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Abstract— In this paper, an automatic fundamental matrix
estimation method based on complex wavelets is presented.
The fundamental matrix is considered important because it
reflects the intrinsic projective geometry of the scene. It is widely
used in computer vision areas, such as camera calibration,
object reconstruction, visual navigation, stereo vision etc. In
comparison with the Discrete Wavelet Transform (DWT), the
dual-tree complex wavelet transform (DT CWT) possesses two
key properties for computer vision: shift invariance, which
makes it possible to extract stable local features in an image;
and good directional selectivity, making it possible to measure
image energy accurately in multiple directions. First, a feature
detector based on complex wavelets is used to find the points
of interest, and then complex-wavelet-based polar matching
is used to find putative correspondences. Compared with the
classic ‘Harris corner’ interest point detector, the interest point
detector based on DT CWT is a multiscale interest point
detector, able to detect different kinds of features, including
corners, edges, blobs etc. and the number of interest points
can be made scale-dependent. Polar matching is a rotation
invariant descriptor derived from the DT CWT coefficients; and
scale invariance is induced by adjusting the wavelet levels and
sampling radius according to the scale estimated by the detector.
A minimum of only 7 correspondence points are needed to
compute the fundamental matrix. Preliminary tests on some
classic building scene images show that the method works well.

Index Terms— Complex Wavelets, Fundamental Matrix Es-
timation, Feature Extraction, Polar Matching

I. INTRODUCTION

In order to obtain 3D information from multiple views of
a scene, there are two main methods. In 1986, Tsai[1], and
Faugeras and Toscani [2] built a model with the 3D pixel
coordinates in their camera calibration problem. However,
there are 11 parameters in this projection matrix. So in 1992,
Mundy and Zisserman [3] proposed to directly use projection
information without computing specific camera parameters.
Compared with the first method, it has the advantage that 7
parameters are sufficient for the projection, whose informa-
tion is entirely encapsulated in the fundamental matrix. The
fundamental matrix reflects the intrinsic projective geometry
between two views of the same scene and it is not related
to the structure of scene. Incorrect correspondence points
between the projection images of a scene can be searched
for and deleted because the correct correspondences are
constrained to lie on an epipolar lines computed from the

fundamental matrix. Hence the computation of the funda-
mental matrix is a necessary step for many tasks in computer
vision, such as camera calibration, object reconstruction,
visual navigation, stereo vision etc.

Since Mallat first demonstrated wavelets as the founda-
tion of multi-resolution theory for signal processing and
analysis in 1987[4], [5], the Discrete Wavelet Transform
(DWT) has been widely and successfully used in many areas
of image processing including denoising and compression
(JPEG 2000) etc. However, for object recognition, there is
an important shortcoming in the DWT: the lack of shift
invariance. This means that the distribution of energy be-
tween coefficients at different scales may vary sharply as the
input signal shifts. The dual-tree complex wavelet transform
(DT CWT), Kingsbury[6], overcomes this disadvantage by
introducing limited redundancy into the transform, which
makes it possible to extract stable local features. Fig.1 shows
an example of shift invariance. The input signal is a unit
step and it is shifted to 16 adjacent sampling instances
in turn. Output signals are reconstructed from the wavelet
coefficients, one level at a time. From the figure, we can
see the approximate shift invariance in 1-D of the subband
transfer functions of the DT CWT compared with those of
the DWT.
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Fig. 1. Wavelet and scaling function components, at levels 1 to 4, of 16
shifted step responses of the DT CWT (a) and the DWT (b).[6]

In [7], experiments have shown that aliasing effects due
to decimation within the transform are small enough to be
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Fig. 2. Basis functions of the 2-D DT CWT at level 4, showing real and
imaginary parts for 6 directional subbands, contrasted with basis functions
for the 3 bands of the DWT.

neglected for most image processing purposes. When we use
a transform method to capture object features, the method
should be shift invariant. Since a feature may present itself
in an image under varying shifts, it should be processed
in a shift-invariant way, or otherwise it will become more
difficult to recognize the feature. The practical advantages of
shift invariant transforms can be seen more clearly when we
reconstruct a signal from only a limited number of transform
levels.

The DT CWT also provides true directional selectivity.
For example, a 2-D DT CWT can provide six sub-bands of
complex coefficients, each of which is oriented at a different
angle. It is illustrated by the level 4 impulse responses in
Fig.2. The ability to discriminate an object’s directional
energy distribution is very powerful. Studies have shown
that six subbands are a sufficient number for most texture
recognition and modelling tasks[8].

Interest point detection is a necessary initial step for
automatic fundamental matrix estimation. A typical interest
point detector is the Harris corner detector[9], which detects
corners by calculating the differential of the corner score
with respect to direction. In [10], Fauqueur and Kingsbury
proposed a multi-scale interest point detector by using an
accumulated energy map, which is built by accumulating the
interest point energies achieved from the geometric means
of the 6 oriented DT CWT coefficients at each scale. Com-
pared with the Harris corner detector, this has the important
advantage of being a multi-scale detector, and so it is not
necessary to define the scale in advance.

In [11], Kingsbury proposed a rotation-invariant local
feature descriptor, known as polar matching, in which the
coefficients of DT CWT are formed into a rotationally
symmetric polar matching matrix whose elements are the
interpolated coefficients of the 12 sampled points around a
ring, plus the centre point. Polar matching is used to find the
putative correspondences to compute the initial fundamental
matrix and is unaffected by rotations (usually perspective-
induced) between the two images.

In this paper, an automatic fundamental matrix estimation
method based on complex wavelets is presented. Preliminary
tests on the algorithm using real images show that it works
well. The following is the structure of the paper: section 2
introduces the details of the algorithm; section 3 shows the
experiment results; and section 4 discusses the test results
and gives the conclusions.

II. ALGORITHM DESCRIPTION

The fundamental matrix is important because it depends
only on the pose and internal parameters of the camera. Let x
and x′ be a pair of of corresponding points in homogeneous
image coordinates and let the fundamental matrix F be a 3×3
matrix. Then they should satisfy the following equation:

x′T Fx = 0 (1)

Let I ′ define an epipolar line satisfying x′T I ′ = 0, such
that Fx defines the epipolar line of point x by I ′ = Fx. The
epipolar line is the image in one camera of the ray from the
other camera’s optical center to the 3D world coordinate P .
The corresponding point x′ on the other image should lie on
the epipolar line. Similarly, the epipolar line I corresponding
to x′ can be described by I = FT x′.

The fundamental matrix has the advantage that it does not
require the cameras to be calibrated, so it is not necessary
to know the essential matrix E. Let u, v be the image
coordinates of point x, and u′, v′ be the image coordinates
of the corresponding point x′. We then get the following
constraint on the 3× 3 fundamental matrix F :
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Each pair of correspondence points can provide one such
constraint. If there are n pairs of correspondence points, then
we get
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If there are 8 or more perfect correspondence points, then
the fundamental matrix F can be determined uniquely up
to scale. However, the image measurements will usually be
noisy, so least squares can be used to solve the overdeter-
mined system of equations if n > 8. The linear criterion for
the estimate of the fundamental matrix can then be defined
as the solution of

min
F

n∑

i=1

(x′i
T
Fxi)2 (4)

According to equation 1, the value of determinant F is re-
quired to be zero, that is det(F ) = 0. If the 8 correspondence



points are noisy, then the estimated value of F will not have
zero determinant and the epipolar lines will not meet at a
point. In this condition, we can solve for the fundamental ma-
trix by making use of the singularity constraint, which means
that the fundamental matrix is singular, in fact of rank 2. In
this case, the minimum n to compute the fundamental matrix
only requires 7 correspondence points, and nonlinear criteria
can be used to estimate the fundamental matrix F . There are
two measurement methods for the nonlinear criteria: the first
is the distance to epipolar lines and the the second is the
gradient criterion. In the first method, the sum of squares of
distances of a point to the corresponding epipolar line is used
as the cost function. The second measurement method uses
a surface fitting between the data and the surface defined
by equation 1. The nonlinear criteria can be expressed as
follows:

min
det(F )=0

n∑

i=1

w(F, x′i, xi)(x′i
T
Fxi)2 (5)

where w(F, x′i, xi) is a weighting function. If the projection
is pure planar motion, then it becomes an affine transform.
The affine transform has 6 degrees of freedom. Generally
speaking, there are 3 kinds of methods to compute the
fundamental matrix, the normalized 8-point algorithm, the
7-point algorithm and the affine transform algorithm [12].
Here, we propose a fundamental matrix estimation method
based on complex wavelets which can be used for any of the
3 methods of fundamental matrix estimation. For 3D scenes,
the 7-point method is very popular because it requires fewer
correspondence points and it is suitable for all conditions
including non-affine movement. Hence we use the 7-point
algorithm as an example. The details of the algorithm can
be described as follows:

1) Interest points. Interest points are extracted with the
DT CWT feature detector.

2) Putative correspondences. Putative correspondences
are detected by polar matching.

3) RANSAC robust estimation. F is estimated from 7
random corespondences and then re-estimated from all
corresponding points that are classified as inliers. This
is repeated K times to find the best solution for F .

4) Guided matching: With the estimated fundamental ma-
trix F , the correspondence points can be determined
within a search strip about the epipolar line.

In the automatic computation of the fundamental matrix
F , the first two steps are to detect the interest points and find
the putative correspondences. In the the classic method[12],
[13], typically the Harris corner detector is used to detect the
interest points and the putative correspondences are chosen
based on similarity of their intensity neighbourhoods. The
Harris corner detector[9] is based on a Gaussian kernel filter,
so it is necessary to decide the scale of the Gaussian kernel
at the start. Meanwhile, it is hard to choose the number of
the interest points. The Harris corner detector also can only
detect corners, not other types of features (blobs, edges etc.).
Compared with the Harris corner detector, our interest point

detector based on DT CWT[10] is a multiscale interest point
detector because it is based on the accumulated energy map,
which is achieved by accumulating energy from different
levels of the DT CWT. The number of the interest points
can then be chosen by sorting the energy of the candidate
interest points and picking the largest N of these. Moreover,
the DT CWT detector can detect several different types of
features (corner, edge, blob etc.) which have edge energy in
multiple directions at the same spatial location.

Classic methods for finding putative correspondences are
based on proximity and similarity of their intensity neigh-
bourhoods. The polar matching method has the additional
advantage of being a rotation invariant interest point descrip-
tor. We improved the scale invariance of polar matching by
adjusting the sampling radius and wavelet level selection
of polar matching according to the estimated scale from
the interest point detector. In step 4, we tried two kinds
of methods, least squares and weighted least squares to re-
estimate the fundamental matrix F . From our experiments,
we found that the least squares method is simpler and more
stable, so it is adopted in our algorithm.

III. EXPERIMENTAL RESULTS

The algorithm has been tested on some classic building
scene images, as Fig 3 where the left image is thought as
the first image and the right image is the second image.
Our aim is to estimate the fundamental matrix between them
based on complex wavelets. The first step is to extract the
interest points from the left image and right image. The size
of the image is 1024 × 768. DT CWT levels 2, 3 and 4
are used to form the accumulated map. The second step is
to find the putative correspondences of the features between
the template and the test image. In each image, we detect
the 400 strongest interest points with the DT CWT detector
because this is found to be sufficient to represent the image
features. Here, we use the feature of the DT CWT detector
which allows us to choose the number of interest points.
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Fig. 3. Putative matches from polar matching. Initially, 400 interest points
are detected in each image with the DT CWT interest point detector and
then 297 matched corresponding points are found with polar matching.

If the score from a polar matching correlation is larger than
a threshold, then it is thought to be a correct match. Here,
we set the threshold at 0.7, where the polar matching vectors
are normalized so the score must lie between 1 and -1. The
threshold is selected from experiments where it is found
that 0.7 can provide enough correspondences for the object



recognition and localisation, while keeping the proportion of
correct matches in the correspondences reasonably high. The
result of polar matching can be shown in Fig 3, which shows
the interest points and the putative matches with DT CWT.
Here, we found 297 matched correspondence points, which
is plenty to estimate the fundamental matrix. The blue lines
show the putative matches, and the ends of the blue lines
stand for the locations of the interest points.

Fig. 4. 50 Epipolar lines on the first image. The red circles denote the
interest points and blue lines are the epipolar lines. The green ∗ is the
epipole.

Fig. 5. 50 inlying matched interest points in the second image. The red
circle denotes the 50 interest points of Fig 4. The green circle denotes the
corresponding 50 interest points and their positions in the second image.

After this, the RANSAC algorithm is used to find 7
correspondence points to compute the fundamental matrix
F and least squares is used to the compute the error, where
the nonlinear criteria, the distance to epipolar lines is used as
the measurement of the error. It is repeated K = 20 times to
estimate the best fundamental matrix F . A distance threshold
between each data point and the corresponding epipolar line
is used to decide whether a point is an inlier or not. The
point coordinates are normalized to that their mean distance
from the origin is

√
2. If the Sampson distance of a data

point to its corresponding line is less than 0.002, then it is
regarded as inlier point, otherwise it is regarded as outlier.
There are 145 inliers in the example. In order to show it more
clearly, 50 inlier points and their corresponding epipolar lines

are chosen. Fig.4 displays the corresponding epipolar lines
on the first image. The red circles denote the interest points
from the first image, which are detected by the DT CWT
interest point detector. Blue lines show the epipolar lines,
which are computed by multiplying the F matrix with the
corresponding interest points from second image. If a red
circle is near to the corresponding epipolar line, it means
the F matrix fits well. Ideally, the blue line should cross the
corresponding red circle. The green ∗ is the epipole.

Fig.5 displays the first image with 50 inlying matched
feature points. The red circle denotes the 50 interest points of
Fig.4. The green circle denotes the corresponding 50 interest
points and their positions in the second image. According
to the Fig.4 and Fig.5, we can see that most of the interest
points matched correctly.

Fig.6 shows the distance from the interest points to epipo-
lar lines. The width of the search strip is 8 pixels and
116 correspondences are found. The size of the image is
1024 × 768. The distance from each interest point to its
corresponding epipolar line is regarded as the error. Figure
6 is the histogram of the error, from which we can see that
most of the error is less than ±4 pixels. If the error is near to
0, then it means that the F matrix fits well. The mean error
is 1.92 pixel, which we judge to be an encouraging result.
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Fig. 6. The histogram of the error, which is the distance from each interest
point to its corresponding epipolar line.

IV. CONCLUSION

In this paper, we have presented an automatic fundamen-
tal matrix estimation method based on dual-tree complex
wavelets. We use a multiscale interest point detector based
on complex wavelets, which has the advantage that it is
able to detect different kinds of features, including corners,
edges and blobs and it allows easy choice of the number
of interest points. Polar matching is a rotation-invariant
descriptor, and scale invariance is achieved by adjusting the
sampling radius of polar matching according to the estimated
scale. A RANSAC algorithm with least squares minimisation
is used to compute the fundamental matrix. Some classic
building scene images are adopted to test the algorithm and
preliminary results show that it works well. The fundamental



matrix can be applied in many areas i.e. camera calibration,
object reconstruction, visual navigation, stereo vision etc.
Our future work is aimed at localising objects in the image
more accurately based on the estimated fundamental matrix.
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