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ABSTRACT

We present an algorithm for finding robust matches be-
tween images by considering the spatial constraints between
pairs of interest points. By considering these constraints,
we account for the layout and structure of features during
matching, which produces more robust matches compared to
the common approach of using local feature appearance for
matching alone. We calculate the similarity between interest
point pairs based on a set of spatial constraints. Matches
are then found by searching for pairs which satisfy these
constraints in a similarity space. Our results show that the al-
gorithm produces more robust matches compared to baseline
SIFT matching and spectral graph matching, with correspon-
dence ratios up to 33% and 28% higher (respectively) across
various viewpoints of the test objects while the computational
load is only increased by about 25% over baseline SIFT. The
algorithm may also be used with other features apart from
SIFT.

Index Terms— Object matching, SIFT, Spatial con-
straints

1. INTRODUCTION

The search for accurate correspondences between features of
images is an important and challenging problem in computer
vision. Low level features, such as SIFT [1], are commonly
matched based on local appearance alone without consider-
ing important information such as the spatial information of
interest points associated with these features. Matching based
on local appearance alone may be inadequate for complex
scenes, since the presence of multiple features with similar
appearance is quite likely. Improvements can be made if the
spatial information of nearby interest points is considered,
as it provides important constraints on the structure and lay-
out of features which can be used for matching. The main
challenge lies in designing an algorithm that considers spatial
constraints along with feature appearance for matching, and
studying what improvements can be achieved.

Spatial constraints, in addition to local feature appear-
ance, should produce more robust matches, since interest
points may be considered to match only when they satisfy the

spatial constraint while also matching in appearance. This
should reduce the number of false matches produced. Pre-
vious works have presented several approaches to solve the
correspondence problem using spatial constraints. One ap-
proach is to formulate the problem using graphical models.
In [2], a subgraph matching technique was proposed where
a template graph was approximately matched to weighted
adjacency graphs of the search images. Torresani et al. [3]
also formulated the problem as an energy minimisation graph
matching problem and solved the problem using a dual de-
composition technique. Enqvist et al. [4] proposed a graph
method based on vertex cover to solve for correspondences
using pairwise constraints. Berg et al. [5] solved the problem
using quadratic programming to minimise a cost function
representing the similarity of matching features as well as the
geometric distortion between pairs of corresponding points.
Leordeanu and Herbet [6] proposed a spectral technique to
find the best matching clusters in graphs measuring the pair-
wise similarities of points. The algorithm was shown to
perform faster than graph methods.

Our work is most closely related to [6]. We study the use
of spatial constraints for matching by calculating the relation-
ships between interest point pairs and collecting them in a
similarity space. A matching algorithm is proposed to search
for the best matching subset of interest points which satisfy a
set of spatial constraints in the similarity space. To test our al-
gorithm, we performed experiments to compare the algorithm
with baseline SIFT and spectral graph matching [6]. How-
ever, the algorithm can also be used effectively with other lo-
cal features apart from SIFT.

2. MATCHING WITH SPATIAL CONSTRAINTS

In this section, we introduce a matching algorithm that
searches for modes in a similarity space which describes
the spatial relationships between interest point pairs.

2.1. Pairwise relationships based on spatial constraints

Consider an arbitrary group G of M interest points. We cal-
culate the pairwise spatial relationships of each interest point
inGwith the rest, thus forming aM×M matrix. We consider



two measures between each pair of points. The line joining
each pair of interest points can be represented as a vector:

x̂u,v = δu,v exp(jθu,v) (1)

where u, v is a pair of interest points, x̂ is the vector between
the two points, with δu,v the length and θu,v the orientation of
the vector. The first measure A1, is defined as:

A1(u, v) =
(
φu − θu,v

φv − θu,v

)
(2)

where φ is the dominant orientation of the feature associated
with each interest point. A1(u, v) is the relative orientation of
the two features to the orientation of the vector x̂u,v . This is a
useful measure, since we expect the relative orientation to be
approximately the same for a corresponding pair of interest
points in different scenes. Apart from A1, the features of the
interest point pair are also stored in A2:

A2(u, v) =
(
fu

fv

)
(3)

where f is the local feature (e.g. SIFT) of the interest points
u and v. This is required, since the local features of a corre-
sponding pair of interest points should match. Thus for each
group G, we have two measures A1 and A2, containing the
relative orientation difference and the feature pair respectively
for all pairwise combinations of interest points in G.

2.2. Pairwise spatial matching

Considering two groups of interest points from two different
images,GX andGY , we first calculate the pairwise similarity
based on A1 and A2 described previously. We then define a
pairwise similarity space based on interest point pairs, where
Xu,v and Yp,q are the interest point pairs (u, v) and (p, q)
in GX and GY respectively. As defined in (1), each pair of
interest points can be represented as a vector δ exp(jθ). We
can define the pairwise spatial relationship as the log-ratio:

κ+ jρ = ln
(
δu,v exp(jθu,v)
δp,q exp(jθp,q)

)
= ln

δu,v

δp,q
+ j(θu,v − θp,q) (4)

The pairwise similarity space is then defined as S(ρ, κ),
where ρ is the difference in orientation of the vectors between
interest point pairs (i.e. rotation) and κ is the log-ratio of
the distance between interest point pairs (i.e. scale change).
An illustration of a pairwise match is shown in Figure 1. A
similarity score ψ is then defined for all possible pairwise
matches. First, we consider the orientation differences in (2)
and calculate the orientation consistency χ as:

χu,p =
cos(φu − θu,v − φp + θp,q) + 1

2
(5)

where φu−θu,v is fromA1(u, v), and φp−θp,q fromA1(p, q),
as defined in (2). χu,p thus measures the orientation consis-
tency between interest points u and p, and χv,q can be calcu-
lated similarly. Next, we compare the pairwise similarity of
features γu,p, defined as:

γu,p = exp (−‖fu − fp‖2/2σ2) (6)

where fu is the feature in X matched to fp in Y and σ is suit-
ably chosen. We found that σ = 1 worked well when the f
vectors were normalised for unit l2-norm. Similarly, γv,q can
be calculated for fv and fq. When a pair of interest points
have similar local feature appearance, we expect γ ≈ 1. This
is the case for χ in (5) as well, since the difference in orienta-
tion of features should remain consistent for an actual pair of
matches. The similarity score ψ{(u,p),(v,q)} which combines
the orientation consistency and feature similiarity is then de-
fined as:

ψ{(u,p),(v,q)} =
χu,pγu,p + χv,qγv,q

2
(7)

Hence, ψ{(u,p),(v,q)} has a value close to unity when the in-
terest point pair has a consistent orientation difference as well
as feature similarity. Votes ψ are collected in the similarity
space S(ρ, κ) for all interest point pairs in GX and GY . The
pairwise matches can then be found by searching for modes
or regions of high density in S. Here, we use a mean shift
mode estimator [7] that searches for modes in S, with ψ the
weight of resulting peaks in S. Histogram-based methods can
also be used as an alternative here.

p

q

θp,q

θp,q

δp,q

δu,v

θu,v

θu,v

v

u

Matching a pair of interest 

points {u,v} to {p,q}

v

u

p

q

Fig. 1: Matching a pair of interest points u, v to a second pair p, q.
θu,v is the direction of the vector between u, v, and δu,v is the dis-
tance between u, v (similarly for θp,q and δp,q). φu, φv , φp, φq are
feature orientations at interest points u, v, p, q.

3. PAIRWISE SPATIAL MATCHING ALGORITHM

Interest points which are far apart are likely to belong to sep-
arate objects and hence exist independently of each other, re-



sulting in weaker spatial constraints between them. Thus, we
consider the use of local interest point groups for matching,
such that spatial constraints will only be employed over a lo-
cal neighbourhood. To form interest point groups, we con-
sider adjacent windows having 75% area overlap with each
other in an image. Windows containing more than two inter-
est points are then considered as interest point groups. We
find that in general, 100 overlapping windows per image pro-
duced good results experimentally.

Along with the proposed pairwise spatial matching, we
propose a matching algorithm based on the interest point
groups formed. The algorithm, which uses SIFT [1] as the
local feature, is summarised here. Consider two images X
and Y , we perform an initial match between SIFT features
of X and Y [1], such that a matching pair of features varies
by a factor of less than 0.3 times of each other. This helps to
reduce computational complexity since we can now consider
fewer interest point pairs in the later stages of the algorithm.
N and M groups of interest points are formed based on the
initial matches, where GXn and GYm are groups in X and Y
indexed by n = 1 . . . N and m = 1 . . .M . We then match
the features in GXn

to those in GYm
using a distance ratio

threshold of 0.4 as defined in [1]. The measures A1 and A2

are calculated for all pairwise combinations of interest points
in GXn

that match to points in GYm
.

Here, matching the features in GXn
and GYm

further re-
duces computational complexity before we consider the pair-
wise spatial constraints, since the number of pairwise com-
binations will be reduced after matching. A similarity space
Sn,m (ρ, κ) is then defined and the mean shift mode estima-
tor is used to find the pairwise combination of interest points
with the maximum score. This is repeated across all GYm

for each GXn
. Thus, for each GXn

, we form M similarity
spaces, each containing the similarity score of matching inter-
est points in GXn and GYm . The set of interest points that are
best matched is found using the mean shift mode estimator.
For each GXn

, we select the group in Y with the highest sim-
ilarity score as the correct set of matching interest points. In
addition, we only accept groups with similarity score greater
than a threshold τ = 0.7. This is repeated for each GXn . The
list of matching interest points between X and Y can then be
found. The bandwidth of the mean shift mode estimator is set
to the standard deviation of votes in S.

4. EXPERIMENTAL RESULTS

In our experiments, we tested three algorithms; 1) the pro-
posed algorithm pw-match as specified earlier along with the
defined parameters, 2) the baseline SIFT matching algorithm
using only local feature appearance and 3) the spectral tech-
nique in [6] sp-match, which considers pairs of SIFT fea-
tures to study the performance of using spatial constraints for
matching. Here, we set the distance ratio threshold for base-
line SIFT matches to 0.4. We adopted the evaluation frame-

work in [8] and selected 25 objects from the database pro-
vided for testing, given in [9]. The correspondence ratio is
calculated for all objects at viewpoint increments of 5◦ from
−45◦ to 45◦:

correspondence ratio =
∑

actual correspondences∑
total matches

(8)

More details of the framework can be found in [8]. Based
on our test results in Figure 2, we observe that pw-match
produced correspondence ratios that are up to 33% and 28%
higher (respectively) when compared to baseline SIFT and sp-
match across all viewpoints. pw-match also produces higher
correspondence ratio compared to SIFT when we vary the dis-
tance ratio threshold, as shown in Figure 2. More importantly,
the improvement in correspondence ratio is higher at larger
viewpoint changes, which implies that the use of spatial con-
straints results in more robust matches being found between
scenes with larger viewpoint changes in them. In general,
pw-match produces approximately 35% fewer total matches
compared to baseline SIFT.

In addition, we tested the algorithms using images from
the Zurich Building Image Database (ZuBud) [10]. Some re-
sults are shown in Figure 3. Since the ground truth for actual
correspondences is not available, we compared the results vi-
sually and marked the false matches by inspection. From Ta-
ble 1, we observe that pw-match generally produces fewer
false matches compared to baseline SIFT and sp-match, along
with higher correspondence ratio. Thus, our results as a whole
suggest that the spatial constraints of the proposed algorithm
generally produce more robust matches compared to using lo-
cal feature appearance alone. More details of our results can
be found at [9].

Table 1: Matching results for 15 buildings in ZuBud database

Results baseline sp-match pw-match
Total matches 2199 2033 1483

Positive matches 1913 1830 1421
False matches 286 203 62

Correspondence ratio 0.870 0.900 0.958

5. CONCLUSIONS

The matching of features based only on local appearance may
be insufficient in many instances, since many false matches
may be produced especially in complex scenes where many
features have similar appearance. By considering the spatial
relationships between pairs of interest points, we account for
the structure and layout of features which can improve the
matches produced. In this paper, we have presented an algo-
rithm which uses spatial constraints to produce more robust
matches. A mean shift mode estimator is used to search for
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Fig. 2: Correspondence ratio for viewpoint changes. The proposed
algorithm pw-match has a higher ratio compared to the algorithms
tested. The improvement is more significant at larger viewpoints,
suggesting that spatial constraints can be used to produce more ro-
bust matches. Similarly, pw-match has a higher ratio as the distance
ratio threshold is varied for baseline SIFT.

interest points with similar pairwise constraints between im-
ages, and the estimated modes correspond to matching sub-
sets of interest points. Our results suggest that the proposed
algorithm is capable of producing more robust matches than
using only local SIFT features for matching, as well as the
spectral technique in [6]. The proposed algorithm has approx-
imately 25% higher computational time compared to the base-
line SIFT algorithm due to the collection of votes in the sim-
ilarity space. But since our algorithm produces more robust
matches, the increased computational complexity is likely to
be justified for applications where more robust matches and
fewer false matches are required. In future work, we will de-
velop methods of using pairwise spatial matching to provide
improved object recognition and classification systems.
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