(t).
Fig. 4.1(a) could be an Ergodic process, while Fig. 4.1(b) could not (it is non-stationary).

Recall from equ. (3.4) that the expectation of a function of a random variable is given by

E[g(X)] =
∫
g(x) fX(x) dx (4.11)

This result also applies if we have a random function g(.) of a deterministic variable such

as time t. Hence

E[g(t)] =
∫
g(t) fT (t) dt (4.12)

Because t is linearly increasing, the pdf fT (t) is uniform over our measurement interval, say

−T to T , and will be 1 / 2T to make the pdf valid (integral = 1). Hence

E[g(t)] =
∫ T

−T
g(t) 1

2T dt = 1
2T

∫ T

−T
g(t) dt (4.13)

If we wish to measure over all time, then we take the limit as T → ∞.

This leads to the following results for Ergodic WSS random processes:

• Mean Ergodic:

E[X(t)] =
∫ ∞

−∞
x fX(t)(x) dx = lim

T→∞
1
2T

∫ T

−T
X(t) dt (4.14)

• Correlation Ergodic:

rXX(τ) = E[X(t)X(t+ τ)]

=
∫ ∞

−∞

∫ ∞

−∞
x1 x2 fX(t),X(t+τ)(x1, x2) dx1 dx2

= lim
T→∞

1
2T

∫ T

−T
X(t)X(t+ τ) dt (4.15)

and similarly for other correlation or covariance functions.

Ergodicity greatly simplifies the measurement of WSS processes and it is often as-
sumed when estimating moments (or correlations) for such processes.

In almost all practical situations, processes are stationary only over some limited time

interval (say T1 to T2) rather than over all time. In that case we deliberately keep the limits

of the integral finite and adjust fX(t) accordingly. For example the autocorrelation function is

then measured using

rXX(τ) =
1

T2 −T1

∫ T2

T1

X(t)X(t+ τ) dt (4.16)

This avoids including samples of X which have incorrect statistics, but it can suffer from errors
due to limited sample size.
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4.5 Spectral Properties of Random Signals

4.5.1 Relation of Power Spectral Density to ACF

The autocorrelation function (ACF) of an ergodic random signal tells us how correlated the

signal is with itself as a function of time shift τ . In particular, for τ = 0

rXX(0) = lim
T→∞

1
2T

∫ T

−T
X2(t) dt = mean power of X(t) (4.17)

Note that if T → ∞,

rXX(τ) = rXX(−τ) ≤ rXX(0) for all τ (4.18)

As τ becomes large, X(t) and X(t+ τ) will usually become decorrelated and, as long as X is
zero mean, rXX will tend to zero.

Hence the ACF will have its maximum at τ = 0 and decay symmetrically to zero (or to µ2,
if the mean, µ ̸= 0) as |τ | increases.

The width of the ACF (to say its half-power points) tells us how slowly X is fluctuating or how
bandlimited it is. Fig. 4.2(b) shows how the ACF of a rapidly fluctuating (wide-band) random
signal, as in fig. 4.2(a) upper plot, decays quickly to zero as |τ | increases, whereas, for a slowly
fluctuating signal, as in fig. 4.2(a) lower plot, the ACF decays much more slowly.

The ACF measures an entirely different aspect of randomness from amplitude
distributions such as pdf and cdf.
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Fig. 4.2: Illustration of the different properties of wide band (upper) and narrow band (lower)
random signals: (a) the signal waveforms with unit variance; (b) their autocorrelation functions
(ACFs); and (c) their power spectral densities (PSDs). In (b) and (c), the thin fluctuating
curves show the actual values measured from 4000 samples of the random waveforms while the
thick smooth curves show the limits of the ACF and PSD as the lengths of the waveforms tend
to infinity.
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As with deterministic signals, we may formalise our ideas of rates of fluctuation by transforming

to the Frequency (Spectral) Domain using the Fourier Transform:

Fu(ω) = FT{u(t)} =
∫
u(t) e−jωt dt (4.19)

The Power Spectral Density (PSD) of a random process X is defined to be the Fourier

Transform of its ACF:

SX(ω) = FT{rXX(τ)} =
∫
rXX(τ) e

−jωτ dτ (4.20)

rXX(τ) = FT−1{SX(ω))} = 1
2π

∫
SX(ω) e

jωτ dω (4.21)

N.B. {X(t)} must be at least Wide Sense Stationary (WSS) for this to be valid.

From equations (4.17) and (4.21) we see that the mean signal power is given by:

rXX(0) =
1
2π

∫
SX(ω) dω =

∫
SX(2πf) df (4.22)

Hence SX has units of power per Hertz. Note that we must integrate over all frequencies, both
positive and negative, to get the correct total power.

Fig. 4.2(c) shows how the PSDs of the signals relate to the ACFs in fig. 4.2(b).

Properties of PSDs for real-valued X(t):

1. SX(ω) = SX(−ω)

2. SX(ω) is Real-valued

3. SX(ω) ≥ 0

Properties 1 and 2 are because ACFs are real and symmetric about τ = 0; and 3 is because
SX represents power density.
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Fig. 4.3: Block diagram of a linear system with a random input signal, X(t).

4.5.2 Linear system (filter) with WSS input

Let the linear system with input X(t) and output Y (t) have an impulse response h(t), so

Y (t) = h(t) ∗X(t) =
∫
h(β)X(t− β) dβ (4.23)

Then the ACF of Y is

rY Y (t1, t2) = E [Y (t1) Y (t2)]

= E
[(∫

h(β1)X(t1 − β1) dβ1
) (∫

h(β2)X(t2 − β2) dβ2
)]

= E
[∫ ∫

h(β1)h(β2)X(t1 − β1)X(t2 − β2) dβ1 dβ2
]

=
∫ ∫

h(β1)h(β2)E [X(t1 − β1)X(t2 − β2)] dβ1 dβ2

=
∫ ∫

h(β1)h(β2) rXX(t1 − β1, t2 − β2) dβ1 dβ2 (4.24)

If X is WSS, then we substitute τ = t2 − t1 and t = t1 to get

rY Y (τ) = E [Y (t) Y (t+ τ)]

=
∫ ∫

h(β1)h(β2) rXX(τ + β1 − β2) dβ1 dβ2

= rXX(τ) ∗ h(−τ) ∗ h(τ) (4.25)

Taking Fourier transforms:

SY (ω) = FT{rY Y (τ)}
=

∫ (∫ ∫
h(β1)h(β2) rXX(τ + β1 − β2) dβ1 dβ2

)
e−jωτ dτ

=
∫ ∫

h(β1)h(β2)
(∫

rXX(τ + β1 − β2) e
−jωτ dτ

)
dβ1 dβ2

=
∫ ∫

h(β1)h(β2)
(∫

rXX(λ) e
−jω(λ−β1+β2) dλ

)
dβ1 dβ2

=
(∫

h(β1) e
jωβ1 dβ1

) (∫
h(β2) e

−jωβ2 dβ2
) (∫

rXX(λ) e
−jωλ dλ

)
= H∗(ω) H(ω) SX(ω) where H(ω) = FT{h(t)} (4.26)
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i.e: SY (ω) = |H(ω)|2 SX(ω) (4.27)

Hence the PSD of Y = the PSD of X × the power gain |H|2 of the system at frequency ω.

Thus if a large and important system is subject to random perturbations (e.g. a power plant

subject to random load fluctuations), we may measure rXX(τ) and rY Y (τ), transform these to

SX(ω) and SY (ω), and hence obtain

|H(ω)| =

√√√√√SY (ω)

SX(ω)
(4.28)

Hence we may measure the system frequency response without taking the plant off line.

But this does not give any information about the phase of H(ω).

To get the phase of H(ω), we instead measure the Cross-Correlation Function (CCF)

between X and Y :

rXY (t1, t2) = E [X(t1) Y (t2)]

= E
[
X(t1)

(∫
h(β)X(t2 − β) dβ

)]
= E

[∫
h(β)X(t1)X(t2 − β) dβ

]
=

∫
h(β)E [X(t1)X(t2 − β)] dβ

=
∫
h(β) rXX(t1, t2 − β) dβ (4.29)

If X(t), and hence Y (t), are WSS:

rXY (τ) = E [X(t) Y (t+ τ)] =
∫
h(β) rXX(τ − β) dβ = h(τ) ∗ rXX(τ) (4.30)

and taking Fourier transforms:

SXY (ω) = FT{rXY (τ)} = H(ω) SX(ω) (4.31)

where SXY (ω) is known as the Cross Spectral Density between X and Y .

.
.
. H(ω) =

SXY (ω)

SX(ω)
(4.32)

Hence we obtain the amplitude and phase of H(ω) . As before, this is achieved without
taking the plant off line.

Note that for WSS processes, rXY (τ) = rY X(−τ), but that (unlike rXX and rY Y ) these need
not be symmetric about τ = 0, since in general rXY (τ) ̸= rXY (−τ). Hence the cross spectral
density SXY (ω) need not be purely real (unlike SX(ω) ), and the phase of SXY (ω) gives the
phase of H(ω) .



3F1 Random Processes Course - Section 4 (supervisor copy) 49

0

0 ω0 ω0+δω−ω0−ω0−δω

πPo  πPo

1 

H(ω) 

Sx(ω) 

ω −>

ω −>

Fig. 4.4: Narrowband filter frequency response and PSD of filter input and output.

4.5.3 Physical Interpretation of Power Spectral Density

Let us pass X(t) through a narrow-band filter of bandwidth δω = 2π δf , as shown in fig. 4.4:

H(ω) =

 1 for ω0 < |ω| ≤ ω0 + δω
0 otherwise

(4.33)

Now we find the average power at the filter output (shaded area in fig. 4.4, divided by 2π):

Po = rY Y (0) =
1
2π

∫ ∞

−∞
SY (ω) dω

= 1
2π

∫ ∞

−∞
SX(ω) |H(ω)|2 dω

= 1
2π

(∫ −ω0

−(ω0+δω)
SX(ω) dω +

∫ ω0+δω

ω0

SX(ω) dω

)

≃ 1
2π (SX(−ω0) + SX(ω0)) δω = 2SX(ω0)

δω

2π
(4.34)

since SX(−ω) = SX(ω) if X is purely real.

Expressed in terms of frequencies f0 and δf in Hz:

Po ≃ 2 SX(2πf0) δf (4.35)

The factor of 2 appears because our filter responds to both negative and positive frequency
components of X.

Hence SX is indeed a Power Spectral Density with units V 2/Hz (assuming unit impedance).
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4.6 White and Coloured Processes

4.6.1 White Noise

If we have a zero-mean Wide Sense Stationary process X, it is a White Noise Process if its

ACF is a delta function at τ = 0, i.e. it is of the form:

rXX(τ) = PX δ(τ) (4.36)

where PX is a constant.

The PSD of X is then given by

SX(ω) =
∫
PX δ(τ) e−jωτ dτ = PX e−jω0 = PX (4.37)

Hence X is white, since it contains equal power at all frequencies, as in white light.

PX is the PSD of X at all frequencies.

But:

Power of X =
1

2π

∫ ∞

−∞
SX(ω) dω = ∞ (4.38)

so the White Noise Process is unrealisable in practice, because of its infinite bandwidth.

However, it is very useful as a conceptual entity and as an approximation to realisable ‘nearly
white’ processes which have finite bandwidth, but which are ‘white’ over all frequencies of
practical interest. For ‘nearly white’ processes, rXX(τ) is a narrow pulse of non-zero width,
and SX(ω) is flat from zero up to some relatively high cutoff frequency, above which it then
decays to zero.

4.6.2 Strict Whiteness and i.i.d. Processes

Usually the above concept of whiteness is sufficient, but a much stronger definition is as follows:

Pick a set of times {t1, t2, . . . , tN} to sample X(t).

If, for any choice of {t1, t2, . . . , tN} with N finite, the random variables X(t1), X(t2), . . . X(tN)

are jointly independent, i.e. their joint pdf is given by

fX(t1),X(t2),...X(tN )(x1, x2, . . . xN) =
N∏
i=1

fX(ti)(xi) (4.39)

and the marginal pdfs are identical, i.e.

fX(t1) = fX(t2) = . . . = fX(tN ) = fX (4.40)

then the process is termed Independent and Identically Distributed (i.i.d.).

If, in addition, fX is a pdf with zero mean, we have a Strictly White Noise Process.

An i.i.d. process is ‘white’ because the variables X(ti) and X(tj) are jointly independent, even
when separated by an infinitesimally small interval between ti and tj .
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4.6.3 Additive White Gaussian Noise (AWGN)

In many systems the concept of Additive White Gaussian Noise (AWGN) is used. This
simply means a process which has a Gaussian pdf, a white PSD, and is linearly added to
whatever signal we are analysing.

Note that although ‘white’ and ‘Gaussian’ often go together, this is not necessary (especially
for ‘nearly white’ processes).

E.g. a very high speed random bit stream has an ACF which is approximately a delta function,
and hence is a nearly white process, but its pdf is clearly not Gaussian – it is a pair of delta
functions at +V and −V , the two voltage levels of the bit stream.

Conversely a nearly white gaussian process which has been passed through a lowpass filter (see
next section) will still have a Gaussian pdf (as it is a summation of Gaussians) but will no
longer be white.

4.6.4 Coloured Processes

A random process whose PSD is not white or nearly white, is often known as a coloured noise
process.

We may obtain coloured noise Y (t) with PSD SY (ω) simply by passing white (or nearly

white) noise X(t) with PSD PX through a filter with frequency response H(ω), such that

from equ. (4.27)

SY (ω) = SX(ω) |H(ω)|2 = PX |H(ω)|2 (4.41)

Hence if we design the filter such that

|H(ω)| =
√√√√SY (ω)

PX
(4.42)

then Y (t) will have the required coloured PSD.

For this to work, SX(ω) need only be constant (white) over the passband of the filter, so a
nearly white process which satisfies this criterion is quite satisfactory and realisable.

Using equations (4.25) and (4.36), the ACF of the coloured noise is given by

rY Y (τ) = rXX(τ) ∗ h(−τ) ∗ h(τ)
= PX δ(τ) ∗ h(−τ) ∗ h(τ)
= PX h(−τ) ∗ h(τ) (4.43)

where h(τ) is the impulse response of the filter.

Fig. 4.2 shows two examples of coloured noise, although the upper waveform is more ’nearly
white’ than the lower one, as can be seen in fig. 4.2(c) in which the upper PSD is flatter than
the lower PSD. In these cases, the coloured waveforms were produced by passing uncorrelated
random noise samples (white up to half the sampling frequency) through half-sine filters (as in
equ. (2.9) ) of length Tb = 10 and 50 samples respectively.
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5 Summary

In this course we have covered the following key topics:

Probability Distributions (pmf, cdf and pdf): to define the amplitude distribution of a
random process.

Conditional probabilities and Bayes’ rule: to deal with dependent random processes
and model selection.

Random vectors and signals: more complicated random processes which are
multi-dimensional and/or functions of time.

Functions of random processes: to convert one random process into another with a
different distribution.

Expectations and moments: to parameterise pdfs and cdfs.

Sums of random processes: produce convolution of pdfs.

Characteristic functions: to turn convolutions into products and allow easy calculation of
moments.

Correlation functions of random processes: to define time-dependent behaviour
(e.g. fast or slow variation).

Stationarity and ergodicity: constraints on the time-dependent behaviour of random
signals.

Spectral properties and linear system responses: frequency-dependent behaviour of
random signals and the effects of linear systems on this. Analysis of linear systems
using random (online) excitation waveforms.

White and coloured processes: random signals with important spectral properties.

Significant further material on discrete-time random signals will be presented in module 3F3.


