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Dual Tree Complex Wavelets

Part 1:

• Basic form of the DT CWT

• How it achieves shift invariance

• DT CWT in 2-D and 3-D – directional selectivity

• Application to image denoising

Part 2:

• Q-shift filter design

• How good is the shift invariant approximation

• Further applications – regularisation, registration, object recognition,
watermarking.
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Features of the (Real) Discrete Wavelet Transform (DWT)

• Good compression of signal energy.

• Perfect reconstruction with short support filters.

• No redundancy.

• Very low computation – order-N only.

But

• Severe shift dependence.

• Poor directional selectivity in 2-D, 3-D etc.

The DWT is normally implemented with a tree of highpass and lowpass filters,
separated by 2 : 1 decimators.
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Real Discrete Wavelet Transform (DWT) in 1-D
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Figure 1: (a) Tree of real filters for the DWT. (b) Reconstruction filter block for 2 bands at a time,

used in the inverse transform.
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Visualising Shift Invariance

• Apply a standard input (e.g. unit step) to the transform for a range of shift
positions.

• Select the transform coefficients from just one wavelet level at a time.

• Inverse transform each set of selected coefficients.

• Plot the component of the reconstructed output for each shift position at each
wavelet level.

• Check for shift invariance (similarity of waveforms).

See Matlab demonstration.
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Features of the Dual Tree Complex Wavelet Transform (DT
CWT)

• Good shift invariance.

• Good directional selectivity in 2-D, 3-D etc.

• Perfect reconstruction with short support filters.

• Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.

• Low computation – much less than the undecimated (à trous) DWT.

Each tree contains purely real filters, but the two trees produce the real and
imaginary parts respectively of each complex wavelet coefficient.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 2: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for

each filter, where q = 1
4 sample period.
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Features of the Q-shift Filters

Below level 1:

• Half-sample delay difference is obtained with filter delays of 1
4 and 3

4 of a sample
period (instead of 0 and 1

2 a sample for our original DT CWT).

• This is achieved with an asymmetric even-length filter H(z) and its time
reverse H(z−1).

• Due to the asymmetry (like Daubechies filters), these may be designed to give an
orthonormal perfect reconstruction wavelet transform.

• Tree b filters are the reverse of tree a filters, and reconstruction filters are the
reverse of analysis filters, so all filters are from the same orthonormal set.

• Both trees have the same frequency responses.

• Symmetric sub-sampling – see below.



Dual Tree Complex Wavelets – 8 Nick Kingsbury

Q-shift DT CWT Basis Functions – Levels 1 to 3
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Figure 3: Basis functions for adjacent sampling points are shown dotted.
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Sampling Symmetries

In a regular multi-resolution pyramid structure each parent coefficient must lie
symmetrically below the mean position of its 2 children (4 children in 2-D). Each
filter should also be symmetric about its mid point.

• For the Q-shift filters, fig 3 shows that parents are symmetrically below their
children, and that Hi and Lo filters at each level are aligned correctly.

• Since one Q-shift tree is the time-reverse of the other, the combined complex
impulse responses are conjugate symmetric about their mid points, even
though the separate responses are asymmetric (see fig 3, right). Hence
symmetric extension is still an effective technique at image edges.
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The DT CWT in 2-D

When the DT CWT is applied to 2-D signals (images), it has the following features:

• It is performed separably, with 2 trees used for the rows of the image and 2 trees
for the columns – yielding a Quad-Tree structure (4:1 redundancy).

• The 4 quad-tree components of each coefficient are combined by simple sum and
difference operations to yield a pair of complex coefficients. These are part
of two separate subbands in adjacent quadrants of the 2-D spectrum.

• This produces 6 directionally selective subbands at each level of the 2-D
DT CWT. Fig 4 shows the basis functions of these subbands at level 4, and
compares them with the 3 subbands of a 2-D DWT.

• The DT CWT is directionally selective (see fig 7) because the complex filters can
separate positive and negative frequency components in 1-D, and
hence separate adjacent quadrants of the 2-D spectrum. Real separable
filters cannot do this!
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2-D Basis Functions at level 4
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Figure 4: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom),

all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters,

while real wavelets provide 3 filters, only two of which have a dominant direction. The 1-D bases, from

which the 2-D complex bases are derived, are shown to the right.
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2 levels of DT CWT in 2-D

sx

Level 1
Row

Filters
-

-s Lo1

r
j1

-

-

s
Hi1

r
j1

Level 1
Column
Filters
-

-s Lo1

r
j2

A
A

s

s-

-s Lo1

j1
j1j2

�
�
s

s
-

-s
s

Hi1
-

-

r
j2

-

-

s
s Hi1

-

-

j1
j1j2

Σ/∆

-r
x1a PPqPPi
-j

-r
x1b ³³1³³)-j

-

-s
s Lo1

r
j2
-

-

r
j2

-

-s
s

Lo1

-

-

j1
j1j2

Σ/∆

-
x2a BBM

BBN-

-
x2b ££°

££±

-

-

-

s
Hi1

-

-

r
j2

-

-

s
Hi1

-

-

j1
j1j2

Σ/∆

-
x3a @@I

@@R-

-
x3b ¡¡µ

¡¡ª-

Directions of maximum
sensitivity to edges

Level 2
Row

Filters
-

-
Loq

r
j1
A
A

s

s-

-
Loq

j2
j1j2
�
�
s

s
-

-
Hiq

r
j1
A
A

s

s-

-
Hiq

j2
j1j2
�
�

s

s

-

-
Loq

r
j2
-

-

-

-
Loq

j1
j1j2
-

-

x00

Lo-Lo
band

to more
levels

-

-
Hiq

-

-

r
j2

-

-
Hiq

-

-

j1
j1j2

Σ/∆

-
x01a-

-
x01b-

Level 2
Column
Filters

-

-
Loq

r
j2
-

-

-

-
Loq

j1
j1j2

-

-

Σ/∆

-
x02a-

-
x02b-

-

-
Hiq

-

-

r
j2

-

-
Hiq

-

-

j1
j1j2

Σ/∆

-
x03a-

-
x03b-

Figure 5:



Dual Tree Complex Wavelets – 13 Nick Kingsbury

Test Image and Colour Palette for Complex Coefficients
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2-D DT-CWT Decomposition into Subbands

Figure 6: Four-level DT-CWT decomposition of Lenna into 6 subbands per level (only the central

128 × 128 portion of the image is shown for clarity). A colour-wheel palette is used to display the

complex wavelet coefficients.
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2-D DT-CWT Reconstruction Components from Each Subband

Figure 7: Components from each subband of the reconstructed output image for a 4-level DT-CWT

decomposition of Lenna (central 128× 128 portion only).
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2-D Shift Invariance of DT CWT vs DWT
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Figure 8: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc

on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of

each wavelet image is shown in order to save space.



Dual Tree Complex Wavelets – 17 Nick Kingsbury

The DT CWT in 3-D

When the DT CWT is applied to 3-D signals (eg medical MRI or CT datasets), it
has the following features:

• It is performed separably, with 2 trees used for the rows, 2 trees for the columns
and 2 trees for the slices of the 3-D dataset – yielding an Octal-Tree structure
(8:1 redundancy).

• The 8 octal-tree components of each coefficient are combined by simple sum and
difference operations to yield a quad of complex coefficients. These are
part of 4 separate subbands in adjacent octants of the 3-D spectrum.

• This produces 28 directionally selective subbands (4× 8− 4) at each
level of the 3-D DT CWT. The subband basis functions are now planar waves
of the form ej(ω1x+ω2y+ω3z) , modulated by a 3-D Gaussian envelope.

• Each subband responds to approximately flat surfaces of a particular orientation.
There are 7 orientations on each quadrant of a hemisphere.
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3D subband orientations on
one quadrant of a hemisphere

3D frequency
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3D Gabor-like basis functions:

hk1,k2,k3(x, y, z) ' e−(x2 + y2 + z2)/2σ2 × ej(ωk1 x + ωk2 y + ωk3 z)

These are 28 planar waves (7 per quadrant of a hemisphere) whose orientation
depends on ωk1 ∈ {ωL, ωH} and ωk2, ωk3 ∈ {±ωL,±ωH}, where ωH ' 3ωL.
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Applications

The Q-shift DT CWT provides a valuable analysis and reconstruction tool for a
variety of application areas:

• Motion estimation [Magarey 98] and compensation

• Registration [Kingsbury 02]

• Denoising [Choi 00] and deconvolution [Jalobeanu 00, De Rivaz 01]

• Texture analysis [Hatipoglu 99] and synthesis [De Rivaz 00]

• Segmentation [De Rivaz 00, Shaffrey 02]

• Classification [Romberg 00] and image retrieval [Kam & Ng 00,
Shaffrey 03]

• Watermarking of images [Loo 00] and video [Earl 03]

• Compression / Coding [Reeves 03]

• Seismic analysis [van Spaendonck & Fernandes 02]

• Diffusion Tensor MRI visualisation [Zymnis 04]
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De-Noising – Method:

• Transform the noisy input image to compress the image energy into as few
coefs as possible, leaving the noise well distributed.

• Suppress lower energy coefs (mainly noise).

• Inverse transform to recover de-noised image.

What is the Optimum Transform ?

• DWT is better than DCT or DFT for compressing image energy.

• But DWT is shift dependent – Is a coef small because there is no signal
energy at that scale and location, or because it is sampled near a zero-crossing in
the wavelet response?

• The undecimated DWT can solve this problem but at significant cost –
redundancy (and computation) is increased by 3M : 1, where M is no. of DWT
levels.

• The DT CWT has only 4 : 1 redundancy, is directionally selective, and works
well.
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Figure 9: Probability density functions (pdfs) of small and large variance Gaussian distributions,

typical for modelling real and imaginary parts of complex wavelet coefficients.
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typical for modelling magnitudes of complex wavelet coefficients.
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Image Denoising with different Wavelet Transforms - Lenna
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Image Denoising with different Wavelet Transforms - Peppers
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Heirarchical Denoising with Gaussian Scale Mixtures (GSMs)
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Denoising a 3-D dataset

e.g. Medical 3-D MRI or helical CT scans.

Method:

• Perform 3-D DT CWT on the dataset.

• Attenuate smaller coefficients, based on their magnitudes, as for 2-D denoising.
(Heirarchical methods are also quite feasible.)

• Perform inverse 3-D DT CWT to recover the denoised dataset.

A Matlab example shows denoising of an ellipsoidal surface, buried in Gaussian
white noise.
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Conclusions – Part 1

The Dual-Tree Complex Wavelet Transform provides:

• Approximate shift invariance

• Directionally selective filtering in 2 or more dimensions

• Low redundancy – only 2m : 1 for m-D signals

• Perfect reconstruction

• Orthonormal filters below level 1, but still giving linear phase (conjugate
symmetric) complex wavelets

• Low computation – order-N ; less than 2m times that of the fully decimated
DWT (∼ 3.3 times in 2-D, ∼ 5.1 times in 3-D)
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Conclusions (cont.)

• A general purpose multi-resolution front-end for many image analysis
and reconstruction tasks:

◦ Enhancement (deconvolution)
◦ Denoising
◦ Motion / displacement estimation and compensation
◦ Texture analysis / synthesis
◦ Segmentation and classification
◦ Watermarking
◦ 3D data enhancement and visualisation
◦ Coding (?)

Papers on complex wavelets are available at:
http://www.eng.cam.ac.uk/˜ngk/

A Matlab DTCWT toolbox is available on request from:
ngk@eng.cam.ac.uk


