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Efficient implementation of spatially-varying 3D
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Abstract—There are sometimes occasions when ultrasound
beamforming is performed with only a subset of the total data
that will eventually be available. The most obvious example
is a mechanically-swept (wobbler) probe in which the three-
dimensional data block is formed from a set of individual B-
scans. In these circumstances, non-blind deconvolution can be
used to improve the resolution of the data. Unfortunately, most
of these situations involve large blocks of three-dimensional
data. Furthermore, the ultrasound blur function varies spatially
with distance from the transducer. These two facts make the
deconvolution process time-consuming to implement. This paper
is about ways of addressing this problem and producing spatially-
varying deconvolution of large blocks of three-dimensional data
in a matter of seconds. We present two approaches, one based
on hardware and the other based on software. We compare the
time they each take to achieve similar results and discuss the
computational resources and form of blur model that they each
require.

I. I NTRODUCTION

ULTRASONIC imaging can be modelled as a linear pro-
cess in which a spatially-varying blur is convolved with a

scatterer field that is a property of the material being scanned.
Sometimes, we can estimate the blur function with sufficient
accuracy that non-blind deconvolution provides a potential
means of enhancing the resolution of the data. However,
such deconvolution strategies are not always used in practice
because they are perceived to be computationally expensive.

This paper explores ways of addressing this problem by
using hardware and software techniques to implement rapid
deconvolution with a known spatially-varying blur. The spatial
variation in the blur means that the deblurring operation cannot
be performed entirely in the spatial frequency domain. We
explain how this increases the complexity of the required
computation and discuss some practical ways of addressing
it. We are not presenting a fundamentally new deconvolution
algorithm and we do not address the important issue of how
accurately it is possible to estimate the spatially-variant blur.
This paper is about strategies for efficient implementationof
existing techniques.

Section II gives an overview of the linear model of ul-
trasound imaging that we use and described how Wiener
deconvolution can be used to remove a blur that has been
applied during the imaging process. Section III introducesthe
in vitro data set that will be used for testing in the experiments.
Section IV describes how the conjugate gradients algorithm
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can be implemented on a graphics processing unit (GPU) to
perform spatially-varying deconvolution. Section V presents
an alternative approach that runs on a normal PC using pre-
computed inverse matrices. Section VI gives our results and
section VII presents the conclusions.

II. W IENER DECONVOLUTION

We consider a single A-line of received radio-frequency
(RF) ultrasound signal,qRF (r0, t), to be a function of time,
t, and the centre,r0, of the region on the transducer aperture
where it is received.

qRF (r0, t) = hRF (r, t)⊗
r

fm (r)

∣∣∣∣
r=r0

(1)

hRF (r, t) is the point-spread (or blurring) function of the
imaging system. It incorporates the impulse response of the
ultrasound transducer in both transmit and receive, as well
as describing how a point scatterer contributes to the back-
scattered ultrasound field.fm(r) is the field of scatterers which
represent the information that, ideally, we would wish the
ultrasound scanner to display.r = (x, y, z) is a vector to
some point in space, wherex and y are across the face of
the transducer andz is the direction of insonification. The
symbol⊗ denotes convolution; in equation 1 it is overr.

In order to represent this signal efficiently, we use the
analytic forms,q̂RF and ĥRF .

q̂RF (r0, t) = qRF (r0, t) + jHt {qRF (r0, t)} (2)

ĥRF (r, t) = hRF (r, t) + jHt {hRF (r, t)} (3)

whereHt {·} denotes the Hilbert transform. These functions
can be multiplied by a sinusoid at the probe centre frequency
to give a slowly varying complex envelope that can be down-
sampled. Drawing on the analysis and assumptions from [1],
it can be shown that the time trace at lateral positionx and
elevational positiony is given by:

q (x, y, t) =

∫
h (x, y, z, t)⊗

x
⊗
y

f (x, y, z) dz (4)

where q (x, y, t) = q̂RF (x, y, 0, t) e−jω0t

h (x, y, z, t) = ĥRF (x, y, z, t) ej(2k0z−ω0t)

and f (x, y, z) = fm (x, y, z) e−2jk0z

ω0 is the centre frequency of the probe andk0 is the corre-
sponding spatial frequency in the material being scanned.

Since this is a linear equation, for discretised, real-world
signals, it can be formulated in matrix-vector notation as

q = Hf + n (5)



2

whereH encompasses theh term,q is analogous toq and f

is the vector of scatterers relating tof . We also introduce
measurement noise,n, which we assume to be normally
distributed with zero mean and varianceσ2

n.
We assume elements off are independent with a prior

distribution that is complex, zero-mean and Gaussian with
covariancecf . We can thus calculatêf which is a maximum
a posteriori estimate off using a Wiener filter [2],

f̂ =
(
HHH + ηI

)−1
HHq. (6)

whereη = σ2
n/cf and I is the identity matrix.

(
HHH + ηI

)

is too large to be stored or for its inverse to be explicitly
computed as a whole. Despite this, it is simple to show that the
matrix is Hermitian positive definite and so we can compute
our estimate,̂f , using the conjugate gradients algorithm

III. T HE TEST PROBLEM

The purpose of this paper is to study techniques for efficient
implementation of spatially-varying deconvolution on three-
dimensional ultrasound data of a realistic size. We have chosen
to work on a rectangular block of analytic RF data with
dimensions96 × 144 × 584. This is big enough to bring out
most of the issues relating to practical problems and densely
sampled data. The depth direction, in which the blur function
varies, has dimension584. It is worth noting that most clinical
data sets are not regularly sampled but recorded in a fan-
shaped sweep. This can often be accommodated using the
same algorithms that are discussed in this paper, provided
an appropriate transformation is applied to the assumed blur
function.

Our test data block is a scan of an ultrasound phantom
manufactured by the Department of Medical Physics at the
University of Wisconsin, Madison, Wisconsin, USA [3]. It
consists of a number of spheres with different levels of atten-
uation and back-scatter and enables geometric distortion and
blurring to be easily seen. In particular, the data was acquired
with a single focal depth, roughly half way down the block, in
both the elevational and lateral directions. This results in clear
distortions away from the focus that the deconvolution can
correct. The benefit of similar deconvolution in a state-of-the-
art machine will be dependent on whether the compromises
in the beam-forming are greater than the error with which it
is possible to model the blurring function. This paper is about
implementation efficiency, so we do not discuss this important
issue further [4].

The blur implicit in the beamforming process is modelled in
three-dimensions using the Field II program [5]. An estimate
of the noise-to-signal power ratio is computed in advance
by spectral ratio techniques and made available to both the
algorithms under test. For clarity and concision, we discuss the
algorithms without considering edge effects. To facilitate this,
we make the data tend to an average value at the elevational
and lateral edges using a cosine window.

IV. CONJUGATE GRADIENTS ALGORITHM ON AGPU

The conjugate gradients algorithm [6], [7] finds the least
mean-squared error solution forz in

Az − b = 0 (7)

provided thatA is positive definite. Comparing equation 7 to
equation 6 for Wiener deconvolution, it is apparent that we
can substituteA =

(
HHH + ηI

)
andb = HHq.

The vectorf0 is set to an initial estimate of the deconvolved
data, in our case simply the analytic RF dataq. Simple Jacobi
preconditioning incorporated using a diagonal matrix,M , with
values set to the value ofη plus the average energy in the blur
function,H , at each corresponding depth.fn is the estimate of
the the scatterer field in thenth iteration of the algorithm,s is
a working vector generally known as the residual,z andp are
further working vectors, andimax is the number of iterations
of the conjugate gradient algorithm required. The conjugate
gradients algorithm is performed as follows:

1 b = HHq

2 A =
(
HHH + ηI

)

3 f0 = q

4 s0 = b− Af0

5 z0 = M−1s0

6 p0 = z0

7 for n = 1 : imax

8 α =
zH

n−1sn−1

(Apn−1)Hpn−1

9 fn = fn−1 + αpn−1

10 sn = sn−1 − αApn−1

11 zn = M−1sn

12 β =
zH

nsn

zH
n−1sn−1

13 pn = zn + βnpn−1

14 end

We have developed an efficient implementation of this al-
gorithm in the CUDA1 language that runs on Nvidia2 graphics
cards. Run on an Nvidia C1060 GPU, with a predominantly
single-precision implementation, each iteration of this algo-
rithm (lines 7–14) takes 358 ms (averaged over 50 iterations).
In this, 93.5% of the time is spent calculating the spatially-
varying forward blur operation,Apn−1, that is used in lines
8 and 10. We will therefore focus our discussion on the
implementation of this operation.

Figure 1 shows the form of the ultrasound data block. If
the blur was spatially invariant (subject to the consideration of
edge effects), we could Fourier transform the data in all three
dimensions, multiply by the frequency domain representation
of the blur, and transform the result back to the spatial domain
to get the answer. As the blur only varies with depth, we can
still use this strategy for the two other dimensions. The overall
strategy is therefore:

1) Perform a two-dimensional Fourier transform on the
planes of data at each depth (see the example labelled
in figure 1). This takes 50.7 ms.

2) Multiply each column (see figure 1) of the resulting data
by a different584× 584 complex matrix to perform the

1Compute Unified Device Architecture
2Nvidia Inc, 2701 San Tomas Expressway, Santa Clara, USA
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Fig. 1. The block of three dimensional ultrasound data showing the number
of samples in the complex analytic representation and the coordinates used
in the spatial and spatial-frequency domains.

spatially varying blur in the depth direction. This takes
234 ms.

3) Perform inverse Fourier transforms on all the planes of
data as in (1) above. This takes another 50.7 ms.

There are thus144 × 96 = 13824 matrices containing a fre-
quency domain representation of the blur function. Although
they are formally584× 584 complex elements, they are both
Hermitian and sparse, with most of the non-zero elements
close to the leading diagonal. When stored as double-precision
sparse matrices in Matlab3 this takes up about 2.2 Gbytes. By
using single precision and only storing the values on and above
the leading diagonal (see figure 2) we can reduce this to 0.76
Gbytes. In this form, the 13824 blurring matrices are stored
in the global memory of the GPU.

The data block is also stored in the GPU global memory.
In order to enable the Fourier transforms to be performed
efficiently, it is stored so that planes of data at each depth
are contiguous. This means that the values relating to each
“column of data at one position” (see figure 1) are spread out
in memory and less efficient to read. There are 292 (= 584/2)
threads in each CUDAthread block. After the Fourier trans-
forms, each thread block is responsible for multiplying one
matrix by one column of the data. First, all the threads in
the block load the input column into shared memory, then
each thread works out the dot product required for two of
the elements of the answer, lastly they copy the answers back
to global memory. This leaves the data correctly positioned
for the inverse Fourier transforms. When working out the dot
products it is important that the small values, away from the
leading diagonal elements, are accumulated first. If valuesare

3The Mathworks, 3 Apple Hill Drive, Natick, MA, USA

Fig. 2. Structure of the blurring matrix for a single column in the data
block. The matrix is Hermitian so it is only necessary to store the number on
and above the leading diagonal. Numbers below the leading diagonal can be
calculated from the complex conjugates of the corresponding numbers above;
see the shaded regions on the diagram.

added up in the wrong order it greatly increases the rounding
errors.

As far as the remaining 6.5% of the time is concerned,
the computation is performed with one thread for each value
in the data and the threads are grouped to permit efficient
coalesced access to global memory. Furthermore, a tree-
structuredparallel reduction strategy is used instead of a loop
in all the dot-product summations. Single precision arithmetic
is not sufficient for calculating the factorsα and β (in lines
8 and 15 of the algorithm), so this part of the calculation is
performed in double precision.

V. PRECOMPUTED DIRECT INVERSION

By considering the form of equation 6, an alternative
method for computinĝf becomes apparent. It is easier to study
the equation by presenting the forward operation, which we
rewrite here for the reader’s convenience.

(
HHH + ηI

)
f̂ = HHq. (8)

We now write this equation as an integral equation of four
variables in the continuous domain, analogous to equation 4.
This allows us to present the inherently multi-dimension nature
of the problem in a more obvious manner. We firstly define
h′ (x, y, z, t) to be the complex conjugate ofh (x, y, z, t) and
f̂m (x, y, z) to be the estimated field of scatterers, giving:
∫ [

h′ (x, y, z, t)⊗
x
⊗
y

∫
h (x, y, z′, t)⊗

x
⊗
y

f̂m (x, y, z′) dz′
]

dt

+ ηf̂m (x, y, z) =

∫
h′ (x, y, z, t) q (x, y, t) dt.

Note that in this equation,z′ is a dummy variable. Changing
the order of the integration yields:
∫ [∫

h′ (x, y, z, t)⊗
x
⊗
y

h (x, y, z′, t) dt

]
⊗
x
⊗
y

f̂m (x, y, z′) dz′

+ ηf̂m (x, y, z) =

∫
h′ (x, y, z, t) q (x, y, t) dt

So, defining

g (x, y, z, z′) =

∫
h′ (x, y, z, t)⊗

x
⊗
y

h (x, y, z′, t) dt,
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we can write down an integral equation form for equation 6:
∫

g (x, y, z, z′)⊗
x
⊗
y

f̂m (x, y, z′) dz′ + ηf̂m (x, y, z)

=

∫
h′ (x, y, z, t) q (x, y, t) dt (9)

It is apparent that by the convolution theorem, we
can immediately remove the two inner convolution inte-
grals of the first term on the left hand side. Defining
G (ωx, ωy, z, z′) = FxFy [g (x, y, z, z′)] andF̂m (ωx, ωy, z) =

FxFy

[
f̂m (x, y, z)

]
where Fx and Fy denote the Fourier

transform in thex andy directions respectively, we can say
∫

[G (ωx, ωy, z, z′) + ηδ (z − z′)] F̂m (ωx, ωy, z′) dz′

= FxFy

[∫
h′ (x, y, z, t) q (x, y, t) dt

]
(10)

whereδ (z) is the Dirac delta function.
At this point, it is easiest to think, once again, in discrete

matrix vector form. The important thing to realise about the
left hand side of equation 10 is that we now have an integral
in terms of onlyz′. This means that in the discrete matrix-
vector formulation, the time-consuming part of the calculation
reduces to the process of inverting a584×584 matrix for each
column of data in thex–y plane, and these matrices can be
precomputed and stored.

We defineF̂X,Y to be the subvector of̂F for the column of
data (see figure 1) in the spatial frequency domain at position
(X, Y ). Similarly, we defineBX,Y as the subvector for the
column of data at position(X, Y ) with entries described by
the right hand side of equation 10. For each corresponding pair
of F̂X,Y andBX,Y we define a matrixDX,Y , using the left
side of equation 10, that describes the mapping fromF̂X,Y to
BX,Y . Hence:

F̂X,Y = D−1
X,Y BX,Y

In our test problem, eachDX,Y matrix is584×584. Once all
the 13824D−1 matrices have been computed, the calculation
is similar in form to a single forward pass of the blurring
operation,Ap that we discussed in the previous section for
the conjugate gradients algorithm. However, it is slightlyless
convenient to perform this operation on a graphics card as the
D−1

X,Y matrices are less sparse than the matrices that make up
A. It takes over 4.2 Gbytes to store all theD−1

X,Y matrices, even
using single precision and dense packing and this is too much
to fit on currently available GPU hardware. Furthermore, we
can get reasonable performance using the parallelism available
on a standard multi-processor PC.

VI. RESULTS

Table I shows the time taken to implement the spatially-
varying deconvolution in the two ways that are the focus of
this paper, compared to an implementation of the conjugate
gradients algorithm in Matlab. Figure 3 shows a slice through
the middle of the data block before and after each decon-
volution presented using envelope detection and logarithmic
compression as would be normal for the display of a B-scan.

(a) Before (b) After 50 iterations of
the conjugate gradients
implementation

(c) After use of the pre-
computed inverses im-
plementation

Fig. 3. Images showing a central slice through the data blockbefore and
after deconvolution. The strips down the edges of the imageswhere the data
is windowed to mid-grey to avoid edge effects are not shown.

Implementation method Seconds
Fifty iterations of the conjugate gradients algorithm
in Matlab on an Intel Core i7 at 2.67GHz

454.8

Fifty iterations of the conjugate gradients algorithm
in CUDA on an Nvidia C1060

22.6

Application of pre-computed inverse matrices in
Matlab on a quad-core Intel Core i7 at 2.67GHz

5.4

TABLE I
T IMINGS OF THE THREE IMPLEMENTATIONS OFWIENER

DECONVOLUTION. ALL TIMES ARE THE AVERAGES OF40 RUNS.

The time for the conjugate gradient algorithm is approxi-
mately proportional to the number of iterations for which itis
run. We chose 50 iterations as this achieves a result of similar
quality to the pre-computed inverse technique (see figure 3).

In the CUDA implementation, the rate-determining opera-
tion is the process of accessing the many large blur matrices
that are stored in slow global memory. The main problem with
the direct solution based on pre-computed inverse matricesis
the size of these matrices, however they are still within the
capability of a normal PC to manipulate. In both implemen-
tations, there is a requirement for an efficient implementation
of the Fourier transform in two dimension.

The reduction in accuracy caused by the use of single
precision arithmetic and storage in most of the CUDA imple-
mentation is not noticable in the resulting ultrasound images
and creates a mean error of 0.00016%, and a maximum error
of 0.45% which occurs for an output value that is very low
(0.00027%) compared to the mean.

VII. C ONCLUSIONS

We have demonstrated two ways of increasing the speed
with which a spatially-varying Wiener deconvolution can be
implemented on a large three-dimensional ultrasound data
block. One approach is based on GPU hardware, the other
involves directly inverting the 13824 blur matrices in advance.

There is scope for further speed improvements by using
more than one GPU or a CPU with more than four cores. If the
size of theD−1

X,Y matrices cannot be reduced but, nevertheless,
it is desired to implement the pre-computed inverses approach
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using CUDA, then a multi-GPU approach would provide a
solution by splitting up the problem in the depth direction and
spreading the matrices across the memory of several cards.
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