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ABSTRACT
In this paper, a novel cortex-inspired feed-forward hierarchical ob-
ject recognition system based on complex wavelets is proposed and
tested. Complex wavelets contain three key properties for object
representation: shift invariance, which enables the extraction of sta-
ble local features; good directional selectivity, which simplifies the
determination of image orientations; and limited redundancy, which
allows for efficient signal analysis using the multi-resolution decom-
position offered by complex wavelets. In this paper, we propose a
complete cortex-inspired object recognition system based on com-
plex wavelets. We find that the implementation of the HMAX model
for object recognition in [1, 2] is rather over-complete and includes
too much redundant information and processing. We have optimized
the structure of the model to make it more efficient. Specifically,
we have used the Caltech5 standard dataset to compare with Serre’s
model in [2] (which employs Gabor filter bands). Results demon-
strate that the complex wavelet model achieves a speed improvement
of about 4 times over the Serre model and gives comparable recog-
nition performance.

Index Terms— Complex Wavelets, Visual Cortex, Object
Recognition, Visual Hierarchial Model

1. INTRODUCTION

Much early work in computer vision was inspired by the pioneer-
ing biologically based studies of David Marr [3]. More recently af-
ter many researchers have studied the field, the scale-invariant fea-
ture transform (SIFT) [4] was developed and shown to be suitable
for recognition of specific objects (i.e. different views of the same
object). However it still exhibits some problems for performing
generic object recognition (i.e. recognizing different objects of the
same general class). At the same time wavelet transforms [5] have
been developed, and extended more recently to the dual-tree com-
plex wavelet transform [6]. The quantitative model of the visual
cortex system is based on Hubel and Wiesel’s work [7] on models of
simple and complex cells. Recently, M. Riesenhuber and T. Poggio
developed the HMAX model [1] to explain how the visual process-
ing in cortex could work.

The discrete wavelet transform (DWT) has the ability to local-
ize functions in space, scale and orientation, and for natural images
produces sparse representations. Since Mallat [8] first demonstrated
wavelets as the foundation of multi-resolution theory for signal pro-
cessing and analysis in 1987, the DWT has been widely and success-
fully used in many areas of image processing, e.g. denoising, en-
hancement, deconvolution and compression. For object recognition,
however, the DWT has a critical shortcoming, its lack of shift invari-
ance, which becomes apparent when we observe that the distribution

of energy between coefficients at different scales varies sharply with
shifts in the input signal.

In 1998-9 the dual-tree complex wavelet transform (DT CWT)
[6] was introduced. It overcomes the disadvantages of the DWT by
using Hilbert-pairs of wavelets to introduce limited redundancy and
makes it possible to extract stable local features efficiently.

Fig.1 shows this in detail. At the top of the figure, the input
signal is a unit step which is shifted to get 16 adjacent sampling
instances. The following rows of the figure show the output signal
components (after an inverse DT CWT or DWT) when wavelet and
scaling function coefficients at levels 1 to 4 are retained, just one
level at a time. From the right column (b), we see that the DWT is
far from shift invariant, making it very difficult to capture signatures
of the signal under shift, and hence the recognition of signals with
wavelet signatures is not robust or stable. In the left column (a), the
DT CWT produces an almost shift-invariant set of responses, which
make it possible to extract stable local features efficiently.
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Fig. 1. Wavelet and scaling function components at levels 1 to 4 of
16 shifted step responses of the DT CWT (a) and real DWT (b).

There are two key aspects for computer vision algorithms: accu-
racy (recognition performance) and computational efficiency. In this
paper, we evaluate a biologically-inspired object recognition system
from the viewpoints of both signal processing and computer vision.
A feedforward cortex-inspired object-recognition system, based on
complex wavelets, is proposed and developed. Test results using the
public Caltech5 dataset show that our system is significantly faster
than Serre’s Gabor-based system [2] while providing comparable
recognition performance.

There are two specific innovations in this paper: the implemen-
tation of the early stages of the visual cortex with complex wavelets
(DT CWT); and the demonstration that the Gabor-based model is
too over-complete. We have optimized the front end of the model by
reducing its existing redundancies. The complex wavelets make this



possible.
This paper is arranged as follows: in section 2 we describe the

implementation of the system in detail; in section 3 we show how
we tested the systems on the Caltech5 dataset; and in section 4 we
discuss the results.
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Fig. 2. DT CWT and DWT filter impulse responses.

2. IMPLEMENTATION

2.1. Model based on Complex Wavelets

A (1D) discrete wavelet transform can be described as the vector
inner product of an input signal x(nτ) with ψ∗a,b(nτ) for a range of
shifts a and scales b [5], where ψ∗a,b is the complex conjugate of the
wavelet ψa,b, related to the mother wavelet ψ(x) by

ψa,b(nτ) =
1√
b
ψ(

nτ − a

b
) (1)

In the normal DWT, ψ is real, whereas in the DT CWT it is complex
and its real and imaginary parts are computed by two separate DWT
filter trees (hence the name ‘dual tree’). This 2:1 redundancy largely
eliminates aliasing, leading to the translation-invariant results shown
in fig. 1a. The DT CWT has already been used in several areas of
object recognition [9, 10].

We have built a feedforward hierarchical model based on com-
plex wavelets, which can be divided into four processing layers, S1,
C1, S2, and C2, as in [2]. In order to compare our model with the
Gabor-bases model of [2], we retain as much similarity with Serre’s
system as is feasible, including his style of diagrams.

S1 Layer:
The first stage of the hierarchical model is achieved by filtering the
original input image with the DT CWT. (The classic simple cells
in the cortex model V1 [7] correspond to this layer.) Note that in
fig. 2 the DT CWT has 6 orientations (15◦, 45◦, 75◦, 105◦, 135◦

and 165◦). We let ql
s(x, y) be the response of a simple cell in the

first layer S1, where (x, y) is its position, s is its scale and l is its
direction; the responses ql

s(x, y) can be computed by convolving the
original image I with the DT CWT subband responses, W l

s from
fig. 2, as in equation (2). Here we take the magnitude of the complex
coefficients to help to achieve translation invariance:

ql
s(x, y) = |W l

s ∗ I| (2)

Since the standard DT CWT has only 1 scale per octave and the
scale difference between octaves is 2:1, intermediate scales may be
generated by resizing the original image by the desired scale change
followed by a DT CWT to filter the resized images. By interleaving
the filtered images, the desired S1 layer responses ql

s(x, y) may be
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Fig. 3. Model of the algorithm including C1, S1, C2, and S2 layers.
First, the input image is filtered by a DT CWT to form a pyramid
shape with 6 directional subbands per scale. Next, with a local MAX
pooling operation, the S1 layer is sub-sampled to form the C1 layer.
In the S2 units, some bands of the C1 layer are adaptively chosen
according to the base band. The chosen bands are filtered with N
previous patches with a template matching operation. Finally, the
S2 layer is pooled with a max operation to obtain the C2 layer.

achieved. This includes octaves and the intermediate scales within
each octave. We find that 2 scales per octave are needed, so the
original image I1 (1024 × 768 pixels, say) is resized into a second
image, I2, which is scaled by 2−

1
2 . I2 is now 724 × 544 pixels.

Fig.4 shows the S1 layer responses ql
s(x, y) for this. If there are 4

levels (octaves) of the DT CWT with 2 scales per octave, then the S1
layer has a 4D structure having the same 3D pyramid shape for each
of the 6 directions.
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Fig. 4. S1 layer of the Model. The original image is resized to get 2
scales per octave. The original and resized images are filtered by the
DT CWT and then reordered to form the S1 layer.

C1 Layer:
The second stage of the hierarchical system is the C1 layer, which
corresponds to the complex cells in the V1 cortex. The C1 pooling
operation reduces the resolution of the data and saves computation
time, although some information is lost. In [11] several methods for
the pooling operations are proposed, including Winner Take Most
(WTM), Max and Square. In our system, as in others [1, 2], we
adopt Max as the pooling operation due to its speed and relative



robustness.
S2 Layer:

The S2 layer corresponds to the simple cells in the V2 or V4 area
of the the visual cortex, like the view-tuned-units (VTU) in [1]. The
process of the S2 layer is shown in fig.3, where K bands, k1 . . . k2
of the C1 layer are chosen to form the S2 layer (e.g. bands 2, 3
and 4, according to the scale of the image). The chosen patches
Xk1 . . . Xk2 at a given location are filtered with N previously seen
patches (P1, ..., PN ) from a reference band k0 using the template
matching formula (equ.(4) in [2]):

rk,i = exp(−β||Xk − Pi||2) (3)

The result is one S2 layer matrix of rk,i values per C1 band per
patch.

C2 Layer:
A global max operation is performed in the C2 layer to acquire the
shift and scale invariance of the C2 response. In this layer, the S2
responses are pooled in all positions and scales of the S2 image. The
value of the best match for each prototype feature Pi is kept as Mi,
which leaves a vector M for the N prototype features (P1, ..., PN ).

The Learning stage:
The purpose of this stage is to select the N prototype features for
the S2 layer. A random sampling function is used to extract the
prototypes from a large pool of prototypes of various sizes and at
random positions.

The Classification Stage:
The last stage of the model is the Classification Stage. In this stage
as in [2], we adopted linear SVM classifiers to process the C1 and
C2 model features.

2.2. The differences between two models

The primary differences between our proposed model and Serre’s
model are: 1. our use of complex wavelets instead of Gabor filters in
S1; and 2. the optimization of the structure of the model by reduc-
ing the over-complete redundancies in S1 and S2, arising from the
near-critical subsampling of the DT CWT. In order to obtain a fair
comparison, we keep layers C1 and C2, the learning stage, and the
classification stage all the same as in Serre’s model. We now focus
on the differences in the S1 and S2 layers.

S1 Layer:
Our model uses the DT CWT for the S1 layer while Serre’s model
uses Gabor filters. Due to decimation in the complex wavelet trans-
form, the S1 layer is now a pyramid structure which does not require
other operations and is properly subsampled for multi-scale signal
processing. For the Gabor system, the ratio of effective width σ to
wavelength λ (see [2]) is always about 0.8 (with the filter length
being proportional to σ) as the scale changes. The Gabor σ deter-
mines the normalized scale. In the DT CWT system the image is
filtered with the same length filter (14 taps) in every band due to the
optimal subsampling, which leads to good filter characteristics with
high computational efficiency.

S2 Layer:
In the S2 Layer, we have optimized the choice of scale bands,
k1 . . . k2, from the C1 layer to form the S2 layer. Our aim was
to speed up the model while providing acceptable scale tolerance.
Hence we needed to optimize the number of bands M = k2−k1+1
from the C1 layer which form the S2 layer, the number of levels L of
DT CWT, and the scale difference Sd in the S1 layer. Meanwhile we
needed to ensure that the scale tolerance is larger than a minimum
requirement ε.

Now Serre’s Gabor-based system uses 8 bands with a range of
wavelengths λ from 3.5 to 22.8 (6.5:1). Our wavelet system with two√

2-interleaved octave decompositions can achieve a similar scale
ratio using just 3 scale bands (2, 3 and 4) covering sampling intervals
from 4 to 16

√
2 samples (5.66:1). Hence if the learning stage is

performed using scale band k0 = 3, we only need to set k1 = 2 and
k2 = 4 to obtain a similar amount of scale tolerance during the S2
matching process, to the 8 bands of the Gabor system. This, together
with the optimal subsampling of every band, contributes to the high
efficiency of the DTCWT-based system.

For similar reasons we can use patch sizes of just 2 × 2, 4 × 4,
8× 8 and 12× 12 samples, instead of 4× 4, 8× 8 and 12× 12 and
16× 16.

3. EMPIRICAL EVALUATION

3.1. Model Optimization and Parameter Optimization for Ob-
ject Recognition

This process tends to be time consuming due to the large test
datasets. Many experiments are needed to select the optimal pa-
rameters, such as: number of levels in DT CWT to build the S1
layer; number of scales in each band in the S1 layer; the pooling
size in the C1 layer; and the patch size in the learning stage along
with the S2 matching stage. Because our system is computationally
efficient, the parameter optimizations for each dataset are relatively
convenient compared to a Gabor-based system. Our experiments
show that the optimized structure and parameter values for the DT
CWT model should be as follows. In the learning stage, band 3 is
used with different patch sizes [2 4 8 12] and 6 directional subbands
to extract the prototype features. In the S1 layer, 4 levels of the DT
CWT are used with a scale difference of

√
2 and this gives 4 bands

with 2 scales in each band as shown in Fig.4. In the C1 layer, the
pyramid pooling width is [5 2 1 1] samples in the 4 bands. We set
M = 3, so in the S2 layer, bands 2, 3 and 4 of the C1 layer are used
to match the prototype features from the learning stage. A linear
SVM classifier is adopted to classify the test images based on the C2
model features.The computer used in our tests was an Intel Core2
6600 2.4GHz CPU, with 3.24GB memory and 32bit Matlab 2007a.

3.2. Results for the Caltech5 dataset

Caltech51 contains 5 main types of object: front face, motorcycle,
rear-car, airplane and a background dataset. It has been widely used
for object recognition tasks [12, 13, 2]. In order to form a fair com-
parison, the same pre-processing is adopted as in [2], the same fixed
splits are used whenever possible, and random splits are used other-
wise. We resized all images to 140-pixels in height with conversion
to gray-scale.

In [2], Serre et al. compared the performance of C2 SMFs
(standard model features) with existing object recognition systems
on the Caltech5 dataset and they found that C2 SMFs features per-
formed best. Here, we compare our object recognition system based
on complex wavelets with Serre’s Gabor-based system, because both
are biologically-inspired and based on the mammalian visual cortex.
We selected the performance measure of [2] as the metric for com-
parison, which is the accuracy at the ROC equilibrium point, where
the false positive rate equals the miss rate. A linear SVM classifier
is used in both systems and the number of features is 1000. Table

1http://www.vision.caltech.edu/html-files/archive.html;
http://www.robots.ox.ac.uk/ vgg/data/data-cats.html



1 shows the results. From the table we can see that the DTCWT-
based system achieves similar object recognition performance to the
Gabor-based system, but with a speed improvement of about 4 times.
In addition, the DT CWT based system always performed better than
Serre’s benchmark system.

Datasets System Recognition Accuracy Time(s)
Leaves Gabor 0.9786 79067.7

DT CWT 0.9652 20179.1
Benchmark[12] 0.840 -

Cars Gabor 0.9931 141826.1
DT CWT 0.9763 37364.7

Benchmark[13] 0.848 -
Faces Gabor 0.9832 94820.1

DT CWT 0.9651 26065.2
Benchmark[13] 0.964 -

Airplane Gabor 0.9668 122709.0
DT CWT 0.9622 31627.2

Benchmark[13] 0.940 -
Motorcycles Gabor 0.9918 122423.0

DT CWT 0.9835 32230.7
Benchmark[13] 0.950 -

Table 1. Results Obtained with 1,000 C2 features. SVM classifiers
were used.

The Caltech5 dataset contains the following numbers of images:
186 leaf, 1155 car, 450 face, 1074 airplane, 826 motorcycle, 900
background, and 1370 car backgrounds. Table2 gives the average
time taken per image for the S1, C1, S2 and C2 stages. The DT
CWT system is much more efficient than the Gabor-based system
and takes less than 2 seconds per image using Matlab code. Fig.5
shows the results graphically.

System Leaves Cars Faces Airplanes Motorcycles
DT CWT 1.85s 1.47s 1.93s 1.60s 1.86s
Gabor 7.28s 5.61s 7.02s 6.21s 7.09s

Table 2. The average time per image for the complete algorithms.
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Fig. 5. The average time per image for the complete algorithm,
tested on Caltech5 dataset, which include leaves, cars, faces, air-
planes, motorcycles, and background data classes

4. DISCUSSION AND CONCLUSION

In this paper, a cortex-inspired object recognition system with com-
plex wavelets is proposed and tested. There are mainly two contribu-
tions: firstly, a novel biological-inspired object recognition system is
developed, based on complex wavelets; secondly, the Gabor-based
HMAX model of [1, 2] is shown to be rather too over-complete.
Optimal values for the DTCWT-based system are selected and com-
pared with the Gabor-based system of [2] using the standard Cal-
tech5 dataset. The results demonstrate that the DT CWT system
is significantly more efficient than the Gabor-based system while
achieving comparable recognition performance.
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