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ABSTRACT
This paper describes a technique for using dual-tree com-

plex wavelets to obtain rich feature descriptors of keypoints
in images. The main aim has been to develop a method for
retaining the full phase and amplitude information from the
complex wavelet coefficients at each scale, while presenting
the feature descriptors in a form that allows for arbitrary ro-
tations between the candidate and reference image patches.

1. INTRODUCTION

An important problem in image analysis is that of finding
similar objects in sets of images, where the objects are often
at different locations, scales and orientations in the various
images. Partial occlusion of objects is also quite common.
An effective general approach to this problem is first to find
a relatively large number (typically several thousand) of key
feature points in each image, using for example the Harris
corner and edge detector [1], and then to develop a more de-
tailed descriptor for each keypoint, which allows points from
different images to be compared and matched to create candi-
date pairings. Often a reference object is taken from one im-
age and then other instances of the object are searched for in
the remaining images, so the number of reference keypoints
is quite small (10 - 100), but the number of candidate key-
points can be very large (105 - 107). Hence it is important to
develop keypoint descriptors which allow efficient compari-
son of pairs of keypoints (reference-to-candidate), and this is
the main topic of this paper.

One of the most popular recent algorithms for this ap-
plication has been Lowe’s Scale Invariant Feature Transform
(SIFT) [2]. In SIFT, keypoints are located by detecting ex-
trema in a 3-D scale-space, formed by differences on a Gaus-
sian pyramid of multi-scale lowpass filters. Each keypoint
is thus located spatially and in scale before its descriptor is
calculated. The next step is to calculate dominant orienta-
tions based on local image gradient directions, and for each
orientation a descriptor is generated based on orientation his-
tograms, accumulated over 4×4 subregions around the key-
point. Here we propose an alternative descriptor which does
not require the dominant orientation(s) to be computed first
because it allows efficient matching of descriptor pairs in a
rotationally invariant way.

Our descriptor is based on the outputs of the Dual-Tree
Complex Wavelet Transform (DTCWT) of the input image.
The DTCWT was developed by the author [5, 6] in order
to provide a multi-scale decomposition of images (and other
multi-dimensional data) which overcomes the problems of
poor directional selectivity and strong shift dependence ex-
hibited by the Discrete Wavelet Transform (DWT), at the ex-
pense of a moderate level of redundancy, 4:1 for 2-D data.

Like the DWT, the DTCWT is a multi-scale transform with
decimated subbands, but instead of three subbands per scale
in 2-D, the DTCWT has six, and each coefficient is com-
plex (i.e. it has a real and imaginary part). Figure 1(a)
shows the real and imaginary parts of the 2-D impulse re-
sponses that define the six subbands at a given scale (level
4 in this case). We see that these responses are similar to
those of a 6-directional Gabor transform with orientations
of {15◦,45◦,75◦,105◦,135◦,165◦}, as labelled. An alterna-
tive similar transform that could be used here is Simoncelli’s
Steerable Pyramid [3] which has the attractive property of
approximate rotational symmetry, but here we concentrate
on the DTCWT because of its lower redundancy and greater
computational efficiency.

A key feature of the DTCWT is that it is approximately
shift invariant, which means that the z-transfer function,
through any given subband of a forward and inverse DTCWT
in tandem, is invariant to spatial shifts, and that aliasing
effects due to decimation within the transform are small
enough to be neglected for most image processing purposes
[5]. A corollary of this is that the complex wavelet coeffi-
cients within any given subband are sufficiently bandlimited
that we can interpolate between them in order to calculate co-
efficients that correctly correspond to any desired sampling
location or pattern of locations. Hence for a given keypoint
location we may calculate the coefficients for an arbitrary
sampling pattern centred on that location. To obtain circu-
lar symmetry consistent with our 6 subband orientations, we
have chosen the 13-point sampling pattern of fig. 2.

The main innovative feature of this paper is the technique
for assembling complex coefficients from the 13 sampling lo-
cations, 6 subband orientations, and one or more scales, such
that they form a ‘polar’ matching matrix P, in which a ro-
tation of the image about the centre of the sampling pattern
corresponds to a cyclic shift of the columns of P. This is
described in section 3. Before that, in section 2, we briefly
discuss two modifications which improve the rotational sym-
metry of the 6 subbands at each scale of the DTCWT and
hence improve the performance of the complete system.

The cyclic shift property of the matrix P, when rotation
occurs, means that Fourier transform methods are appropri-
ate for performing correlations between two matrices Pr and
Ps from the reference and search images respectively. In sec-
tion 4 we show that this correlation may be performed ef-
ficiently in the Fourier domain, followed by a single low-
complexity inverse FFT to recover the correlation result as a
function of rotation θ . The peak of this result is the required
rotation-invariant similarity measure between Pr and Ps. A
key aspect is that phase information from the complex coef-
ficients can be fully preserved in this whole process. Prior
work in this area by Hill [4] has used only the DTCWT co-
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Figure 1: (a) 2-D impulse responses of dual-tree complex
wavelets at level 4; (b) 2-D impulse responses of the complex
wavelets, modified to have lower centre frequencies (reduced
by 1/

√
1.8) in the 45◦ and 135◦ subbands and to have zero

phase at the mid-point of each response; (c) frequency re-
sponses of the 1-D complex filters used to create the original
and the modified 2-D responses, .

efficient amplitudes.
In section 5 we discuss how the technique may be ex-

tended to include information from multiple scales and to be
approximately scale-invariant, as well as rotation invariant,
based on the dominant scale associated with each detected
keypoint. Finally section 6 shows results and presents con-
clusions.

In parallel with this work, we have been developing key-
point detectors based on the DTCWT [7], which are alterna-
tives to the isotropic Gaussian pyramid methods of SIFT and
take advantage of the orientation selectivity of the DTCWT
subbands. However feature detectors are beyond the scope
of this paper and are not discussed further here.

2. IMPROVING THE ROTATIONAL SYMMETRY
OF THE DT CWT

Since the aim of this work was to create a rotation-invariant
similarity measure using outputs from the DTCWT, it is clear
that the six directional subbands at a given scale need to be
rotationally similar (apart from their different orientations).
However we see from fig. 1(a) that the 45◦ and 135◦ subband
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Figure 2: The 13-point circular sampling pattern for DTCWT
coefficients at each keypoint location. (The y-axis is inverted
because image matrices have an inverted vertical axis.)

responses comprise waves of rather higher frequency than the
other four subbands, and this translates to a pass-band cen-
tre frequency which is further from the origin in the 2-D fre-
quency plane. We can explain this by noting that 2-D wavelet
filters comprise various combinations of Lo and Hi (lowpass
and highpass) 1-D filters. The centre of the Hi filter pass-
band is approximately three times that of the Lo pass-band
(because they are half-band filters), so the Hi-Hi 2-D filters
(at 45◦ and 135◦) will be at a distance of

√
32 +32 =

√
18

units from the origin, whereas the Hi-Lo and Lo-Hi filters (at
15◦,75◦,105◦ and 165◦) will only be

√
32 +12 =

√
10 units

from the origin. This ratio of
√

1.8 is the factor by which
the 45◦ and 135◦ band centres (wave frequencies) are higher
than the others.

Now, for feature description, the wavelet transform does
not need to provide perfect reconstruction, so we are free to
modify the 1-D filters (or add new filters). Since we need the
existing Lo and Hi filters to form the Hi-Lo and Lo-Hi 2-D
filters, the simplest way to reduce the centre frequency of the
Hi-Hi filters is to add a Ba (bandpass) 1-D filter, which is
applied to both rows and columns at each scale, and to create
Ba-Ba 2-D filters that are used instead of the Hi-Hi filters.

Figure 1(c) shows the frequency response of the original
Hi filter and the modified Ba filter that has been designed to
achieve this. To keep the same impulse response envelope
but with lower underlying wave frequency, the frequency re-
sponse has been shifted down so that its mid-band frequency
is reduced by the required factor 1/

√
1.8. To preserve com-

putational efficiency, the Ba filter operates at the same sam-
pling frequency as the Hi filter, and this corresponds to 2
units on the x-axis of fig. 1(c). Hence the filter still has to
rely on the lowpass filter at the next scale up to define its cut-
off above 1 unit (half the sampling rate of the filter). This
explains why it has not been possible to shift the upper edge
of the Ba filter down as much as we would wish. We have
however been able to preserve the Hilbert transform proper-
ties of the new filter and its time reverse, so that the complex
response has negligible gain at negative frequencies. In 2-D,
fig. 1(b) shows that the new filter is able to create 45◦ and
135◦ subband responses which are much closer in wave fre-
quency to those of the other bands. The extra computation
for the 2-D DTCWT with the new filters is about 9% if they
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Figure 3: Shows how each column of the polar matching ma-
trix P is comprised of a set of rotationally symmetric samples
from the 6 subbands and their conjugates, whose orientations
are shown by the arrows. Numbers give the row indices in P.

are only used below level 1, and is about 18% if they are used
at all levels.

One other problem with the responses of fig. 1(a) is that
the phases of the central point of each response are not all the
same. So in fig. 1(b) we have chosen to make these phases
all zero, by multiplying the 6 band outputs at each scale by
{ j,− j, j,−1,1,−1} respectively; and thus, at the centre of
each response, the real part has a white peak and the imagi-
nary part has a transition from black to white.

3. THE POLAR MATCHING MATRIX

We now get to the fundamental part of this algorithm. Like
the technique of polar mapping, the aim is to sample the six
directional subbands at a given scale on a grid, centred on the
desired keypoint, and then to map the data to a matrix P, such
that rotations of the image about the keypoint are converted
into linear cyclic shifts down the columns of P. The sampling
grid that is centred on the keypoint is shown in fig. 2. It is
circularly symmetric and the sampling interval is chosen to
be 30◦, to match that of the directional subbands. Hence we
have 12 samples around the circle (A . . . L) and one at its
centre (M). The radius of the circle is equal to the sampling
interval of the DTCWT subbands at the given scale, as this
is an appropriate interval to avoid aliasing and yet provide a
rich description of the keypoint locality.

Our technique for obtaining samples on the circular grid
around each keypoint is to use bandpass interpolation. The
information contained in a given directional complex sub-
band is bandlimited to a particular region of the 2-D fre-
quency space, which has a centre frequency {ω1,ω2}. Band-
pass interpolation may be implemented by
1. a frequency shift by {−ω1,−ω2} down to zero frequency

(i.e. a multiplication of the complex subband coeffi-
cients by exp[− j(ω1x1 + ω2x2)] at each sampling point
{x1,x2}),

2. a conventional lowpass spline or bi-cubic interpolation to

each new grid point (e.g. using Matlab function interp2),
3. an inverse frequency shift up by {ω1,ω2} (a multiplica-

tion by exp[ j(ω1y1 +ω2y2)] at each grid point {y1,y2}).

To simplify notation for the mapping to matrix P, for a
given keypoint locality {A,B, . . .M} in fig. 2 we denote the
13 subband coefficients by {ad ,bd , . . .md}, where d = 1 . . .6
indicates the direction of the subband at (30d − 15)◦ in
fig. 1(b). We also note from fig. 1(b) that if the impulse re-
sponse of a subband is rotated by 180◦, then its real part is
unaltered and its imaginary part is negated. This is equivalent
to taking the conjugate of the complex coefficients, so the 13
outputs of a (virtual) subband at (30d− 15 + 180)◦ will be
{a∗d ,b

∗
d , . . .m

∗
d}. The 12×7 matrix P is then formed from the

13×6 coefficients and their conjugates as follows:

P =




m1 j1 k1 l1 a1 b1 c1
m2 i2 j2 k2 l2 a2 b2
m3 h3 i3 j3 k3 l3 a3
m4 g4 h4 i4 j4 k4 l4
m5 f5 g5 h5 i5 j5 k5
m6 e6 f6 g6 h6 i6 j6
m∗

1 d∗1 e∗1 f ∗1 g∗1 h∗1 i∗1
m∗

2 c∗2 d∗2 e∗2 f ∗2 g∗2 h∗2
m∗

3 b∗3 c∗3 d∗3 e∗3 f ∗3 g∗3
m∗

4 a∗4 b∗4 c∗4 d∗4 e∗4 f ∗4
m∗

5 l∗5 a∗5 b∗5 c∗5 d∗5 e∗5
m∗

6 k∗6 l∗6 a∗6 b∗6 c∗6 d∗6




The rational for choosing this mapping can be understood
from fig. 3, which shows each of the columns of P in diagra-
matic form using arrows on the grid of fig. 2 to represent the
direction of each subband. Hence all the samples in column 1
of P are taken at the midpoint M and correspond to the 6 sub-
bands and their conjugates taken in sequence. The arrow la-
belled ’1’ is from the 15◦ subband, arrow ’2’ is from the 45◦
subband, arrow ’7’ is from the conjugate of the 15◦ subband
(i.e. the 195◦ subband), and so on. The circle of arrows for
column 2 shows the location and subband from which each
element in column 2 of P is taken, and this is also shown
for the remaining columns. Thus we see that each column
of P represents a particular pattern of rotationally symmetric
combinations of sampling location and subband orientation,
such that if an object is rotated clockwise about the centre of
the sampling pattern by k×30◦ (k integer), then each column
of P will be cyclically shifted k places downwards.

We note that, since the patterns are cyclic, the start and
end point for each column of P are arbitrary; so for simplic-
ity we have chosen each row of P to contain samples from
the same subband (i.e. to be of the same orientation) and the
subbands are in numerical order down each column. The
conjugated wavelet coefficients representing subbands with
orientations between 180◦ and 360◦ are in the lower half of
P. All coefficients from the 13-point sampling pattern in the
6 subband orientations are included in P in either their nor-
mal or conjugated form, and those from the midpoint M are
included in both forms. P is thus a rich descriptor of the
band-limited pixel intensities in the locality defined by the
13-point pattern, convolved with the impulse responses of the
wavelet subbands. The diameter of each subband response in
fig. 1(b) to its half-power points is approximately equal to the
radius of the 13-point pattern for that scale.



4. FOURIER-BASED MATCHING

In order to perform rotation-invariant object detection, a
matching technique is required which measures the correla-
tion between a candidate locality in the search image and all
possible rotations of a reference object in an efficient way.
We assume (in the same way that SIFT does [2]) that can-
didate locations and scales for the search have been defined
by locating extrema in scale-space in both the search and ref-
erence images. Hence shift-invariance is not needed in our
matching process, although it may be desirable to include
some insensitivity to shift to allow for inaccuracies in the
keypoint locations and for modest shape distortions between
the two regions being matched. This is discussed later.

The Fourier transform is well-known to be a useful aid
to performing cyclic correlations, and in conjunction with
the mapping to the P matrix, as above, it turns out to be
effective at performing rotational correlations too. The ba-
sic idea is to form matrices Pr,i at every keypoint i in the
reference image, and to form matrices Ps, j at all candidate
keypoints j in the search image. For a given reference and
candidate keypoint pair {i, j}, we wish to calculate the cor-
relation between Pr,i and Ps, j at all possible cyclic shifts of
their columns, including fractional sample shifts at some rel-
atively fine spacing. There are 12 samples in each column
and if, typically, we require 1

4 -sample intervals (equivalent
to 30/4 = 7.5◦ rotational spacing) to get accurate estimation
of correlation peaks, then 48 correlation samples are needed
on each of the 7 matrix columns for each pair {i, j}. To com-
pare N pairs requires of the order of N×48×12×7 = 4032N
complex multiply-and-add operations.

The amount of computation can be greatly reduced if the
columns of all the P matrices are transformed with a 12-point
FFT before the pairwise matching processes start. The com-
putation load for these FFTs can be largely ignored since typ-
ically the number of P matrices ¿ N. The pairwise correla-
tion process for each transformed matrix pair Pr,i and Ps, j
then becomes:
1. Multiply each Fourier component of Ps, j with the conju-

gate of the equivalent Fourier component of Pr,i to get a
matrix Si, j (12×7 = 84 complex multiplies).

2. Accumulate the 12× 7 = 84 elements of Si, j into a 48-
element spectrum vector si, j (84 complex adds, see below
for details).

3. Take the real part of the inverse FFT of si, j to obtain the
48-point correlation result si, j (≤ 48× log2(48) = 270
complex multiply-an-adds).

The computation for N pairwise comparisons with the
Fourier method will thus be ≤ (84 + 270)N = 354N com-
plex multiply-an-adds, i.e. less than one tenth of that for the
direct method.

An additional advantage of processing in the Fourier do-
main is that the interpolation of the correlation result from 12
up to 48 samples can be performed efficiently by padding the
spectra with zeros before the inverse FFT is taken. However
this must be done rather carefully because different columns
of Si, j are bandpass signals with differing centre frequencies.
Optimum interpolation is achieved if the zero-padding is in-
troduced over the part of the spectrum which is likely to con-
tain least energy, for each column of Si, j, as follows.

Consider forming a P matrix from the complex wavelet
coefficients of a simple object that is a single step edge which

is rotated slowly through 360◦ from the horizontal and is cen-
tred on our 13-point pattern. Looking carefully at figs. 2 and
3, we note that the edge at any angle will pass through the
centre of point M so the phases of the coefficients in column
1 of P will remain constant as the edge rotates, while the
amplitude peak will gradually shift from one subband to the
next. Hence column 1 is a lowpass function of rotation angle
θ , so its centre frequency will be zero and the zero-padding
should be performed equally on the higher positive and neg-
ative regions of the spectrum.

To illustrate this we drop the {i, j} subscripts, label the 48
elements of vector si, j as {s−24 . . .s−1,s0 . . .s23}, and assume
that the zero frequency (dc) component is s0 (i.e. use the
Matlab fftshift convention). Similarly we label the elements
of column v of matrix Si, j as {S−6,v . . .S−1,v,S0,v . . .S5,v} .
Hence for column 1:

su =
{

Su,1 for −6≤ u≤ 5
0 elsewhere.

Now consider columns 4 and 5 of the matrix, where the
subband directions in fig. 3 are almost radial (in fact they are
at±15◦ to the radial direction). As our single edge slowly ro-
tates with angle θ , it will slide past each subband wave on the
circumference of the 13-point pattern, causing a fairly rapid
change in phase φ of the nearest wavelet coefficient. For the
DTCWT with 14-tap Q-shift filters ([5], table 2), dφ/dθ ≈ 4
in these columns. In columns 3 and 6 of the matrix, the sub-
bands are at±45◦ to the radial direction and the rotating edge
cuts the subband waves more slowly so that dφ/dθ ≈ 3. Fi-
nally in columns 2 and 7, the subbands are at ±75◦ to the
radial direction and dφ/dθ ≈ 1. For subbands at ψ to the
radial direction, the general formula is dφ/dθ ≈ 4.2cos(ψ) .

In the Fourier domain a rate of phase rotation, dφ/dθ =
k, corresponds to k cycles of phase shift for each complete
cycle of rotation of the object, and hence shifts the centre
frequency of the subband down by k frequency bins. Thus
the rules for accumulating columns v = 2 to 7 of S into the
vector s with frequency shifts of k bins are:

v = 4,5
k = 4 : su =

{
su +Su+12,v for −10≤ u≤−7
su +Su,v for −6≤ u≤ 1

v = 3,6
k = 3 : su =

{
su +Su+12,v for −9≤ u≤−7
su +Su,v for −6≤ u≤ 2

v = 2,7
k = 1 : su =

{
su +Su+12,v for u =−7
su +Su,v for −6≤ u≤ 4

Note that in the above accumulation, it is not the elements
of S which are shifted, but just the start and end of the zero
padding, because the underlying 48-point spectrum (before
‘padded’ elements are set to zero) is 4 cyclic repeats of the
original 12-point spectrum, from Nyquist sampling theory.

5. EXTENSION TO MULTIPLE SCALES

For simplicity, the above technique has been described only
for subband coefficients from a single scale of the DTCWT.
However it can readily be extended to multiple scales by
adding extra columns to P. The simplest extension is to in-
clude coefficients from the midpoint M of the next coarser
scale as an 8th column, with the coefficients ordered exactly
as in column 1. Column 8 of the correlation matrix S is then
accumulated into s with the same zero padding as column
1 as it also is a lowpass signal. The image area covered by
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Figure 4: Correlation results for 4 test images: bar, 90◦ corner, corner+blob, eye of ‘Lena’. Each set of curves shows the
output of the normalised correlator for 48 angles in 7.5◦ increments, when the test image is rotated in 5◦ increments from 0◦ to
90◦. Levels 4 and 5 of the DTCWT were used in an 8-column P matrix format. The diameter of the 13-point sampling pattern
is half the width of the subimages shown.

just the centre coefficient at the next coarser level approxi-
mately equals that covered by the 13-point pattern at the cur-
rent level.

To extend to the next finer scale as well, 7 more columns
can be added to P, just like the first 7 but from the finer
scale subbands; and to cover an equivalent area if required,
a further ring of 12 coefficients at a radius of 2 units can be
generated to produce 6 more columns of P. Since this dou-
bles dφ/dθ , for these last 6 columns the frequency shifts for
the zero-padding must also be doubled. The descriptor is by
now getting very detailed, and so, for many applications, the
8-column 2-scale version of P with 8×12 = 96 complex el-
ements is likely to be sufficient.

To provide better interpolation of scale, SIFT derives sev-
eral intermediate scales in each octave. This is also possible
with the DTCWT by appropriate scaling of the input image,
each with a new DTCWT. The appropriate scale at which to
form each keypoint descriptor is obtained from the keypoint
detector, and using this (as in SIFT) the complete object de-
scriptor can be made approximately scale invariant.

6. RESULTS AND CONCLUSIONS

Here we have concentrated on the theory of our technique,
as it is quite complicated, so there is space only for limited
results. For 4 shapes of increasing complexity, we show in
fig. 4 the result of correlating rotated copies of the object with
the original, and plot the normalised correlation vector, cov-
ering 0 to 360◦, in each case. The peak of the vector indicates
the degree of match and its location gives the object orienta-
tion. If the whole process were completely rotation invariant,
all the correlation peaks should be unity and the curves be the
same shape. In practise, with the improvements of section 2,
all the peaks exceed 0.896; without these improvements to
the diagonal subbands, the peaks dip to 0.66. The highest
cross correlation between these images is 0.397.

In this paper, we have shown how rotational correlations
may be performed using interpolated complex samples from

the DTCWT, utilising both phase and amplitude information.
There is considerable scope for extending these ideas to in-
crease the robustness to typical image distortions (e.g. due to
change of viewpoint or lighting) and small mis-registration
of keypoints. For example, each row of the P matrix uses
samples from a given direction of subband, so it would be
possible to perform phase corrections using inter-scale pre-
diction to achieve some invariance to shifts and small geo-
metric distortions, as proposed in [8]. This is a current topic
of research in our group.
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