Dual-Tree Wavelets and their application to Vision Systems: key-point detectors and descriptors with polar matching.

Nick Kingsbury

Signal Processing and Communications Laboratory Department of Engineering, University of Cambridge, UK. email: ngk@eng.cam.ac.uk web: www.eng.cam.ac.uk/~ngk

Part 2, UDRC Short Course, 21 March 2013

Nick Kingsbury (Univ. of Cambridge)

Dual-Tree Wavelets and their application to Vision Systems

- \bullet Properties of Dual-Tree Complex Wavelets (DT $\mathbb{C}WT$) and why we use them
- Multiscale Keypoint Detection using Complex Wavelets (Julien Fauqueur and Pashmina Bendale)
- Rotation-invariant Local Feature Matching (an alternative to Lowe's popular SIFT system):
 - Modifications to DT CWTto improve rotational symmetry
 - Resampling using bandpass interpolation
 - The Polar Matching Matrix descriptor
 - Efficient Fourier-based matching
 - Similar to log-polar mapping of Fourier domain, but much more localised.
- Enhancements for resilience to keypoint location errors and scale estimates.

Features of the Dual Tree Complex Wavelet Transform (DT CWT)

- Good shift invariance = negligible aliasing. Hence transfer function through each subband is independent of shift and wavelet coefs can be interpolated within each subband, independent of all other subbands.
- Good directional selectivity in 2-D, 3-D etc. derives from analyticity in 1-D (ability to separate positive from negative frequencies).
- Similarity to Primary (V1) Cortex filters of the human visual system.
- Perfect reconstruction with short support filters.
- Limited redundancy 2:1 in 1-D, 4:1 in 2-D etc.
- Low computation much less than the undecimated (à trous) DWT.

Q-shift Dual Tree Complex Wavelet Transform in 1-D

Figure: Dual tree of real filters for the Q-shift $\mathbb{C}WT$, giving real and imaginary parts of complex coefficients from tree *a* and tree *b* respectively.

Nick Kingsbury (Univ. of Cambridge)

Dual-Tree CWT

Q-shift DT $\mathbb{C}WT$ Basis Functions – Levels 1 to 3

Nick Kingsbury (Univ. of Cambridge)

Dual-Tree CWT

Frequency Responses of 18-tap Q-shift filters

Nick Kingsbury (Univ. of Cambridge)

The DT CWT in 2-D

When the DT $\mathbb{C}WT$ is applied to 2-D signals (images), it has the following features:

- It is performed separably, using 2 trees for the rows of the image and 2 trees for the columns – yielding a Quad-Tree structure (4:1 redundancy).
- The 4 quad-tree components of each coefficient are combined by simple sum and difference operations to yield a **pair of complex coefficients**. These are part of two separate subbands in adjacent quadrants of the 2-D spectrum.
- This produces **6 directionally selective subbands** at each level of the 2-D DT CWT. Fig 2 shows the basis functions of these subbands at level 4, and compares them with the 3 subbands of a 2-D DWT.
- The DT CWT is directionally selective (see fig ??) because the complex filters can separate positive and negative frequency components in 1-D, and hence separate adjacent quadrants of the 2-D spectrum. Real separable filters cannot do this!

2-D Basis Functions at level 4

Figure: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom), all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters, while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from which the 2-D complex bases are derived, are shown to the right.

Nick Kingsbury (Univ. of Cambridge)

DT CWT in 2-D

Test Image and Colour Palette for Complex Coefficients

DT CWT in 2-D

2-D DT $\mathbb{C}WT$ Decomposition into Subbands

Figure: Four-level DT $\mathbb{C}WT$ decomposition of Lenna into 6 subbands per level (only the central 128 \times 128 portion of the image is shown for clarity). A colour-wheel palette is used to display the complex wavelet coefficients.

Nick Kingsbury (Univ. of Cambridge)

2-D Shift Invariance of DT CWT vs DWT

Figure: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc on a dark background, using the 2-D DT $\mathbb{C}WT$ (upper row) and 2-D DWT (lower row). Only half of each wavelet image is shown in order to save space.

Nick Kingsbury (Univ. of Cambridge)

Multi-scale Keypoint Detection using Accumulated Maps

Basic Method:

• Detect keypoint energy as locations **x** at scale *k* where complex wavelet energy exists in multiple directions *d* using:

$$E_{kp}(k, \mathbf{x}) = \min_{d=1...6} |w_{k,d}(\mathbf{x})|$$

or $E_{kp}(k, \mathbf{x}) = \left(\prod_{d=1}^{6} |w_{k,d}(\mathbf{x})|\right)^{\frac{1}{6}}$
or $E_{kp}(k, \mathbf{x}) = \frac{\frac{1}{3} \sum_{d=1}^{3} |w_{k,d}(\mathbf{x})| |w_{k,d+3}(\mathbf{x})|}{\sqrt{\frac{1}{6} \sum_{d=1}^{6} |w_{k,d}(\mathbf{x})|^{2}}}$

- Interpolate and accumulate *E_{kp}(k*, **x**) across groups of relevant scales *k* to create the Accumulated Map.
- Pick keypoints as locations of maxima in the Accumulated Map.

Multi-scale Keypoint Detection using Accumulated Maps

Comparison of keypoint detectors

MANUAL 37 kp

Harris: 8 of 44 kp close to manual kp

DTCWT 15 of 31 kp close to manual kp

Nick Kingsbury (Univ. of Cambridge)

Dual-Tree Wavelets & Vision

UDRC 2013 (2) 14 / 30

Rotation-Invariant Local Feature Matching

Aims:

- To derive a local feature descriptor for the region around a detected keypoint, so that keypoints from similar objects may be matched reliably.
- Matching must be performed in a **rotationally invariant** way if all rotations of an object are to be matched correctly.
- The feature descriptor must have **sufficient complexity** to give good detection reliability and low false-alarm rates.
- The feature descriptor must be **simple enough** to allow rapid pairwise comparisons of keypoints.
- Raw DT CWT coefficients provide multi-resolution local feature descriptors, but they are tied closely to a **rectangular sampling** system (as are most other multi-resolution decompositions).

Hence we first need **better rotational symmetry** for the DT $\mathbb{C}WT$.

Nick Kingsbury (Univ. of Cambridge)

Frequency Responses of 2-D Q-shift filters at levels 3 and 4

Nick Kingsbury (Univ. of Cambridge)

Modification of 45° and 135° subband responses for improved rotational symmetry (shown at level 4).

Imaginary Part

(a) Original 2-D impulse responses;

(b) 2-D responses, modified to have lower centre frequencies (reduced by $1/\sqrt{1.8})$ in the 45° and 135° subbands, and even / odd symmetric real / imaginary parts;

(c) Original and modified 1-D filters.

Better rotational symmetry is achieved, but we have lost Perfect Reconstruction.

Nick Kingsbury (Univ. of Cambridge)

13-point circular pattern for sampling DT $\mathbb{C}WT$ coefs at each keypoint location

M is a precise keypoint location, obtained from the keypoint detector.

Bandpass interpolation calculates the required samples and can be performed on each subband independently because of the shift-invariance of the transform:

1. Shift by $\{-\omega_1, -\omega_2\}$ down to zero frequency (i.e. multiply by $e^{-j(\omega_1 x_1 + \omega_2 x_2)}$ at each point $\{x_1, x_2\}$);

2. Lowpass interpolate to each new point (spline / bi-cubic / bi-linear);

3. Shift up by $\{\omega_1, \omega_2\}$ (multiply by $e^{j(\omega_1y_1+\omega_2y_2)}$ at each new point $\{y_1, y_2\}$).

Form the Polar Matching Matrix P

Each column of *P* comprises a set of **rotationally symmetric** samples from the 6 subbands and their conjugates (*), whose orientations are shown by the arrows and locations in the 13-point pattern by the letters.

Numbers for each arrow give the row indices in P.

Nick Kingsbury (Univ. of Cambridge)

Efficient Fourier-based Matching

Columns of *P* shift cyclically with rotation of the object about keypoint M. Hence we perform correlation matching in the **Fourier** domain, as follows:

- First, take **12-point FFT** of each column of P_k at every keypoint *k* to give \overline{P}_k and **normalise** each \overline{P}_k to unit total energy.
- Then, for each pair of keypoints (k, l) to be matched:
 - Multiply \overline{P}_k by \overline{P}_l^* element-by-element to give $\overline{S}_{k,l}$.
 - Accumulate the 12-point columns of $\overline{S}_{k,l}$ into a 48-element spectrum vector $\overline{s}_{k,l}$ (to give a 4-fold extended frequency range and hence finer correlation steps). Different columns of $\overline{S}_{k,l}$ are bandpass signals with differing centre frequencies, so optimum interpolation occurs if zero-padding is introduced over the part of the spectrum which is likely to contain least energy in each case.
 - Take the real part of the inverse FFT of s_{k,l} to obtain the 48-point correlation result s_{k,l}.
 - The **peak** in **s**_{k,l} gives the **rotation and value** of the best match.

Extra columns can be added to P for multiple scales or colour components.

Nick Kingsbury (Univ. of Cambridge)

Correlation plots for two simple images

Each set of curves shows the output of the normalised correlator for 48 angles in 7.5° increments, when the test image is rotated in 5° increments from 0° to 90° .

Levels 4 and 5 of the DT $\mathbb{C}WT$ were used in an 8-column *P* matrix format.

The diameter of the 13-point sampling pattern is half the width of the subimages shown.

Nick Kingsbury (Univ. of Cambridge)

Correlation plots for more complicated images

Nick Kingsbury (Univ. of Cambridge)

Matching hand-picked keypoints across different 3D views

Matching hand-picked keypoints in heavy noise

Nick Kingsbury (Univ. of Cambridge)

Improving resilience to errors in keypoint location and scale

The basic *P*-matrix normalised correlation measure is **highly resilient to changes in illumination, contrast and rotation**. **BUT** it is still rather sensitive to discrepancies in **keypoint location and estimated dominant scale**.

To correct for small errors (typically a few pixels) in keypoint location, we modify the algorithm as follows:

- Measure derivatives of P
 k with respect to shifts x in the sampling circle.
- Using the derivatives, calculate the shift vectors x_i which maximise the normalised correlation measures s_{k,l} at each of the 48 rotations *i* (using LMS methods with approximate adjustments for normalised vectors).
- By regarding the 48-point IFFT as a sparse matrix multiplication, the computation load is only **3 times** that of the basic algorithm.

We do the same for small scale errors using a derivative of \overline{P}_k wrt scale dilation, ψ , increasing computation to **4 times** that of the basic algorithm.

A keypoint and its corresponding sampling circles over levels 5, 4 and 3

Background images show magnitudes of DT $\mathbb{C}WT$ coefs for subband 1, oriented for edges at 15° above the horizontal.

Mean correlation surfaces with no change of scale

Results averaged over 73 images from Caltech *PP Toys 03* dataset, using the centre of the image as the keypoint.

red - no tolerance; blue - shift tolerance; green - shift + scale tolerance.

Left) No change of orientation; Right) Average over rotations from 0° to 90° in steps of 7.5°.

Mean correlation surfaces with change of scale (dilation)

Results averaged over 73 images from Caltech *PP Toys 03* dataset, using the centre of the image as the keypoint.

red - no tolerance; green - shift + scale tolerance.

Left) Average over dilations from 1.0 to 1.4, with respect to shift; Right) Mean correlation values with respect to scale change (dilation), no shift.

Histograms of non-target correlation scores

red - no tolerance; blue - shift tolerance; green - shift + scale tolerance.

The histograms demonstrate the increase in false positive detection rate when shift and scale tolerances are introduced.

Nick Kingsbury (Univ. of Cambridge)

Methods for handling colour and lighting changes

- For colour keypoint detection, we add the wavelet energies from the DT CWT of each R, G and B component, so that we get the total wavelet response to any changes in *RGB*-space; and use this to form a single Accumulated Map. Alternatively we could do this in a perceptually more uniform space such as *Lab*.
- We perform contrast equalisation over local image regions to handle variations between lighted / shaded parts of the image and between images.
- For **colour feature matching**, we form 3 polar-matching matrices into a single matrix [*P_R P_G P_B*] and perform matching with this.
- Prior to matching, we normalise each composite P-matrix with a single scaling factor for all 3 colours, so that relative amplitudes of colour variations are maintained, despite lighting changes.

Conclusions

New local **Keypoint Detectors** and **Feature Descriptors** have been proposed for use when comparing the similarity of **detected objects** in images. They have the following properties:

- They are based on a modified form of the efficient Dual-Tree Complex Wavelet Transform. The modifications improve the rotational symmetry of the 6 directionally selective subbands at each scale.
- The **12-point circular sampling patterns** and the **Polar Matching Matrix** *P* are defined such that arbitrary rotations of an object can be accomodated efficiently in the matching process.
- Shift-tolerant and scale-tolerant extensions of the basic *P*-matrix method give greater robustness at the expense of some increase in false-positive rate.
- There is scope for applying non-linear pre-processing (e.g. magnitude compression and phase adjustment) to the complex wavelet coefficients prior to matching, to improve resilience to illumination and viewpoint changes.

Papers on complex wavelets and applications are available at: www.eng.cam.ac.uk/~ngk/

Nick Kingsbury (Univ. of Cambridge)