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Abstract—There are sometimes occasions when ultrasound can be implemented on a graphics processing unit (GPU) to
beamforming is performed with only a subset of the total data perform spatially-varying deconvolution. Section V pretse
that will eventually be available. The most obvious example an alternative approach that runs on a normal PC using pre-

is a mechanically-swept (wobbler) probe in which the three- . . . .
dimensional data block is formed from a set of individual B- computed inverse matrices. Section VI gives our results and

scans. In these circumstances, non-blind deconvolution sabe Section VII presents the conclusions.
used to improve the resolution of the data. Unfortunately, nost
of these situations involve large blocks of three-dimensil [l. WIENER DECONVOLUTION

data. Furthermore, the ultrasound blur function varies spatially We consider a single A-line of received radio-frequency

with distance from the transducer. These two facts make the RF) ult d si A to b f fi f1i
deconvolution process time-consuming to implement. Thisaper (RF) ultrasound signaljrr (ro, ¢), to be a function of time,

is about ways of addressing this problem and producing spadily- ¢, and the centrego, of the region on the transducer aperture
varying deconvolution of large blocks of three-dimensionhdata where it is received.
in a matter of seconds. We present two approaches, one based

on hardware and the other based on software. We compare the qrr (ro,t) = hgp (r,t) @ fm (r) (@h)
time they each take to achieve similar results and discuss ¢h r r=ro
computational resources and form of blur model that they eah

hrr (r,t) is the point-spread (or blurring) function of the

imaging system. It incorporates the impulse response of the
ultrasound transducer in both transmit and receive, as well
. INTRODUCTION as describing how a point scatterer contributes to the back-

LTRASONIC imaging can be modelled as a linear pr@cattered ultrasound field,, (r) is the field of scatterers which
U cess in which a spatially-varying blur is convolved with &&present the information that, ideally, we would wish the
scatterer field that is a property of the material being sednn Ultrasound scanner to display. = (z,y,z) is a vector to
Sometimes, we can estimate the blur function with sufficie®Me point in space, whete and y are across the face of
accuracy that non-blind deconvolution provides a poténtidl® transducer and is the direction of insonification. The
means of enhancing the resolution of the data. Howev&)Mbol® denotes convolution; in equation 1 it is over
such deconvolution strategies are not always used in peacti IN order to represent this signal efficiently, we use the
because they are perceived to be computationally expensi@alytic forms,jrr andhpp.

This paper explores ways of add_ressing t.his problem b_y drr (ro,t) = qrr (vo,t) + jH: {qrr(ro, t)} 2)

using hardware and software techniques to implement rapid - _ .
deconvolution with a known spatially-varying blur. The sgh hrp (rt) = hrp (r,) + 7Hi {hrr (1)} )
variation in the blur means that the deblurring operatiomcd whereH; {-} denotes the Hilbert transform. These functions
be performed entirely in the spatial frequency domain. Wean be multiplied by a sinusoid at the probe centre frequency
explain how this increases the complexity of the requirgd give a slowly varying complex envelope that can be down-
computation and discuss some practical ways of addressgagnpled. Drawing on the analysis and assumptions from [1],
it. We are not presenting a fundamentally new deconvolutidgncan be shown that the time trace at lateral positioand
algorithm and we do not address the important issue of hakevational positiony is given by:
accurately it is possible to estimate the spatially-vdriaar.
This paper is about strategies for efficient implementatibn q(z,y,t) /h (@, y,2,t) %%f (z,y,2)dz (4)
) —jwot

require.

existing techniques. .
Section Il gives an overview of the linear model of ul- 'f’RF (I’y’o’t)e_

trasound imaging that we use and described how Wiener h(z,y,2,t) = hrr (v,y,2,t) €’

deconvolution can be used to remove a blur that has beegng F(@,y,2) = fm (2,1, 2) e~ 202

applied during the imaging process. Section Il introduites , .

in vitro data set that will be used for testing in the experiment€o 1 the centre frequency of the probe akgis the corre-

Section IV describes how the conjugate gradients algorithiROnding spatial frequency in the material being scanned.
Since this is a linear equation, for discretised, real-dorl
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where ¢ (z,y,t
(2kgz—w0t)



where H encompasses thie term, q is analogous t@g andf provided thatA is positive definite. Comparing equation 7 to
is the vector of scatterers relating o We also introduce equation 6 for Wiener deconvolution, it is apparent that we
measurement noisen, which we assume to be normallycan substituted = (HHH+nI) andb = H'q.
distributed with zero mean and variancg. The vectorf) is set to an initial estimate of the deconvolved
We assume elements df are independent with a prior data, in our case simply the analytic RF dgteSimple Jacobi

distribution that is complex, zero-mean and Gaussian wififieconditioning incorporated using a diagonal mathik, with
covariancecy. We can thus calculat® which is a maximum values set to the value gfplus the average energy in the blur
a posteriori estimate off using a Wiener filter [2], function, H, at each corresponding depfh.is the estimate of

= H . — the the scatterer field in the&th iteration of the algorithms is

f= (H H+ nI) A, ) a working vector generally known as the residuandp are
wheren = o2 /c; and [ is the identity matrix.(HYH +nI) further working vectors, and,,.. is the number of iterations
is too large to be stored or for its inverse to be explicitlpf the conjugate gradient algorithm required. The conjegat
computed as a whole. Despite this, it is simple to show thet thradients algorithm is performed as follows:
matrix is Hermitian positive definite and so we can compute

- : , . 1 b=H"q
our estimatef, using the conjugate gradients algorithm
2 A= (H"H+nI)
I1l. THE TEST PROBLEM 3 f,—q

The purpose of this paper is to study techniques for efficient 4 s —b— Af
implementation of spatially-varying deconvolution on et 0 . 0
dimensional ultrasound data of a realistic size. We have&hmo 5 z0=M "so
to work on a rectangular block of analytic RF data with 6 po=2z9
dimensionsd6 x 144 x 584. This is big enough to bring out 7 for n=1":4m0.

most of the issues relating to practical problems and dgnsel

H
sampled data. The depth direction, in which the blur fumctio 8 a= _ Zn—1Sn-1
varies, has dimensioss4. It is worth noting that most clinical (APn-1)"p,
data sets are not regularly sampled but recorded in a fan- 9 f, =f-1+apn—1
shaped sweep. This can often be accommodated using the 10 Sp = Sn_1 — @App_1
same algorithms that are discussed in this paper, provided 11 7 — M-ls
an appropriate transformation is applied to the assumed blu " u "
function. 12 = Hzni

Our test data block is a scan of an ultrasound phantom Zy—18n—1
manufactured by the Department of Medical Physics at the 13 Pn = Zn + BnPn-1
University of Wisconsin, Madison, Wisconsin, USA [3]. It 14 end

consists of a number of spheres with different levels ofratte
uation and back-scatter and enables geometric distortidn a \We have developed an efficient implementation of this al-
blurring to be easily seen. In particular, the data was aegui 90rithm in the CUDA language that runs on Nvidigraphics
with a single focal depth, roughly half way down the block, ifards. Run on an Nvidia C1060 GPU, with a predominantly
both the elevational and lateral directions. This resultslear Single-precision implementation, each iteration of thigoa
distortions away from the focus that the deconvolution cdfhm (lines 7-14) takes 358 ms (averaged over 50 iterations
correct. The benefit of similar deconvolution in a statetsf- [N this, 93.5% of the time is spent calculating the spatially
art machine will be dependent on whether the compromisédying forward blur operationdp,, 1, that is used in lines
in the beam-forming are greater than the error with which & and 10. We will therefore focus our discussion on the
is possible to model the blurring function. This paper iswtboimplementation of this operation.
implementation efficiency, so we do not discuss this impdrta Figure 1 shows the form of the ultrasound data block. If
issue further [4]. the blur was spatially invariant (subject to the considerabf
The blur implicit in the beamforming process is modelled i§dge effects), we could Fourier transform the data in aéehr
three-dimensions using the Field 1l program [5]. An estienagimensions, multiply by the frequency domain represeonati
of the noise-to-signal power ratio is computed in advan®& the blur, and transform the result back to the spatial doma
by spectral ratio techniques and made available to both #feget the answer. As the blur only varies with depth, we can
algorithms under test. For clarity and concision, we disg¢hs Still use this strategy for the two other dimensions. Therale
algorithms without considering edge effects. To facititittis, Strategy is therefore:
we make the data tend to an average value at the elevational) Perform a two-dimensional Fourier transform on the

and lateral edges using a cosine window. planes of data at each depth (see the example labelled
in figure 1). This takes 50.7 ms.
IV. CONJUGATE GRADIENTS ALGORITHM ON AGPU 2) Multiply each column (see figure 1) of the resulting data

The conjugate gradients algorithm [6], [7] finds the least by a different584 x 584 complex matrix to perform the

mean-squared error solution farin B _ ,
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Fig. 2.  Structure of the blurring matrix for a single columm the data
block. The matrix is Hermitian so it is only necessary to ettire number on
and above the leading diagonal. Numbers below the leadiagodal can be
calculated from the complex conjugates of the correspgndimmbers above;
see the shaded regions on the diagram.

aleulpiood  ay Buisn paquosaq

0, SN (SN
NI N TN . . . .
,Q/’Sg%a;;e;’?t/,:’b;f %\\ Column of all the added up in the wrong order it greatly increases the rounding
S 1 .‘S‘,Ds = Ofo;' X
QV@Z;O\/O/ZQ/)}Z,A@/]Q[@ depths in oneX,Y ) errors.
@”apzj’_kojfocy position As far as the remaining 6.5% of the time is concerned,
/GQ/ /'@/_

the computation is performed with one thread for each value
Fig. 1. The block of three dimensional ultrasound data shgwtihe number in the data and the threads are grouped to permit efficient
of samples in the complex analytic representation and tledimtes used Coalesced access to global memory. Furthermore, a tree-
in the spatial and spatial-frequency domains. structuredparallel reduction strategy is used instead of a loop
in all the dot-product summations. Single precision arighim
is not sufficient for calculating the factors and 5 (in lines
spatially varying blur in the depth direction. This takeg and 15 of the algorithm), so this part of the calculation is

234ms. _ performed in double precision.
3) Perform inverse Fourier transforms on all the planes of
data as in (1) above. This takes another 50.7 ms. V. PRECOMPUTED DIRECT INVERSION

There are thud44 x 96 = 13824 matrices containing a fre- By considering the form of equation 6, an alternative
quency domain representation of the blur function. Althougmethod for computing becomes apparent. It is easier to study
they are formally584 x 584 complex elements, they are bothhe equation by presenting the forward operation, which we
Hermitian and sparse, with most of the non-zero elementsyrite here for the reader’s convenience.

close to the leading diagonal. When stored as double-foecis " —~ H

sparse matrices in Matlaihis takes up about 2.2 Gbytes. By (H H+ 77]) f=H"q (8)

using single precision and only storing the values on an@@bqpe now write this equation as an integral equation of four

the leading diagonal (see figure 2) we can reduce this to 0\/&iables in the continuous domain, analogous to equation 4

Gbytes. In this form, the 13824 blurring matrices are storeghis allows us to present the inherently multi-dimensiotura

in the global memory of the GPU. of the problem in a more obvious manner. We firstly define
The data block is also stored in the GPU global memory: (z,y,z,t) to be the complex conjugate f(z, y, z,t) and

In order to enable the Fourier transforms to be performg?rjn (z,y, z) to be the estimated field of scatterers, giving:
efficiently, it is stored so that planes of data at each depth

are contiguous. This means that the values relating to ea / / n N A
“column of data at one position” (see figure 1) are spread ojtﬁ [h (2,9,2,1) ??/h (2.9, )@ %) Fm (2,9, 2 )dz} dt
in memory and less efficient to read. There are 292§4/2) -~ ,

threads in each CUDAthread block. After the Fourier trans- +0fm (2,y,2) = /h (@,9,2,t) q (2,5, 1) .
forms, each thread block is responsible for multiplying on

N S . .
matrix by one column of the data. First, all the threads i{@ote that in this equation:’ is a dummy variable. Changing

the block load the input column into shared memory, therqe order of the integration yields:
each thread works out the dot product required for two of , , - o
the elements of the answer, lastly they copy the answers bagk /h (z,y,2,1) ® %’ hz,y,2',t) dt] ‘?%f’n (z,y,2) dz
to global memory. This leaves the data correctly positioned R

for the inverse Fourier transforms. When working out the dot +0fm (2,y,2) = /h/ (x,y,2,t) q (2, y,t)dt
products it is important that the small values, away from the .
leading diagonal elements, are accumulated first. If vaiues >0 defining

n o ’ ’
3The Mathworks, 3 Apple Hill Drive, Natick, MA, USA 9(@.y,2,2") = /h (,9,2,1) % % h(z,y,2',t) dt,



we can write down an integral equation form for equation 6

/ 0 (0922 ) 0 o (9,2 2"+ 0o (2,9, 2)
Ty

:/h’ (,9,2,t) q(z,y,t)dt  (9)

It is apparent that by the convolution theorem, wes
can immediately remove the two inner convolution inte;
grals of the first term on the left hand side. Definings
G (wg,wy, 2,2") = FoFy lg (2, y, 2, 2)] and Fy, (wg, wy, 2) =
FFy {fm (x,y,z)} where 7, and F, denote the Fourier

. . . . (a) Before (b) After 50 iterations of(c) After use of the pre-
transform in ther ‘andy directions respectively, we can say the conjugate gradiensomputed inverses  im-
implementation plementation

1 INE A / 1
/ (G (waywy, 2,27) + 10 (2 = )] Fon (W, wy, 2) d2 Fig. 3. Images showing a central slice through the data blmfore and
after deconvolution. The strips down the edges of the imagesre the data

— fzfy [/ h (337 v, 2, t) q (337 v, t) dt (10) is windowed to mid-grey to avoid edge effects are not shown.

. . . Implementation method Seconds
where&_(z) '_S th.e I_Dlrac (_jelta funqtlon. L Fifty iterations of the conjugate gradients algorithm 454.8
At this point, it is easiest to think, once again, in discrete | in Matlab on an Intel Core i7 at 2.67GHz

matrix vector form. The important thing to realise about the Fiﬁgdtsftions OLthg_ C@i%%%te gradients algorithm ~ 22.6
left hand side of equation 10 is that we now have an integral = on an Wvidia

Application of pre-computed inverse matrices |in 5.4

in terms of onlyz’. This means that in the discrete matrix- Matlab on a quad-core Intel Core i7 at 2.67GHz
vector formulation, the time-consuming part of the caltiola TABLE |
reduces to the process of inverting&t x 584 matrix for each TIMINGS OF THE THREE IMPLEMENTATIONS OFWIENER

column of data in thev—y plane, and these matrices can be DECONVOLUTION. ALL TIMES ARE THE AVERAGES OF40 RUNS.
precomputed and stored. R

We defineF x y to be the subvector & for the column of
data (see figure 1) in the spatial frequency domain at pasitio

(X,Y). Similarly, we defineBx y as the subvector for the . . . S
column of data at positionX,Y) with entries described by mately proportional to the number of iterations for whiclisit
’ run. We chose 50 iterations as this achieves a result ofaimil

the right hand side of equation 10. For each correspondiing pé.J . i ) .
of Fxy andByy we define a matrixDy v, using the left quality to the pre-computed inverse technique (see figure 3)

side of equation 10, that describes the mapping e Wit In_the CUDA |mplementat|(_)n, the rate-determining opera-
By y. Hence: tion is the process of accessing the many large blur matrices

that are stored in slow global memory. The main problem with
the direct solution based on pre-computed inverse matigces
In our test problem, each x y matrix is 584 x 584. Once all the size of these matrices, however they are still within the
the 13824D~' matrices have been computed, the calculatigtgpability of a normal PC to manipulate. In both implemen-
is similar in form to a single forward pass of the blurringations, there is a requirement for an efficient impleméonat
operation,Ap that we discussed in the previous section fo@f the Fourier transform in two dimension.

the conjugate gradients algorithm. However, it is slightlgs ~ The reduction in accuracy caused by the use of single
convenient to perform this operation on a graphics card @s frecision arithmetic and storage in most of the CUDA imple-
D)_(,lY matrices are less sparse than the matrices that maken@ntation is not noticable in the resulting ultrasound iesag
A. It takes over 4.2 Gbytes to store all the;', matrices, even and creates a mean error of 0.00016%, and a maximum error
using single precision and dense packing and this is too muh0.45% which occurs for an output value that is very low
to fit on currently available GPU hardware. Furthermore, w&-00027%) compared to the mean.

can get reasonable performance using the parallelismaeail

on a standard multi-processor PC. VII. CONCLUSIONS

The time for the conjugate gradient algorithm is approxi-

' -1
Fxy =DxyBxy

We have demonstrated two ways of increasing the speed
VI. RESULTS with which a spatially-varying Wiener deconvolution can be

Table | shows the time taken to implement the spatiallyjmplemented on a large three-dimensional ultrasound data

varying deconvolution in the two ways that are the focus dflock. One approach is based on GPU hardware, the other
this paper, compared to an implementation of the conjugateolves directly inverting the 13824 blur matrices in adee.

gradients algorithm in Matlab. Figure 3 shows a slice thtoug There is scope for further speed improvements by using

the middle of the data block before and after each decamore than one GPU or a CPU with more than four cores. If the

volution presented using envelope detection and logaiithnsize of theD;(ly matrices cannot be reduced but, nevertheless,

compression as would be normal for the display of a B-scaihis desired to implement the pre-computed inverses agbroa



using CUDA, then a multi-GPU approach would provide a
solution by splitting up the problem in the depth directioda
spreading the matrices across the memory of several cards.
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