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Atmospheric Turbulence Mitigation using Complex
Wavelet-based Fusion

N. Anantrasirichai, Alin Achim, Nick Kingsbury, and David Bull

Abstract—Restoring a scene distorted by atmospheric turbu-
lence is a challenging problem in video surveillance. The effect,
caused by random, spatially varying, perturbations, makes a
model-based solution dif�cult and in most cases, impractical.
In this paper, we propose a novel method for mitigating the
effects of atmospheric distortion on observed images, particularly
airborne turbulence which can severely degrade a region of
interest (ROI). In order to extract accurate detail about objects
behind the distorting layer, a simple and ef�cient frame selection
method is proposed to select informative ROIs only from good-
quality frames. The ROIs in each frame are then registered
to further reduce offsets and distortions. We solve the space-
varying distortion problem using region-level fusion based on
the Dual Tree Complex Wavelet Transform (DT-CWT). Finally,
haze removal is applied. We further propose a learning-based
metric speci�cally for image quality assessment in the presence
of atmospheric distortion. This is capable of estimating quality
in both full- and no-reference scenarios. The proposed method
is shown to clearly outperform existing methods, providing en-
hanced situational awareness in a range of surveillance scenarios.

Index Terms—image restoration, fusion, DT-CWT, quality
metrics.

I. INTRODUCTION

VARIOUS types of atmospheric distortion can influence
the visual quality of video signals during acquisition.

Typical distortions include fog or haze which reduce contrast,
and atmospheric turbulence due to temperature variations or
airborne contaminants. Atmospheric turbulence is sometimes
referred to as scintillation or anisoplanatism. A variation in
temperature causes different interference patterns in the light
refraction, leading to unclear, unsharp, waving images of
objects and other scene features. Examples of this effect are
found at locations such as hot roads and deserts, as well in
the proximity of hot man-made objects such as aircraft jet
exhausts. This is particularly a problem close to the ground
in hot environments and can combine with other detrimental
effects in long range surveillance applications.

Turbulence effects in the acquired imagery makes it ex-
tremely difficult to interpret information behind the distorted
layer. Hence, there has been significant research activity at-
tempting to faithfully reconstruct this useful information using
various methods. The perfect solution however is, in practice,
impossible since the problem is irreversible, despite being
simply expressed as in Eq. 1.
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Fig. 1. Block diagram of image restoration for atmospheric turbulence

Iobv = DIidl + ε (1)

Here Iobv and Iidl are the observed and ideal images respec-
tively, D represents geometric distortion and blur, while ε
represents noise. Various approaches have attempted to solve
this problem by modelling it as a point spread function (PSF)
and then employing deconvolution with an iterative process to
estimate Iidl. For the atmospheric distortion case, the PSF is
generally unknown, so blind deconvolution is employed [1]–
[3]. The results, however, still exhibit artefacts since the PSF
is usually assumed to be space-invariant.

It is obvious that removal of the visible ripples and waves
is not possible with a single image. Hence all methods utilise
a set of images to construct one enhanced image. Current
multi-frame methods that address this problem are illustrated
in Fig. 1, where most approaches employ all functions or
a subset of them. The restoration process can be described
by two main routes through the diagram. The first (green
dashed line) employs an image registration technique with
deformation estimation [4]–[10]. This process attempts to align
objects temporally to solve for small movements of the camera
and temporal variations due to atmospheric refraction. The
image fusion block may subsequently be employed in order
to combine several aligned images. Then a deblurring process
is applied to the combined image.

The other route (red solid line) employs image selection and
fusion, often referred to as `lucky region’ techniques [11]–
[17]. Those regions of the input frames that have the best
quality in the temporal direction are selected. They are selected
using an image quality metric, which is normally applied
in the spatial frequency domain, to extract the best quality
frames (minimally distorted and least blurred). These are then
combined in an intelligent manner. Recently, this method
has been improved by applying image alignment to those
lucky regions [18]. Both approaches can be refined through
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a deblurring process (which is, again, a challenging problem
as this blur is space-varying). Conventional registration meth-
ods are generally time-consuming, while conventional fusion
approaches rely on a large number of short-exposure frames.

In this paper, we propose a new region-based fusion method
to mitigate image distortion caused by air turbulence. The
fusion is performed in the Dual Tree Complex Wavelet
Transform (DT-CWT) domain since it provides near shift-
invariance and good directional selectivity [19]. We also
propose novel frame selection and object alignment methods
for pre-processing the ROI since this will frequently exhibit
significant offsets and distortions between frames. Haze re-
moval is used as the final step.

Our proposed algorithm is tested with real distorted se-
quences as well as with simulated sequences. The latter case
includes heat distortion generated from gas burners and hence
ground truth information is available. We also investigate a
quality metric that is suitable for measuring restored image
quality for atmospherically distorted content where genererally
the ground truth is not available. Existing no-reference assess-
ment (NR) methods [20]–[23] are tested with our simulated
sequences. The results however do not show high correlation
with the objective results. Therefore we introduce a new NR
measure based on machine learning.

The remaining part of this paper is organised as follows.
The proposed scheme for mitigating atmospheric distortion
is described in detail in Section II. A test methodology
for objective assessment is introduced in Section III. The
performance of the method is evaluated on a set of images
and is compared with other techniques in Section IV. Finally,
Section V presents the conclusions of the paper.

II. PROPOSED MITIGATION SCHEME

We propose a new fusion method for reducing atmospheric
turbulence as depicted in Fig. 2. First, before applying fusion,
a subset of selected images or ROIs must be aligned. Here
we introduce a new alignment approach for distorted images.
As randomly distorted images do not provide identical fea-
tures, we cannot use conventional methods to find matching
features. Instead, we apply a morphological image processing
technique to the ROI (or whole image) based only on the most
informative frames. These are selected using a quality metric
based on sharpness, intensity similarity and ROI size. Then,
non-rigid image registration is applied.

We then employ a region-based scheme to perform fusion
at the feature level. This has advantages over pixel-based
processing as more intelligent semantic fusion rules can be
considered based on actual features in the image. The fusion
is performed in the Dual Tree Complex Wavelet Transform
(DT-CWT) which employs two different real discrete wavelet
transforms (DWT) to provide the real and imaginary parts
of the CWT. Two fully decimated trees are produced, one
for the odd samples and one for the even samples generated
at the first level. This increases directional selectivity over
the DWT and is able to distinguish between positive and
negative orientations giving six distinct sub-bands at each
level, corresponding to ±15�, ±45�, ±75�. Additionally, the
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Fig. 2. Block diagram of the proposed method
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Fig. 3. Object alignment technique

phase of a DT-CWT coefficient is robust to noise and temporal
intensity variations thereby providing an efficient tool for
removing distorting ripples. Finally, the DT-CWT is near-
shift invariant - an important property for this application.
After fusion, haze is removed using locally-adaptive histogram
equalisation.

For convenience, we refer to this algorithm as CLEAR
(Complex waveLEt fusion for Atmospheric tuRbulence). De-
tails of each step in our algorithm are described below.

A. Object Alignment

Capturing video at a distance in the presence of atmospheric
turbulence, especially when using high magnification lenses,
may cause the ROI in each frame to become misaligned.
The inter-frame distance between the distorted objects may
be too large to apply conventional image registration. Equally,
matching using feature detection is not suitable since strong
gradients within each frame are randomly distorted spatially.
Hence, an approach using morphological image processing is
proposed. The ROI (or ROIs) is marked in the first frame.
Then the histogram, generated from the selected ROI and
the surrounding area, is employed to find an Otsu threshold
[24], which is used to convert the image to a binary map. An
erosion process is then applied and the areas connected to the
edge of the sub-image are removed. This step is performed
iteratively until the area near the ROI is isolated. The same
Otsu threshold with the same number of iterations is employed
in other frames. The centre position of each mask is then
computed. If there is more than one isolated area, the area
closest in size and location to the ROI in the first frame is
used. Finally, the centre of the mask in each frame is utilised
to shift the ROI and align it across the set of frames (Fig. 3).
Note that the frames with incorrectly detected ROIs will be
removed in the frame selection process (section II-B). These
frames are generally significantly different from others.

Fig. 4 demonstrates the improvement due to the proposed
object alignment approach. The left image represents the
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(a) (b) (c)

Fig. 4. Average frame of Number Plate sequence by (a) using 200 original
frames, (b) using 50 frames most similar (lowest MSE) to (a), and (c) using
200 frames after applying object alignment approach.

average frame of the whole Number Plate sequence (see B4
in Table II and Fig. 9) and it reveals high variation due to
camera movement. A simple alignment method might choose
a subset of the original frames where the inter-frame distance
is not too large. Fig. 4 (b) shows the example of this where,
based on mean square error (MSE), 50 original frames with the
smallest difference from the average image are selected. The
alignment of these frames is consequently improved as shown
by their average image in Fig. 4 (b). However, this truncation
often leads to the loss of some useful information. In contrast,
the proposed object alignment approach keeps all frames so
that an intelligent approach can be employed later to select the
best subset. The average frame of the whole sequence of our
method is shown in Fig. 4 (c), which is clearer and sharper
than the other two images (Fig. 4 (a) and (b)). This means that
the aligned frames are more stable thereby producing better
image registration results.

B. Frame Selection

In CLEAR, not all frames in the sequence are used to restore
the image since the low quality frames (e.g. the very blurred
ones) would possibly degrade the fused result. A subset of
images are carefully selected using three factors: sharpness,
intensity similarity and detected ROI size.

- Sharpness Gn is one of the most important image quality
factors since it determines the amount of detail an image can
convey. Here, the sharpness parameter Gn is computed from
the summation of the highpass coefficient magnitudes. Inten-
sity gradients can also be used as the result is insignificantly
different from highpass coefficients.

- Intensity similarity Sn is employed to remove outliers.
This operates under the assumption that most frames in the
sequence contain fairly similar areas. Frames with significantly
different content to others are likely to be greatly distorted. To
compute Sn, the average frame of the whole sequence is used
as a reference for calculating the mean square error (MSE) for
frame n. Then MSE−1 represents the similarity of each frame.

- Detected ROI size An is the total number of pixels
contained in the ROI. This is used because, from observation,
larger ROIs are likely to contain more useful information.

The cost function Cn for frame n is computed using Eq. 2.

Cn =
wGGn

λG + |Gn|
+

wSSn
λS + |Sn|

+
wAAn

λA + |An|
(2)

where wk and λk are the weight and slope control of the factor
k ∈ {G,S,A}, respectively. The sigmoid function is used here

Fig. 5. The yz planes at column x=160 of each frame of Number Plate. Left:
Distorted sequence corresponding to Fig. 4 (a). Top right: Aligned sequence
corresponding to Fig. 4 (c). Bottom right: Registered sequence

to prevent one factor dominating the others, e.g. a blocking
artefact may cause significantly high values of sharpness, yet
this frame should probably not be included in the selected data
set. The λk is set to equal the mean of factor k so that at the
mean value, its cost value is 0.5. The cost Cn is ranked from
high to low. The Otsu method can then be applied to find how
many frames should be included in the selected set.

C. Image Registration

Registration of non-rigid bodies using the phase-shift prop-
erties of the DT-CWT, as proposed in [25], is employed. This
algorithm is based on phase-based multidimensional volume
registration, which is robust to noise and temporal intensity
variations. Motion estimation is performed iteratively, firstly
by using coarser level complex coefficients to determine large
motion components and then by employing finer level coeffi-
cients to refine the motion field. Fig. 5 show an improvement
in temporal direction (z) of the Number Plate sequence after
applying the proposed object alignment and image registration.

D. Image Fusion

Due to its shift invariance, orientation selectivity and multi-
scale properties, the DT-CWT is widely used in image fusion
where useful information from a number of source images are
selected and combined into a new image [26]–[28]. We employ
a region-based scheme in the DT-CWT domain to implement
image fusion at the feature level. The process is initialised
using image segmentation to produce a set of homogeneous
regions. Various properties of these regions can be caluculated
and used to determine which features from which images to
include in the fused image. This has advantages over pixel-
based processing since more intelligent semantic fusion rules
can be adopted based on actual features in the image, rather
than on single or arbitrary groups of pixels. Lewis et al.
Region-based fusion methods have been introduced by firstly
segmenting N images individually or jointly [26], [27], [29].
The segmentation map Sn of each image is down sampled
by 2 to give a decimated segmentation map Sθ,ln , n ∈ N of
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level l and sub-band θ of the DT-CWT representation, where
θ ∈ (1, . . . , 6). If a list of all regions, Tn, of image n is
Rn = {rn,1, rn,2, . . . , rn,Tn}, a multi-resolution priority map
Pn is generated as

Pn =
{
pn,rn,1 , pn,rn,2 , . . . , pn,rn,Tn

}
(3)

for each region in each image n. Regions are then either
chosen or discarded based on this priority and the fusion rule,
φ, to give the wavelet coefficients of the fused image. A mask,
M , is generated, where:

Mt = φ (p1,t, p2,t, . . . , pN,t) (4)

The mask is the same size as that of the wavelet coefficient
region in the fused image. The algorithm always chooses the
region with the maximum priority to determine which image
each of the coefficients representing a region, t, should come
from. If Si 6= Sj , a segmentation map, SF , is created such
that SF = S1∪S2∪ . . . SN . Thus, where two regions ri,p and
rj,q from image i and j overlap, both will be split into two
regions, each with the same priority as the original. Finally, the
fusion image is obtained by performing the inverse transform
on the fused wavelet coefficients.

In this paper, we have adapted the fusion technique ex-
plained above to address the air-turbulence problem. The
lowpass DT-CWT coefficients of the fused image are simply
constructed from the average of the lowpass values of all
registered images, while the highpass coeffients are selected
according to an activity measure indicating the importance of
that region. We employ an adapted version of O’Callaghan
and Bull’s joint morphological spectral unsupervised approach
with a multiscale watershed segmentation from [30] to divide
each image into similar regions, R. To produce sharper results,
we operate on each sub-band separately. The priority P of
region rθn ∈ R in image n is computed with the detail
coefficients dθ,ln (x, y) of level l and sub-band θ as shown in Eq.
5, where

∣∣rθn∣∣ is the size of such area used for normalisation.
The mask Mrθ is then generated from ranked priority to
construct the fused image.

P (rθn) =
1

|rθn|
∑

8l,(x,y)2rθn

∣∣dθ,ln (x, y)
∣∣ (5)

The air-turbulence scenario differs from other image-fusion
problems as the segmentation boundaries which separate in-
homogeneous regions vary significantly from frame to frame
(due to turbulence distortion). To provide the sharpest and
most temporally consistent boundaries, for each region, we
use the maximum of DT-CWT coefficient magnitudes from all
frames instead of selecting only one region based on P (rθn).
To each boundary map Bθ,l (constructed from the multiscale
watershed segmentation approach for each subband θ at level
l), the dilation operation with a size of 1 pixel is applied.
A 2D averaging filter is then applied to Bθ,l to prevent
discontinuity after combining neighbouring areas. The DT-
CWT coefficients, dθ,l, of the fused image can be written as
in Eq. 6. The example of Bθ,l is illustrated in Fig. 6 (Middle).
The improvement can be seen by comparing images in Fig. 6

Fig. 6. Left: Traditional region-based fusion result. Middle: Mask Bθ,l.
Right: Enhanced result with the mask

Fig. 7. Fusion technique with phase adjustment shows improved result.
Left: Fused image without phase adjustment. Right: Fused image with phase
adjustment.

(Left) and Fig. 6 (Right). The enhanced result shows sharper
edges without boosting noise in homogeneous areas.

dθ,l = (1−Bθ,l)
∑
RMrθ (d

θ,l
1 , dθ,l2 , . . . . , dθ,lN )

+ Bθ,lmax(dθ,l1 , dθ,l2 , . . . . , dθ,lN )
(6)

To reduce the distortion due to rippling, the phase of the
complex wavelet coefficients play an important role since it
corresponds to the precise location of directional features in its
support regions. Hence, the DT-CWT coefficients, dθ,l(x, y),
of the fused image are adjusted with a unit vector representing
the average phase from all frames, N , used in the fusion
process (Eq. 7). The average phase can be used because, in tur-
bulent motion, pixels deviate from their actual positions with
approximately zero mean and with a quasi-periodic motion [7].
The improvement of the fusion result is demonstrated in Fig.
7. Clearly, the image with adjusted phases produces straighter
lines which are obviously closer to the truth in this case.

d̃θ,l(x, y) =

∑N
n d

θ,l
n (x, y)∣∣∣∑N

n d
θ,l
n (x, y)

∣∣∣
∣∣dθ,l(x, y)∣∣ (7)

To reduce noise, we apply a shrinkage function, As, derived
as Maximum A Posteriori (MAP) estimators as in [31], [32].
Then, if sharpening is required, a gain Ag > 1 can be applied
to boost highpass-coefficient magnitudes. However, this simple
technique might cause any remaining noise to become clearly
visible. Hence we enhance only those high-pass coefficients
where they form regions of large magnitude. We create the
binary map Qθ,l for each subband, in which Qθ,l = 1 if∣∣dθ,l∣∣ > τ , where τ is a predefined threshold. Isolated pixels
are subsequently removed from Qθ,l. The modified highpass
coeffients are finally rewritten as Eq. 8.

dθ,l =
(
Aθ,lg Qθ,l + (1−Qθ,l)

)
Aθ,ls d̃θ,l (8)
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Fig. 8. Original image (left) and its contrast enhancement with global HE
(middle) and CLAHE (right)

E. Post Processing

1) Haze Removal: A problem that often accompanies tur-
bulence is haze. Simple and fast methods such as histogram
equalisation (HE) can be used to reduce this effect. However,
since we consider the ROI and the meaning it carries, a
contrast limited adaptive histogram equalisation (CLAHE) is
more suitable than global adjustment. The method calculates
local histograms derived from a neighbourhood region. A
threshold is predefined to limit the cumulative values thereby
preventing overamplifying small amounts of noise in largely
homogeneous regions. An example of haze removal with HE
and CLAHE is shown in Fig. 8. The number at the top of the
car is much clearer in the CLAHE result.

2) Image sharpening: Generally the embedded parameter
Ag in our approach produces sharp results; however, in cases
which are out-of-focus or which lack a `lucky region’, post-
processing may be required to further sharpen the images.
A number of sharpening methods exist, such as [33], [34].
However, if the constituent images are very poor, it is almost
impossible to obtain a sharp result. Moreover, it may exhibit
a halo effect due to over sharpening.

III. QUALITY ASSESSMENT

Image quality assessment measures perceived image degra-
dation, typically compared to an ideal or perfect image and
is important when assessing the performance of individual
systems or for ranking different solutions. Objective image
quality metrics can be classified according to the availability
of a reference (distortion-free) image, with which the distorted
image is to be compared. Most existing approaches are classed
as full-reference (FR), meaning that a complete reference
image is available. When a reference is not available, as is
often the case for heat haze reduction, quality assessment
becomes challenging, and is referred to as no-reference (NR)
or blind quality assessment. Methods cited in the literature
are usually based on the prior knowledge of the distortion
characteristics and none are derived from spatially varying
distortions. We therefore propose a new NR metric for the
atmospheric turbulence scenario.

A. Full-Reference Image Quality Assessment

The most commonly used FR method is Peak Signal to
Noise Ratio (PSNR) - based on Mean Squared Error (MSE).
Such distortion-based metrics are simple to implement, but
do not always give a good indication of perceptual fidelity.
Structured information is an important factor in human visual

perception and metrics such as Structural Similarity (SSIM)
[35] have been introduced to reflect this. SSIM shows signifi-
cant correlation with subjective mean opinion scores compared
with PSNR and an extended version, Multiscale Structural
similarity (MS-SSIM) [36], provides more flexibility in in-
corporating the variations of image resolution and viewing
conditions. Natural scene statistics (NSS) are used in in the
Visual Information Fidelity (VIF) metric to model a distortion
information shared between the test and the reference images
[37]. Human Visual System (HVS) related knowledge is also
employed in a wavelet-based method, Visual SNR (VSNR)
[38]. Finally, a perception-based image model (PIM) was
proposed in [39] using noticeable differences based on local
spatial frequency energy to measure video quality.

B. No-Reference Image Quality Assessment

The JPEG quality score was one of the first NR quality
assessment methods introduced. It attempts to align image
quality with HVS perception by characterising blockiness
and blurring [20]. Subsequently, the JPEG2000 (JP2K) score
was proposed for blind assessment of images compressed by
wavelet based coding [21]. The Anisotropic Quality Index
(AQI) is another NR metric based on measuring the variance of
the expected entropy of a given image in a set of predefined
directions [22]. Recently, the combination of five distortion
types, namely JPEG, JPEG2000, white noise, Gaussian blur
and fast fading, were used in the Blind Image Quality Index
(BIQI) [23].

C. Proposed NR Method for Atmospheric Distortion

Since none of the existing methods described above work
well with atmospheric distortion, in this paper, we introduce
a new blind image quality assessment metric specifically for
this scenario. We employ support vector regression (SVR) [40]
to model and predict image quality scores using the features
listed in Table I. There are three groups of features:

- Individual scale The magnitude of highpass coefficients
relate to details and sharpness of the image, while the phase
can be linked to edge information. We therefore employ the
mean and variance of both values to compute the feature
vectors at each scale level. We decompose the image into 3
levels using the DT-CWT.

- Inter-scale Weighted mean and variance at level l are
computed using the magnitudes of the next coarse level to
calculate a weight as shown in Eq. 9. Here d̂θ,l ∈ D̂l is the
upsampled version of dθ,l by 2 so that d̂θ,l has the same size
as dθ,l�1. The weighted mean is computed as shown in Eq. 10,
where κθ,l is the magnitude or the phase of complex coefficient
dθ,l. The weighted variance is calculated from all κθ,l(x, y)
that have wθ,l(x, y) > 0.1. This follows the assumption
that the coefficients adjacent to strong edges (high |dθ,l|) are
more important, since the distortions in those areas affect
human perception more than others. Moreover, atmospheric
turbulence consistently manifests itself as clear visible ripples
along object edges.
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TABLE I
FEATURES FOR MODELLING THE QUALITY OF THE IMAGES DISTORTED BY

ATMOSPHERIC TURBULENCE

Features # dimension
Individual scale ( 3 scales)
Mean and variance of magnitude of CWT coefficients 6
Mean and variance of phase of CWT coefficients 6
Inter-scale
Weighted mean and variance of magnitude 4
Weighted mean and variance of phase 4
Entropy of phase around high magnitude of coarser scale 2
Existing NR methods
JPEG, JP2K, AQI, BIQI scores 4

wθ,l(x, y) =

∣∣∣d̂θ,l+1(x, y)
∣∣∣∑

8θ,(x,y)

∣∣∣d̂θ,l+1(x, y)
∣∣∣ (9)

Slκ =
∑
8θ,(x,y)

wθ,l(x, y) · κθ,l(x, y) (10)

We also utilise entropy to measure the randomness of the
phase in the vicinity of strong edges, since the higher phase
randomness can imply more ripples. We employ the weighted
average formula in Eq. 9 and 10 to compute entropy features.
Here κθ,l(x, y) represents local entropy at position (x, y)
calculated in a 5-by-5 neighbourhood.

- Existing NR methods Existing NR scores are also
included to model image quality, since they are derived for
general natural images.

The SVR parameters are selected by cross validation. As the
number of features is not large, principal component analysis
is not required for dimensionality reduction. Instead, we have
directly tried with combinations of different subsets of features
and have found that the combination of all features performs
best. We refer to this new metric as QSVR.

IV. RESULTS AND DISCUSSIONS

First, we examine which NR methods (section III-B) are
suitable for the turbulence case. Measurement values are
compared with the FR methods (section III-A). Then the
selected metrics are used to assess the results of our proposed
atmospheric turbulence mitigation and to compare with the
existing methods.

A. Quality Metric Selection

We generated a body of images containing objects distorted
by heat haze using a number of gas hobs. The flow of gas
created temperature gradients leading to distortions in the
scene. We captured 8 sequences containing different objects,
including faces, common objects and text. The distortions in
each video were varied by altering the gas flow to produce
three classes referred to as low, medium and high distortion
with 100 frames each. Frames from each sequence are shown
in Fig. 9 (a) and were used to investigate the performance of
the NR methods.

A1. Books A2. Barcode A3. Back car A4. Faces

A5. Boxes A6. Plant A7. Front Car A8. Toys

(a) Simulated datasets (A1-A8)

B2. Hot RoadB1. Hill House

B4. Number Plate B6. MirageB5. Monument

B3. Cold Car

(b) Real datasets without ground truth (B1-B6)

Fig. 9. Distorted sequences. (a) Simulated datasets generated from gas
burners. (b) Real datasets.

The dataset of each sequence was divided into training
and validation sets randomly. As subjective scores for these
sequences did not exist, we attempt to find the NR metric
that achieves the highest correlation with the FR scores. The
values of the FR and the NR approaches are computed and
normalised so that the measured qualities span 0 and 1 for
better comparison. The performance of the NR methods is
also assessed according to the correlation with the average of
the FR scores. Fig. 10 shows the average correlation value
for the 8 sequences using three statistical parameters: Linear
Correlation Coefficient (LCC), Spearman Rank Order Corre-
lations Coefficient (SROCC) and Root Mean Squared Error
(RMSE). It can be concluded that only JP2K, AQI and our
QSVR are suitable for the air turbulence problem. The JPEG
method is not well matched to our problem since it emphasises
blocking artefacts. BIQI is also based on distortions present
in compressed data rather than atmospheric distortions. It can
be clearly seen from Fig. 10 that QSVR outperforms all other
NR methods.

B. Still Image Results

CLEAR has been tested using the three datasets summarised
in Table II. The first set (A1-A8) contains the simulated
data described in section IV-A (Fig. 9 (a)), while the other
two datasets include real effects of turbulence in long range
imaging. These real datasets have been captured without
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Fig. 10. Correlation comparison between NR methods

TABLE II
DISTORTED SEQUENCES

type # name colour type resolution # frames

Simulated
datasets

A1 Books RGB 1024�1024 100
A2 Barcode RGB 512�256 100
A3 Back Car RGB 256�256 100
A4 Faces RGB 512�512 100
A5 Boxes RGB 320�240 100
A6 Plant RGB 512�512 100
A7 Front Car RGB 512�512 100
A8 Toys RGB 1200�800 100

Real datasets
without

ground truth

B1 Hill House grey 512�512 75
B2 Hot Road grey 320�240 175
B3 Cold Car RGB 720�576 75
B4 Number Plate RGB 320�240 200
B5 Monument RGB 512�512 100
B6 Mirage RGB 256�256 50

Real datasets
with ground

truth [4]

C1 Chimney grey 237�237 100
C2 Building grey 237�237 100
C3 Books grey 109�109 100

Note that sequences B5 and B6 can be downloaded from www.bristol.ac.uk/vi-lab.

ground truth (B1-B6) and with ground truth (C1-C3) as shown
in Fig. 9 (b) and Fig. 14 (first row), respectively.

In the case of colour sequences, the images are converted
into YCbCr colour space and only the greyscale channel (Y)
is processed. The output colour channels (Cb and Cr) are
generated using the average values of all selected registered
frames. This simple technique can be applied successfully
because the distortions of the colours have less influence
on human vision perception. At the end of the process, the
grayscale fusion result is combined with the colour channels
and converted back to the original colour space.

The parameters used in our experiments are as follows.
The DT-CWT is applied with 3 or 4 decomposition levels
when the image resolution is smaller or larger than 128× 128
pixels, respectively. The weights for the frame selection wG,
wS and wA are set to 1. The value τ for cleaning the map
Qθ,l is individually set for each subband in each level to
τθ,l = |d|

θ,l
+ 0.5 σθ,l, where |d|

θ,l
and σθ,l are the mean

and the standard deviation of the magnitude of the highpass
subband. The gains Aθ,lg are equal for each subband at the
same level and are 2.5, 1.8, 1.2 and 1 for l = 1, 2, 3 and 4,
respectively. For CLAHE, a window of 8×8 pixels is used to
compute local histograms which are clipped at 1%.

1) Simulated datasets: The sequences generated with gas
burner turbulence (Fig. 9 (a)) are used to compare the perfor-

Fig. 11. Performance comparison between SVOLA and CLEAR using: Left:
FR methods, Right: NR methods.

mance of CLEAR with that of Shan’s Blind Deconvolution
(BD) [41] and with the space-variant overlap-add method
(SVOLA) by Hirsch et al. [4]. In this case, the FR image
quality assessment can be used. Fig. 11 shows the performance
of the proposed scheme, BD and SVOLA applied to the Toys
and Plant sequences. The blind quality assessments (SVR
and AQI) are also computed to demonstrate the correlation
between FR and NR methods.

2) Real datasets without ground truth: The six sequences
(B1-B6) captured at long range exhibiting significant turbu-
lence distortions (Fig. 9 (b)) are used here. The Number Plate,
Mirage and Monument sequences show a significant shift of
the ROI area between frames, so we have also artificially
applied spatial shifts of between 1-20 pixels randomly to
the other sequences. It is important to note that, in our
comparisons with BD and SVOLA, these two methods have
been applied to, and benefit from, the object alignment, frame
selection and registration methods used in CLEAR. If BD and
SVOLA are applied without this, there results are significantly
inferior. Despite this benefit, the reconstructed images shown
in Fig. 12 and Fig. 13 show that CLEAR can restore better
detail and more easily readable text.

The objective results shown in Table III support the sub-
jective results. The proposed fusion approach achieves better
JP2K, AQI and QSVR scores for all distorted sequences,
apart from Number Plate where the AQI value of SVOLA is
slightly better (probably insignificant: 0.003 ≈ 0.092 %) than
CLEAR. However, referring to Fig.12 the subjective result of
the Number Plate using the proposed approach reveals more
readable numbers. It should be noted that this sequence is
highly distorted and the number on the plate is impossible to
read in any single frame. It should be further noted that the
quality values calculated from the whole frame are slightly
different from those in Table III, which relate solely to the
ROI.

The subjective results clearly show that the CLEAR algo-
rithm removes atmospheric distortion more efficiently than the
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Fig. 12. Reconstructed images from real sequences (B1-B5). Left:
Shan’s BD [41]. Middle: SVOLA [4]. Right: CLEAR. It should be
noted that SVOLA and BD results have benefited from CLEAR’s
selection and registration processes.

other approaches. Shan’s BD is inefficient for air turbulence
since the PSF is assumed to be similar for the entire image,
while our method processes sets of homogeneous regions
separately. Shan’s method also takes four times longer to
process than our proposed method, mainly to estimate the
PSF. SVOLA subdivides an image into overlapped regions
and estimates the PSF separately; as a result, it provides better
results compared to Shan’s method. However the computation
time is even longer and the results are not as sharp as the
proposed method. In addition, prior knowledge of PSF size is
required for both previous methods.

3) Real datasets with ground truth: Three sequences,
Chimney, Books and Building have been made available with

Fig. 13. Mirage sequence (B6). Top-left: Magnified number plates of
(from top) original frame, SVOLA, CLEAR and undistorted frames
captured at closer distance). Top-right: Original image. Bottom-left:
Result of SVOLA . Bottom-right: Result of CLEAR. Again it should
be noted that BD and SVOLA results use CLEAR’s preprocessing.

TABLE III
OBJECTIVE RESULTS USING NR METHODS

sequence method JPEG BIQI JP2K AQI QSVR

Hill House
BD 10.07 2.22 52.61 2.13 54.32

SVOLA 11.15 2.04 51.35 2.22 56.12
CLEAR 11.05 2.24 61.71 2.99 56.88

Hot Road
BD 8.11 2.42 78.70 2.41 47.77

SVOLA 9.25 4.09 78.43 2.56 47.81
CLEAR 10.04 3.28 78.77 3.18 48.72

Cold Car
BD 9.02 1.87 58.40 0.16 42.26

SVOLA 9.95 2.04 59.85 0.09 42.62
CLEAR 10.44 2.57 62.93 1.50 43.70

Number
Plate

BD 8.21 3.62 68.62 2.00 42.29
SVOLA 8.99 3.21 58.79 3.26 42.75
CLEAR 10.36 3.25 78.49 3.26 43.15

Mirage
BD 7.91 2.59 65.32 8.12 41.73

SVOLA 10.64 3.99 66.83 9.39 42.49
CLEAR 10.83 4.20 73.83 11.77 43.19

Monument
BD 8.65 2.47 72.84 0.88 45.23

SVOLA 9.14 3.39 79.65 1.94 47.81
CLEAR 9.93 3.32 79.98 3.44 48.13

their ground truth by Hirsch [4]. Also, the results from their
approach are available. The results are also compared to an-
other atmospheric turbulence removal approach from Zhu [10].
The subjective and objective results for these sequences are
shown in Fig. 14 and Table IV, respectively. The PSNR, MS-
SSIM, VSNR and PIM values reveal that CLEAR outperforms
SVOLA and Zhu’s approach, but the VIF value is highest for
SVOLA. Interestingly, the subjective results shown in Fig. 14
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C1.Chimney C2.Building C3.Books

Fig. 14. Hirsch’s Data (C1-C3). Top-Bottom: Original frame, Ground
truth, SVOLA’s results, ZHU’s results and CLEAR’s results

reveal that our results are the most similar to the ground truth.
The results of Zhus fusion appear sharpened around structural
features, but lose texture in homogenous areas thereby yielding
the lowest objective scores.

C. Results for Sequences Containing Moving Objects

This test was investigated in order to show the potential
of the proposed algorithm when applied to video containing
moving objects. Here, part of the moving object is selected
as the ROI. A number of forward and backward frames
are stored in a reference buffer. The forward frames are
the future video frames, while the backward frames are the
reconstructed frames using the proposed fusion process. The
ROI of all frames in the buffer are aligned to the ROI of the
current frame using the proposed object alignment method.
Then, they are registered to their average. Subsequently, these
registered frames are fused using the proposed method to

TABLE IV
OBJECTIVE RESULTS USING FR METHODS

sequence method PSNR MS-SSIM VSNR VIF PIM

Chimney
SVOLA 31.93 0.96 11.19 0.21 35.25

ZHU 28.90 0.95 10.60 0.13 33.29
CLEAR 32.02 0.96 12.98 0.19 35.58

Building
SVOLA 24.88 0.88 6.52 0.33 31.03

ZHU 23.83 0.87 5.89 0.24 30.47
CLEAR 25.18 0.91 6.95 0.26 31.34

Books
SVOLA 19.39 0.83 8.61 0.43 32.11

ZHU 20.34 0.85 8.59 0.35 32.12
CLEAR 25.36 0.94 10.58 0.39 32.57

y

x

x

z

y=200 y=100

Fig. 15. The Wine sequence. Top: from distorted video. Bottom: from
reconstructed video. Left: the ROI of the 5th frame showing the barcode area
which includes the row (y) of the middle pictures . The xz planes (z=temporal
direction). Middle: at y=200. Right: at y=100.

remove distortions. Using the reconstructed frames as one of
the references can lead to error accumulation over long time
periods. Therefore, periodic refresh of the reference buffer is
required. Fig. 15 shows parts of the Wine sequence where
the wine bottle is moved from the right to the left of the
display over time. The online process employs two forward
and two backward frames and the reference buffer is cleared
every 20 frames. The results clearly show improvement in
sharpness and motion smoothness. However, we acknowledge
that more intelligent algorithms could be developed to remove
motion jitter and to indicate the static background so that more
reference frames can be used to produce better results on such
areas.

V. CONCLUSIONS

This paper has introduced a new method for mitigating
atmospheric distortion in long-range surveillance imaging.
Significant improvements in image quality are achieved using
region-based fusion in the DT-CWT domain. This is combined
with a new alignment method and cost function for frame
selection to pre-process the distorted sequence. The process
is completed with local contrast enhancement to remove haze
interference. CLEAR offers class-leading performance for off-
line extraction of enhanced static imagery and has the potential
of high performance for on-line mitigation for full motion
video - this is the topic of ongoing research. Experiments with
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real data show superior performance compared with existing
methods. Using simulated data, full reference metrics clearly
show the superiority of this method. We have also introduced
a new metric, QSVR, based on support vector regression for
blindly assessing image quality. This learning-based method
shows higher correlation with the FR methods than existing
NR methods.
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