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ABSTRACT distributed widely throughout space as well as scale. There-
This paper introduces a new method to recognize objects &re, we will represent edges with 2-dimensional entities in
any rotation using clusters that represent edge profiles. The8is paper. By doing so, we also distinguish our method
clusters are calculated from the Interlevel Product (ILP) offom classic shape metrics such as the Hausdorff distance
complex wavelets whose phases represent the level of “edgithich, even when orientation information is included ([9]),
ness” vs “ridginess” of a feature, a quantity that is invariant todescribes points that may not be individually robust.
basic affine transformations. These clusters represent areas Our new method is motivated by observations in the co-
where ILP coefficients are large and of similar phase; thesefficients of the ILP (InterLevel Product), introduced in [1],
are two properties which indicate that a stable, coarse-lev@ measure based upon the Dual-Tree Complex Wavelet [4].
feature with a consistent edge profile exists at the indicatee summarize the properties of the ILP in further detail in
locations. We calculate these clusters for a small target imsection 2, along with the ICP (InterCoefficient Product), in-
age, and then seek these clusters within a larger search imag@duced in [2], which is also used to identify the specific
regardless of their rotation angle. We compare our metho@rientations of these features.
against SIFT for the task of rotation-invariant matching in ~ Once the abilities of the ILP and ICP functions are ex-
the presence of heavy Gaussian noise, where our methodp#ined, we proceed in section 3 to cluster the ILP and ICP
shown to be more noise-robust. This improvement is a dirednformation into sets of entities that sparsely represents the
result of our new edge-profile clusters’ broad spatial suppormajor edge components of a target image. In section 4, we

and stable relationship to coarse-level image content. then outline the search algorithm to find these target entities
in the ILP domain of the search data. We briefly compare
1. INTRODUCTION our method against SIFT for a test target in section 5, and

. . _ onclude in section 6 with a discussion of the results and the
This paper describes a novel method of detecting and searchay¢ steps for our research.

ing for specific edge structures in images, regardless of their
orientation. Our “edge-profile clusters” allow us to detect
and represent edges and ridges by their spatial properties 2. THEDT CWTFTURI\'IA‘gﬁgﬁFSQM' AND ILP/ICP
as well as their profile. The profile of a feature indicates

whether it is ridge or an edge, positive or negative. To ouln this section, we summarize the ILP and ICP functions,
knowledge, no such attribute has been exploited in the litefyhich transform both target and search images into the do-
ature for object recognition. main in which we will perform matching. We start with an

In general, most recent successful object recognition alpverview of the the DT CWT upon which the ILP and ICP
gorithms involve a) identifying features of an object that arefynctions are based.
invariant to transformation, and b) seeking near-matches of
these features in potential candidate images. Such searche§ The DT CWT Transform
may be performed by reducing object images to a skitef-
est points using Lowe’s Difference of Gaussian (DoG) de- The Dual-Tree Complex Wavelet Transform (DT CWT)
tector [6] or the Harris corner detector [3]. Local featurestransforms am x M image into a pyramid df levels, where
are then calculated at these points with a variety of methodeach levell = 1...L contains™3™ x 6 complex interlevel
(several of which are compared in [8]), and correspondencemefficients. The magnitude of a coefficient represents the
between these feature sets are sought between all points cafrength of activity in the vicinity of its spatial locatidr, y),
culated in the target image and a candidate search image. Bealel, and orientatiord, whered = 1...6 represents direc-
nally, methods such as the generalized Hough Transform dional subbands approximately equally spaced betwlégn
RANSAC are used to calculate the affine transformation beand 165°. The phase of DT CWT coefficients change lin-
tween the target and a candidate. early with the offset of a feature from the coefficient location.
These techniques are appropriate and efficient for the coNote that the behaviour of DT CWT coefficients are simi-
ners and blobs detected by Harris and DoG methods, arldr to steerable pyramid coefficients [10]; however, the DT
have been applied to edge features as well, for detectinGWT can be implemented with linearly separable wavelet
“wiry” objects [7]. We wish to adopt an approach that ac-filter banks, providing improved computation speeds. How-
knowledges that edge features do not possess a clearly darer, this acceleration comes at the expense of losing “steer-
fined “interest point” representation; they are entities that arability”; the number and directions of the subbands are fixed.




A

[
{

,-_\,,r,l\\\\

.
1

ou olcmis OTRNE
AN AN I NN |

po-i0s
-

v

Figure 1: Relationship between the complex phase of an ILP
coefficient in thel5° subband and the nature ofal5’® fea-
ture in the vicinity.

Compared to Discrete Wavelet Transform, the DT CWT
has two desirable properties suitable for object recognition,;—_igure 2: Complex ILP coefficients, at Level 2, subband
moderate shift invariance and better directional selectivityy 5 representing an aerial image of a building é\t two differ-
However, while the magnitudes of complex wavelet coeffi-gnt angles. Note the distinctive, coherent phase profiles as-
cients provide valuable information for object recognition,gqciated with the top and bottom edges of the building, and

the phases in their raw state are less helpful. If the imag, ¢ these phase profiles are relatively invariant to rotations
is shifted slightly, relative to the decimation reference, phasgiihin the subband.

changes will be introduced that make matching difficult. It
would be helpful, instead, if the phases of the coefficients
were more directly dependent upon image content only. In
the next section, we will see how the ICP and ILP functionshamed the ICP (InterCoefficient Product). While the ILP

create these dependencies. calculates conjugate products (and hence phase differences)
across scales in the same location, the ICP calculates con-
2.2 The InterLevel Product: Feature Types jugate products across space; specifically, betweenativo

jacent coefficients at the same scale and orientation. Any
e ! .. ‘dominant feature that spans the support regions of both DT
coeff|C|entV\|I(>é, vl ,d)wand ? priadse—doubled ver5|?r:1 tOIhItS CWT coefficients will cause these coefficients to have phases
coarser-scaled pare(x,y| +1,d), one can see that the e difference is proportional to the orientation of the fea-
linear phase-offset relationships cancel to produce a phasgye 1 4 fixed constant. Thus, by dividing by this constant
difference that is relatively constant, regardless of spatial feadne can cause the complex ar;gument of the ICP coefficieni[s
:ur?hoffse;[. As ?trr(]asult, H."S plhafse td|fference 'St retl?rt]ed onl to equal the angle of the underlying feature. This relation-
0 (e nature or (ne muliscale ieature present at the gively,;, js g direct trigonometric result of the phase/offset rela-

Iof?ayor;; this rt?lznonshl;i IS tsr?owri: n Fg#re 1. AT)”‘P CI? tionship between a feature and a coefficient, and is demon-
efficient, x(x,y,1,d), creates this phase difference by multi- strated explicitly in [2].

plying the child coefficient with the conjugate of the parent; We now have two multiscale shift-invariant sources of

more details of this process can be found in [1]. Specifically, ; ; ; )
the ILP phase represents the typepbfase congruenchke- Euhrzzeo:‘n;ﬁrcr)nb?ggtn that we can use to characterize edge fea
" .

tween even and odd Fourier components an octave apart.
an example, a positive real 2-D ILPX¥ = 0°) 1 corresponds
to the congruence of the positive sine (odd) Fourier coeffi- 3. BUILDING A ROTAJSDDNEIII\NARIANT TARGET
cients, which form a positive step edge at this scale pair;

similarly, a negative imaginary ILP/f = 270) indicates We start by transforming the target ima@ewith the ILP
congruence of negative cosine (even) Fourier coefficients. Ignd ICP functions to produce the pyramidydf) and (™

[5], Kovesi describes the relationship between Fourier comeoefficients respectively, and isolating the regions where we
ponents and complex wavelet coefficients in further detaipelieve the coefficient phases will be stable.

(using complex log-Gabor wavelets).

_ Figure 2a shows an example oi5® ILP coefficients 31 |Lp Phase Coherence and Stability
highlighting the unique edge profiles of the near-horizontal . i . .
edges of an aerial building picture at level 2. Note that, agmpmcal obs_ervatmn_s of ILP coefficients indicate tha_lt_edge
well as being shift-invariant, the ILP phase is moderately ro&nd ridge objects of interest occur where ILP coefficients,
tation invariant; features oriented withit&® of the central ~ Within the same subband, possess the following qualities:
orientation of a given subband produce similar phase resultsl. Large magnitude, indicating that activity is present; and
We demonstrate this in Figure 2b by rotating Figure 2a 302. Spatial adjacency of a number of coefficients with ap-

By looking at the difference in phase between a DT CW

degrees and observing that the phases ol 8idLP coeffi- proximately the same complex phase (“coherent” ILP co-
cients remain relatively unaffected in the vicinity of the main  efficients), implying that the same, dominant feature is
edge features. influencing all coefficients.

. _ Under these circumstances the relationship between ILP
2.3 The InterCoefficient Product: Feature Angles phase and image contentsgable that is, it is invariant to

To determine the orientation of a feature (and, thus, the sutielatively small affine transformations of the content, such as

band to find it in), we use a different phase-based functionnay occur with rotation or translation. To enforce the lat-
ter criteria, and hence effectively separate edges from tex-

Lin this paper, we uséx to denotearg(x). tures, we first create a new set of coefficieRts,y,|,d) at




each subband and level that demands phase similarity be- We also require an orientation for each cluster to a) iden-
tween neighbouring coefficients, as dictated by requiremeriify the correct subband in which to search for transformed

2 above: instances of the cluster, and b) calculate the oriented lo-
cation of subsequent clusters appropriately. Thus, we add
Roum(xyl.d) [Rsum(x,y,1,d)]| >~ B |CP orientations to each cluster. For clustewe calculate
Rxy.1,d)= { 47 T YaoXpolXT (ctay+bl.d)| o = arg(S Ye), whereys; are all of the ICP coefficients co-
0, otherwise. (1) located withR. members of clustes.

whereRsum(X,¥,1,d) = 320XV (x+ay+b,l,d)and 3.3 Summary of Edge-Profile Clusters

B is a threshold that controls the strictness with which onéye now have clusters corresponding to the visually salient
can enforce phase coherence; we use a valfle-00.8. The  ang consistent edge/ridge features in a target image. More
resul_tlngR coefflc_le_nts are either an average of four ne'gh'precisely, we define an “Edge-Profile Clusterto be a clus-
bouring ILP coefficients, if they possess similar phase. Reger of coherent ILP coefficients which efficiently represents
gions where R is zero (i.e. with inconsistent ILP coefﬁqents)an edge or a ridge with five parameters: its cenjaj),(
correspond to smooth or textured image regions. Figure §ize/shape2(c), orientation (), weight @c), and edge pro-

shows the new coefficients. file (65).
An example of edge-profile clusters for a target object
3.2 Clustering Coherent ILP Coefficients is shown in Figure 3 for th&5° ILP coefficients of Figure

2b; the other five subbands of Level 2 will possess similar

After thresholding out coefficients of inconsistent phase, Wey siers around the detected features at different orientations.
look to a clustering algorithm to sparsely represent the largest ™o o introduce a method to detect rotated instances of
of the remaining non-zero coefficientsRywhich we expect this constellation of clusters

to be stable features. In this paper, we use a region growing

algorithm to seed and grow clusters until no neighbouring

ILP coefficients can be found that are non-zero and within a4' THE ILP CLUSTER MATCHING ALGORITHM
phase threshold (say;30°) of the seeded coefficient. The We first search for possible instances of a dominant
weighted locations of the resultant labelled coefficients aredge/ridge feature of an object, regardless of its orientation,
then used to calculate the cluster parametef; iepresents  and then attempt to “build” the rest of the object around it.
the coefficients oRthat are in clustee, then the meap; and

covariancex are calculated from the locations of these co-4.1 Primary Cluster Selection

efficients, with cluster weightc = | ¥ R¢| and overall cluster

ILP phase profile, = /(5 Ro). In this paper, we will simply assume that the dominant fea-

ture of a target image is represented by the cluster with the
highesta. across all subbands, whose value reflects both the
magnitude and spatial extent of its ILP coefficients. We name
this cluster theprimary cluster cp, with associated parame-
terspp, Zp, ap, B, andPp. In Figure 3, this cluster is indi-
cated by the white cluster boundary. The remaining clusters
we namesecondary clustersvhose presences we detect in
section 4.3 after finding candidates for each primary cluster.

In the next section we search the ILP coefficients of the
candidate imagey(®, for rotated instances of the primary
cluster.

4.2 Building a List of Primary Cluster Candidates

First, we transform the search ima§énto the ILP and ICP
pyramids,x(® andy(® respectively.

In a search image, potential candidates for our primary
cluster will have the same ILP phase; we ignore the ICP ori-
entations and search across all subbands, as we are looking
for instances that occur at any angle. For each subband, we
construct an ellipse of ILP coefficients in the shape of the
primary cluster, oriented at an appropriately rotated angle. If
Figure 3: An example of the R coefficients corresponding tove define this new rotated cluster ellipse Byq, we then
the level 215° subband ILP coefficients of Figure 2a. Thesetemplate match it against the decimated ILP coefficients in
coefficients are clustered according to section 3.2, and ICPach subband. The result of this mattx, y,|,d), is a value
orientations are assigned. Grey arrows indicate the ILP phasetween -1 and 1 that represents the similarity between the
of each cluster; black arrows indicate their ICP orientationsprimary cluster and the indicated locationy), scalel, and
and the number indicates the normalizeégweight of the general orientatiod of the search image.
cluster. The cluster with the highest across all subbands We retain locations at which the match-scoris above
(the “primary cluster”) is present in this subband and is indi-t. The threshold controls the proportion of candidates re-
cated with a white cluster boundary. tained for further processing; we use= 0.2, a fairly liberal
threshold.




the mean of the candidate primary cluster. This calculation
is a straight-forward rotation of the secondary target clusters’
offsets, relative to the primary target cluster. If we define the
rotation angledy, and rotation matriR, as follows:

My =Ty~ Tp

R COSAW  —SinAy
K= 1 sinAyk COSAYK

Then the parameters of each candidate secondary cluster
are calculated as follows:

— — 1)
Figure 4: In a), a search image is shown in which we will  Hke = Hko * Ric(He — Hp) Ty, = ReZcRy
seek the target object of Figure 3. In b), we show the loca- @y, = Pc+AUK dg, =0c
tions of the means for the set” of candidates (at any angle) (2)
for the primary cluster indicated in Figure 3. Note thatthe g, = { 69; e <T0
correct primary cluster match (and thus, the correct target =6, Y >T

match) is located at the right middle of the search image. We also us@li; to determine the subbanty, — 1....6n

which the target ILP is compared &,.
We now have the location, shape, and expected ILP phase

The results of our primary cluster candidate search is af each secondary clustefor candidatex. To compare the
set.? of candidates, where each individual candidate.#~  expected ILP to the actual ILP for each secondary cluster,
is a potential location around which we may find the targetwe once again perform a template correlation between the
For the primary cluster shown in Figure 3, we highlight all predicted cluster ellipse and the actual image content at the
of its candidates in a search image in Figure 4. If the primangxpected location, producingy,, a value between -1 and 1
cluster is a positive ridge, we expect all the candidates tthat measures the correlation between the expected ILP phase
be positive ridges, and no step edges or negative ridges. bf the secondary cluster and the observed ILP phase at the
our illustrated example, our primary cluster possesses an ILeandidate image location.
profile part way between an edge and a positive ridge; our For a given candidate, we now haves’ clusters that will
candidate list will contain features with an equivalent profile.“vote” for the likelihood thatk is the best candidate. How-

Having selected and ranked our areas to search for thever, the votes are not equal; some of our clusters are larger
desired object, we use the secondary clusters to create aadd more stable than others. Accordingly, we weight each
test hypotheses that the object exists at the location and oidandidate cluster (including the primary candidate cluster)
entation specified by each primary cluster candidate. by ay. and sum:

4.3 Ranking and Selecting the Best Candidate My = z Oc My,

Because of our liberal threshold for the primary cluster ot

search, we are likely to have potentially several thousand pri- And, finally, we select the most appropriate match by tak-
mary cluster candidates. For each candidgteve wish to  ing the candidate with the maximum valueNsf

check if the ILP phases of the secondary clusters agree with

the ILP phases in the corresponding locations in the search Best Match= arg maxM (3)
image. _ o ket
Our method of searching all directional subbands for the 5. TESTING AND RESULTS

desired edge profile is broadly accommodating of the feature
angle within the subband. For example, any matching edgé/e demonstrate our matching algorithm by matching the
between0°® and 30° will be identified in thel5® subband. 64 x 64 object of Figure 3 in the384 x 384 search image
However, to fit the secondary clusters in the proper spatiadf Figure 4 under increasing additive Gaussian noise, at level
orientation, we need a more specific orientation to assign t@ (a decimation o#l x 4). For our tests of rotation invari-
the primary cluster. Thus, for each primary cluster candidatance, we use quadratic interpolation to rotate the targgt in
(which we namexp) we calculate the cluster ICP by weight- increments fron®° to 180° before clustering; we then apply
ing the ICP coefficients co-located with the ILP cluster canthe Gaussian noise to the search image, prior to application
didate (we name this set of ICP coefficiegig ) from their  of the ILP function. We use the same setup to test the SIFT
distance to the center of the Gaussian cluster and taking threthod, and compare the two methods’ abilities to success-
argument of the sum: fully match the target at each noise level. We also demon-

strate our matching method’s invariance to uniform illumi-
e~ XyZg txyT nation changes, by performing our tests under a non-linear
_ l,UKp> gamma distortion: if the pixel valuesof the search imag8

are normalized to a range from O to 1, we apply the distor-
tions, = r¥ before transform, foy = 0.5, 1. A correct match

WK = Z 1
xycth, 27 2c|2
We now use this ang Py, as a canonical orientation for

the primary cluster that is precise enough to calculate the €x- 2ywe use the Matlab SIFT code available from D. Lowe at
pected locations of the secondary clusters, relative 9 http:/www.cs.ubc.ca/lowe/keypoints




for our method occurs when the best match of equation 3 is 6. CONCLUSIONS

the k candidate at the correct location and orientation, andf this paper. we proposed a new method of obiect recod-
correct SIFT match occurs when at least three interest poin N paper, prop J 9

have been correctly located in the search image. In Figure 510N based upon edge-profile clusters in the ILP transform
one can see the superior ability of the ILP clustering methodomMain whose ILP phases are invariant to rotation, and de-
to cope with heavy noise. It also possesses a more graduafndent only upon the edge profiles that they represent. We
decrease in performance, when compared to the swift decli gel that edges have a natural advantage in robustness when

in performance of the SIFT features at 20% Gaussian nois%pmsﬁgr,\?iﬂ too'l:]rt?rr]?érﬂ?"nt; agﬁtﬁ’vrﬁ,s"”gjtr::% rtih'sir?%lg?gﬁge
In Figure 6, we see an example correct match. Dy S g our g alg P tyir e
ing in heavy noise. In the future, we plan to show its ability

to match in a scale- and affine-invariant manner as well. We
will also investigate the extent to which interest points and
our clustered edge profiles are complimentary.

We also feel that the proposed method has much in com-
mon with the human psychovisual system; our system relies
heavily upon interaction between directional filters of adja-
cent scale and space, much like the V1 neurons of the visual
cortex. Thus, we will investigate the use of our edge-profile
clusters as a cortical processing model as well.
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