Iterative Sparsity Methods for Coding and Deconvolution with Overcomplete Transforms

Nick Kingsbury, Tanya Reeves and Yingsong Zhang

Signal Processing & Communications Group, Dept. of Engineering
University of Cambridge, Cambridge CB2 1PZ, UK.
ngk@eng.cam.ac.uk
www.eng.cam.ac.uk/~ngk

Inspire Sparsity Workshop, Cambridge, 14 & 15 Dec 2008

UNIVERSITY OF CAMBRIDGE
Iterative Sparsity Methods for Coding / Compression with Overcomplete Transforms
REdundant representation with complex wavelets: How to achieve sparsity?

• Brief overview of dual-tree complex wavelets:
 ◦ Dual tree in 1-D – shift invariance
 ◦ Dual tree in 2-D – directional selectivity

• Iterative projection method of coding with overcomplete transforms (frames):
 ◦ How iterative projection can improve sparsity, and hence rate-distortion performance
 ◦ Good convergence strategies
 ◦ Results and comparisons with non-redundant real wavelet transforms (DWTs)
Features of the Dual Tree Complex Wavelet Transform (DT CWT)

- Good **shift invariance**.

- Good **directional selectivity** in 2-D, 3-D etc.

- **Perfect reconstruction** with short support filters.

- **Limited redundancy** – 2:1 in 1-D, 4:1 in 2-D etc.

- **Low computation** – much less than the undecimated (à trous) DWT and typically 3 times that of the maximally decimated DWT. (Lifting methods can still be used to improve efficiency.)

Each tree contains purely real filters, but the two trees produce the **real and imaginary parts** respectively of each complex wavelet coefficient.
Q-shift Dual Tree Complex Wavelet Transform in 1-D

Figure 1: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for each filter, where $q = \frac{1}{4}$ sample period.
1-D Basis Functions at Level 4

Figure 2: Scaling function and wavelet basis functions of the DT CWT at level 4, using the Daubechies 7-tap filter for level 1 (from 9,7 biorth. pair) and the 6-tap Q-shift wavelet filters for levels 2, 3 and 4.
THE DT CWT IN 2-D

When the DT CWT is applied to 2-D signals (images), it has the following features:

- It is performed **separably**, with 2 trees used for the rows of the image and 2 trees for the columns – yielding a **Quad-Tree** structure (4:1 redundancy).

- The 4 quad-tree components of each coefficient are combined by simple sum and difference operations to yield a **pair of complex coefficients**. These are part of two separate subbands in adjacent quadrants of the 2-D spectrum.

- This produces **6 directionally selective subbands** at each level of the 2-D DT CWT. Fig 3 shows the basis functions of these subbands at level 4, and compares them with the 3 subbands of a 2-D DWT.

- The DT CWT is directionally selective (see fig 3) because the complex filters can **separate positive and negative frequency components** in 1-D, and hence **separate adjacent quadrants** of the 2-D spectrum. Real separable filters cannot do this!
2-D Basis Functions at level 4

Figure 3: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom), all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters, while real wavelets provide 3 filters, only two of which have a dominant direction.
2-D Shift Invariance of DT CWT vs DWT

Figure 4: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of each wavelet image is shown in order to save space.
Codeding with the DT CWT

- DT CWT is 4 : 1 redundant – Why use it for compression?

Because:

- Overcomplete dictionaries of basis functions are known to provide the potential for better coding (e.g. Matching Pursuits).

- The 4 reconstruction trees average the quantisation noise.

- Reconstruction is a projection from $4N$-space to N-space. Noise components, which are not in the N-dimensional range space of the transform, are in the $3N$-dimensional null space and do not affect the decoded image.

- Complex wavelet coefficients can define edge locations more accurately than real coefficients.
How to achieve sparsity?

Basic Algorithm – motivated by Matching Pursuits:

1. Set \(i = 1 \) and take the DT CWT of the input image.

2. Set to zero all wavelet coefs with magnitude smaller than a threshold \(\theta_i \).

3. Take DT CWT\(^{-1} \) and measure the error due to loss of smaller coefs.

4. Take DT CWT of the error image and adjust the non-zero wavelet coefs from step 2 to reduce the error.

5. Increment \(i \), reduce \(\theta_i \) a little (to include a few more non-zero coefs) and repeat steps 2 to 4.

6. When there are sufficient non-zero coefs to give the required rate-distortion tradeoff, keep \(\theta_i \) constant and iterate a few more times until converged.
Iterative Projection

If S is the range space of the DT CWT, projection onto S is $P^S = WM$, and onto the null space is $P^\perp = I - P^S$.

On iteration i: \[w_i = kW(x - M\hat{y}_i) = ky_0 - kP^S\hat{y}_i \]

\[y_{i+1} = \hat{y}_i + w_i = ky_0 + (I - kP^S)\hat{y}_i = y_0 + P^\perp\hat{y}_i \] if $k = 1$

Thus on each iteration the range-space component of y_{i+1} remains at y_0 (so its inverse transform is always x) while its null-space component varies and attempts to minimise $||e_i||$. Note that y_{i+1} is a projection of \hat{y}_i.
Convergence

With a centre-clipping non-linearity and $k = 1$, convergence to a local minimum can be proved by Projection onto Convex Sets (POCS).

Substantial improvements in the converged result can be achieved by:

- Gradual reductions in clip threshold θ_i with i.
- Use of a soft non-linearity, such as a Wiener function $\hat{y}_i = y_i \cdot (|y_i|^2 - \theta_i^2)_+ / |y_i|^2$, for early iterations.
- Increasing k (must be kept < 2 for stability). $k \approx 1.8$ is good.
Convergence of loop RMS error for Centre-Clipper

The centre-clipper first selects a mask of coefs to clip, and then multiplies by the mask (a projection operation - hence can use POCS).
Threshold Modification Experiments for DT CWT ($k = 1$)

(b) PSNR (dB)

- -- shows non-redundant DWT for reference.
Threshold Modification Experiments:
k = 1.8 and Wiener non-linearity for first 15 iterations (better by 0.34 dB).
Histograms of DT CWT coefs y_i: $k = 1$ and hard threshold.
Histograms of DT CWT Coefs y_i: $k = 1.8$ and Wiener for 15 iters.
Comparison of DT CWT and DWT (centre-clipping only)

(b) PSNR (dB)

Iterated DT CWT
- - -

DWT
- - -

non-iterated DT CWT
- o - o -
Compression results for 512 × 512 ‘Lena’ image (fully quantised)

- - - Iterated DT CWT
--- DWT
Non-redundant DWT
0.0975 bit/pel (30.66 dB PSNR)

4:1 Overcomplete DT CWT
0.0970 bit/pel (31.08 dB PSNR)
Non-redundant DWT
0.1994 bit/pel (33.47 dB)

4:1 Overcomplete DT CWT
0.1992 bit/pel (34.12 dB)
Iterative Projection – Conclusions

- Reducing the centre-clipping threshold θ_i from an initial value that is at least twice the final value, as iterations proceed, improves performance.

- Setting $k = 1.8$ and using a soft non-linearity for early iterations improves performance and convergence rate.

- Despite a redundancy of 4 : 1, the DT CWT can achieve coding performance that is competitive with the non-redundant DWT (PSNR 0.65 dB better).

- Visibility of some coding artifacts can be reduced with the DT CWT.

- With a suitably optimised convergence strategy, computation rate should be significantly less than for matching pursuits.
Iterative Sparsity Methods for Deconvolution

with Overcomplete Transforms
Bayesian Wavelet-based Deconvolution

Assume an image measurement process with blur H and noise n of variance σ_n^2:

$$y = Hx + n$$

Get **MAP estimate of x** by minimising

$$J(x) = \frac{1}{2}||y - Hx||^2 - \sigma_n^2 \log(p(x))$$

where $p(x)$ represents the prior expectation about the image structure.

It is often easiest to **model $p(x)$ in the wavelet domain**, with wavelet coefs $w = Wx$ and $x = Mw$. Then we find w to minimise

$$J(w) = \frac{1}{2}||y - HMw||^2 + \frac{1}{2}w^T Aw$$

where A is diagonal and $A_{ii} = \sigma_n^2/E(|w_i|^2)$, based on a **Gaussian Scale Mixture (GSM) model** for the wavelet coefs w_i, $\forall i$ in vector w.
Advantages of working with Wavelet Subbands

Simple steepest descent minimisation of $J(w)$ yields a gradient descent direction

$$\nabla_w J(w) = M^T H^T (y - HMw) - Aw$$

but this blurs the differences between y and HMw.

Subband emphasis can alleviate this and dramatically speed up convergence. We now minimise:

$$J(w) = \frac{1}{2} ||y - H \sum_{j \in S} M_j w_j ||^2 + \frac{1}{2} \sum_{j \in S} w_j^T A_j w_j$$

where M_j, A_j and w_j are subband versions of M, A and w in which all entries apart from those in subband j have been set to zero.

The term $||HMw||^2$ makes it difficult to minimise $J(w)$ because of all the cross terms in $w^T M^T H^T HMw$; so we use the ideas of Daubechies, Defrise & De Mol (2004) on each subband independently, as suggested by Vonesch & Unser (2008), to minimise $\bar{J}(w)$, an upper bound on $J(w)$.
Let
\[
\overline{J}_n(w) = J(w) + \frac{1}{2} \sum_{j \in S} \left(\alpha_j ||W_j x^{(n)} - w_j||^2 - ||HM_j(W_j x^{(n)} - w_j)||^2 \right)
\]
where \(x^{(n)}\) is the estimate for \(x\) at iteration \(n\). As long as each \(\alpha_j\) is chosen to be no less than \(|H(\omega)|^2\) for all frequencies \(\omega\) within the passband of subband \(j\), it can be shown that \(\overline{J}_n(w) \geq J(w)\), with approximate equality when \(w_j\) is near \(W_j x^{(n)}\).

The proof of this requires that the transform defined by \(W\) and \(M\) is a **tight frame** and that it is **shift invariant** so that \(M_j W_j H = HM_j W_j\) – i.e. the transfer function of each subband can commute with the blurring function.

The Q-shift DT CWT approximately satisfies these criteria. The Shannon wavelet also satisfies these, but it is not compactly supported.

By choosing \(\alpha_j\) optimally for each subband, we can overcome the problems of slow convergence of wavelet coefficients in spectral regions where \(H\) has low gain.
The resulting algorithm:

\[
\bar{J}_n(w) = \frac{1}{2} (\|y - HMw\|^2 + w^TAw \\
+ \sum_{j \in S} \alpha_j \|W_jx^{(n)} - w_j\|^2 - \|H(x^{(n)} - Mw)\|^2)
\]

\[
= C(x^{(n)}, y) + \sum_{j \in S} \left((Hx^{(n)} - y)^T H M_j w_j \\
+ \frac{1}{2} \alpha_j \|W_jx^{(n)} - w_j\|^2 + \frac{1}{2} w_j^T A_j w_j \right)
\]

where \(C(x^{(n)}, y) \) is independent of \(w \). This is a simple quadratic in \(w_j \), and its global minimum is achieved when \(\partial \bar{J}_n(w) / \partial w_j = 0 \). This gives

\[
(\alpha_j I + A_j)w_j = \alpha_j W_jx^{(n)} + M_j^T H^T (y - Hx^{(n)}) \quad \forall j
\]

Hence, noting that \(M_j^T = W_j \) for a tight frame, we get the new \(w_j \) and \(x \):

\[
w_j^{(n+1)} = (\alpha_j I + A_j)^{-1} \left(\alpha_j W_jx^{(n)} + W_j H^T (y - Hx^{(n)}) \right) \quad \forall j
\]

\[
x^{(n+1)} = M \sum_{j \in S} w_j^{(n+1)}
\]
Updating the prior \(A \)

Note: *In the preceding analysis, we have assumed that all coefs in \(w \) were purely real, and that complex transforms (like DT CWT) created coefs whose real and imaginary parts were separate real elements of \(w \). However in the following, we assume that these parts have been combined together into complex elements of \(w \).*

Bayesian analysis with a Gaussian scale mixture (GSM) model gives a diagonal prior matrix \(A \) such that \(A_{ii} = \sigma_n^2 / E(|w_i|^2) \).

In practice we use \(A_{ii} = \frac{\sigma_n^2}{E(|w_i|^2) + \epsilon^2} \) so that

\[
 w_i^* A_{ii} w_i = \sigma_n^2 \frac{|w_i|^2}{E(|w_i|^2) + \epsilon^2} \approx \sigma_n^2 \|w_i\|_0
\]

In this way we **maximise sparsity**, where \(\epsilon \) defines the approximate threshold for \(|w_i| \) between being counted or not counted in \(\|w_i\|_0 \). \(E(|w_i|^2) \) is updated from the squared magnitudes of the complex coefs of \(Wx^{(n)} \) at each iteration \(n \).
We call this function the L_{02} penalty, because

- It is closer to the L_0-norm than to the L_1-norm;

- It is smooth and differentiable (like the L_2-norm) within each iteration of the algorithm.

But what are the expected wavelet variances, $E(|w_i|^2) \forall i$?

In practice, the estimated image is often contaminated by artifacts and noise, so the simple approach of calculating $E(|w_i|^2) = |w_i^{(n)}|^2$ direct from each complex coefficient in $Wx^{(n)}$ does not work as well as we might hope.

We find we can obtain better estimates by calculating denoised wavelet coefficients $\hat{w}_i^{(n)}$ and setting $E(|w_i|^2) = |\hat{w}_i^{(n)}|^2$.

For denoising, we use the Bayesian bi-variate shrinkage (Bay-bi-shrink) algorithm of Sendur and Selesnick (2002), which models well the inter-scale (parent-child) dependencies of complex wavelet coefficients.
INITIALISATION AND UPDATE STRATEGIES

• We initialise our algorithm with an under-regularised Wiener-like filter, implemented in the frequency domain:

\[
x^{(0)} = (H^TH + 10^{-3}\sigma_n^2 I)^{-1} H^T y
\]

• Diagonal regularisation matrix \(A\) is initialised using

\[
A_{ii} = \frac{\sigma_n^2}{|\hat{w}_i|^2 + \epsilon^2}
\]

where \(\hat{w} = \text{denoise}(Wx^{(0)})\) and \(\epsilon = 0.01\)

• Optionally, \(A\) is updated using \(\hat{w} = \text{denoise}(Wx^{(n)})\) at regular intervals in the iteration count \(n\).
\(\mathbf{y} \): Cameraman, 9 × 9 uniform blur + noise at 40 dB PSNR

\(\mathbf{x}^{(0)} \): Initial image from under-regularised Wiener-like filter
\(\mathbf{x}^{(10)} \): Iteration 10 of DT CWT with update of \(\mathbf{A} \)

\(\mathbf{x}^{(0)} \): Initial image from under-regularised Wiener-like filter
\(\mathbf{x}^{(10)} \): Iteration 10 of DT CWT with update of \(\mathbf{A} \)

\(\mathbf{x}^{(30)} \): Iteration 30 of DT CWT with update of \(\mathbf{A} \)
x: Original of Cameraman

x^{(30)}: Iteration 30 of DT CWT with update of A
Convergence rate comparisons with Fast Thresholded Landweber algorithm (Vonesch & Unser)

Improvement in SNR (dB) of Cameraman image

Improvement in SNR (dB) of House image
3D WIDEFIELD FLUORESCENCE MICROSCOPE DATA

\(\mathbf{y} \): 3D fluorescence data with widefield imaging blur

\(\mathbf{x}^{(0)} \): Initial data from under-regularised Wiener-like filter

Size of 3D dataset = \(256 \times 256 \times 80 = 5.24 \times 10^6 \) voxels
3D WIDEFIELD FLUORESCENCE MICROSCOPE DATA

$x^{(10)}$: Iteration 10 of DT CWT with update of A

$x^{(0)}$: Initial data from under-regularised Wiener-like filter

Size of 3D dataset = $256 \times 256 \times 80 = 5.24 \times 10^6$ voxels
3D widefield fluorescence microscope data

\(\mathbf{x}^{(10)} \): Iteration 10 of DT CWT with update of \(\mathbf{A} \)

\(\mathbf{x}^{(30)} \): Iteration 30 of DT CWT with update of \(\mathbf{A} \)

Size of 3D dataset = \(256 \times 256 \times 80 = 5.24 \times 10^6 \) voxels
CONCLUSIONS

• We have discussed some techniques for performing both Compression and Deconvolution with overcomplete transforms.

• We have shown how sparsity helps with both of these types of large inverse problems.

• For Compression, we have demonstrated the effectiveness of iterative threshold-shrinkage methods and that there are some interesting outstanding questions regarding optimal use of soft thresholds.

• For Deconvolution, we have introduced the L_{02} penalty function and shown that Fast Thresholded Landweber (FTL) techniques may be used effectively with overcomplete transforms that possess tight-frame and shift-invariance properties, such as the DT CWT.

Papers on complex wavelets and related topics are available at:

http://www.eng.cam.ac.uk/~ngk/