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Abstract—We propose a new iterative deconvolution algorithm
for noisy Poisson images based on wavelet sparse regularization.
To optimize the proposed cost function, we use a forward-
backward splitting algorithm which has shown to find good
solution for 3D microscopy deconvolution.

I. NOTATIONS

In this document we use the following matrix/vector nota-
tions:

• x is a vector corresponding to the ground-truth image;
• H is a matrix representing the blurring operator;
• b is a constant vector representing the background signal;
• y is a random vector modeling the measurements;
• k indicates the number of iterations;
• M is the inverse wavelet transform whose columns are

wavelet basis;
• w is a vector representing the wavelet coefficients;
• Q is a matrix representing observations without poisson

noise;
• τ , β and α are regularization parameters

II. ALGORITHM

The algorithm we describe here is an iterative procedure
which consists of a Poisson denoising stage proposed in [1]
and a thresholded Landweber step [2], [3]. The key steps of
our algorithm can be summarized as

Algorithm 1 Proposed Image Deconvolution Algorithm
1: Inputs: H,y,b,M,w0,Q0, τ , β and α.
2: while iterations k do
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4: vk = wk +
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THT (Qk+1 − b−HMwk)
5: wk+1 = sign(vk)max

(
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)

6: end while
7: Output deblurred image x = Mwk+1

III. VARIATIONAL INTERPRETATION

Let us begin with the general Poisson noise model as:

y ∼ P(Ax+ b) (1)

where P(λ) is a Poisson-distributed random vector of mean λ.
Minimizing (1) with respect to x is equivalent to minimizing
− log p(y|x), such that

JL(x,y) = 1T (Hx+ b)− yT log(Hx+ b) (2)

A popular algorithm to minimize (2) is the Richard-
son–Lucy (RL) algorithm [4], [5]. However it is noted that the
RL algorithm is not sufficient to prevent noise amplification
during the deconvolution process due to the ill-posedness of
this problem [1]. To overcome this, several authors propose to
use explicit priors on the solution [1]. Here we propose a new
cost function:

J(w,Q)
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(3)

Note that here we impose an l1-norm prior in the wavelet
domain due to the fact that natural image can be well sparsified
using wavelet basis. The term ‖Q − b −HMw‖22 is useful
because it measures the residual in the observation data, which
will effectively prevent the noise amplification during the
deconvolution stage.

To optimize (3), we propose the following two steps:

Step 1 : Qk+1 = argmin
Q

J(wk,Q); (4)

Step 2 : wk+1 = argmin
w

J(w,Qk+1); (5)

Assuming Qk is a sufficient estimate of b+HMw, we can
optimize (4) via
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where the optimal solution can be found via [1]:
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Optimizing (5) is equivalent to

wk+1 = argmin
w

1

2
‖Qk+1 − b−HMw‖22 + τ‖w‖1 (8)



This is a standard wavelet-domain regularization problem,
and there are many techniques such as iterative soft threshold-
ing (IST) [2], [3]:
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where α is a regularization parameter that can be optimized
for every wavelet subband. As a result, we obtain the updating
rules shown in Section II.

IV. CHOICE OF THE PARAMETERS

The parameters that needs to be adjusted for the proposed
algorithm are k, τ , β and α. To ensure the convergence, the
parameter α must satisfy α > ρ(MTHTHM). In the experi-
ment, we set regularization parameter τ = 10−2. k is chosen
based on the standard stopping criteria, e.g., ‖xk+1−xk‖ < ε,
where ε and δ are fixed thresholds. We adjust the regularization
parameter β to give the result that is most pleasing visually.
For the wavelet basis, we choose the dual-tree complex wavelet
transform because it has a good frequency selectivity and is
almost shift-invariant [6].
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