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ABSTRACT

We propose the enhancement of Support Vector Machines for
classification, by the use of multi-scale kernel structures (based on
wavelet philosophy) which can be linearly combined in a spatially
varying way. This provides a good tradeoff between ability to gen-
eralize well in areas of sparse training vectors and ability to fit fine
detail of the decision surface in areas where the training vector
density is sufficient to provide this information. Our algorithm is
a sequential machine learning method in that progressively finer
kernel functions are incorporated in successive stages of the learn-
ing process. Its key advantage is the ability to find the appropriate
kernel scale for every local region of the input space.

1. INTRODUCTION

The Support Vector Machine (SVM) is a machine learning tech-
nique that is receiving considerable attention in the scientific com-
munity for its superior ability to solve many types of classification
problem, particularly in the non-linear form based on theprinci-
ple of kernels[1, 2]. Much of the power of SVM algorithms lies
in the implicit non-linear mapping of the input data to a higher-
dimensional feature space by the kernel, and choice of the correct
kernel for a given problem is very important.

The issue of the choice of kernel has received relatively little
attention in the research community until recently. Amari and Wu
[3] proposed a simple way of modifying a given kernel function
by exploiting the structure of the Riemannian geometry induced
by the kernel function. Based on the concept of Reproducing Ker-
nel Hilbert Space from functional analysis Ong et. al. [4] propose
the use of hyperkernels as a way to learn the optimal kernel given
the data. The hybrid kernel method of Tan and Wang [5] is a way
to construct a complex kernel by what is essentially a polynomial
expansion of a basic kernel (eg. GRBF). The use of wavelet func-
tions for kernel construction was considered by Zhang et. al. [6]
where a basic wavelet, namely the Modulated Gaussian, was used
in the simulations. The use of frames has been proposed in [7].

In this paper, we present a way to enhance the SVM through
the use of multiple kernels. This approach is a significant depar-
ture from previous approaches described above and our philoso-
phy is motivated by ideas and principles from multi-resolution and
wavelet theory [8, 9], although a multiscale approach quite simi-
lar to ours has been presented briefly in [10]. With wavelets, one
first obtains a coarse approximation to a signal using a globally
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smooth basis function. Successive enhancement to the approxima-
tion accuracy is then achieved by adding localized basis functions
with increasingly finer scale until a desired level of accuracy is
achieved. We show how this approach can be used to improve
the ability of SVMs to learn complicated decision functions which
contain both fine detail and large smooth regions. Note that this
approach is quite different from the work in [6], in which some
wavelet principles are employed but only with a single kernel.

2. SINGLE KERNEL – KEY RESULTS

We start by summarizing the well-known key formulae arising
from the use of conventional kernel-based support vector machines
(SVMs) for binary classification. The reader is referred to tutorial
papers [1, 11] for more details.

We consider training the SVM to interpretd-dimensional in-
put vectorsx into just two classesy = ±1. We assume that theN
training vectors are of the form{x1 . . .xN} with associated deci-
sion variables{y1 . . . yN}, wherexi ∈ Rd andyi = ±1, ∀ i.

Kernel methods assume a non-linear mappingΦ(x), generally
to a much higher dimensional space thanx, known as thefeature
space, such that, for any pair of input vectorsxi andxj , the scalar-
valued kernel functionk(xi,xj) is defined by the following dot-
product in the feature space

k(xi,xj) = k(xj ,xi) = Φ(xi) ·Φ(xj) (1)

When designing a SVM, the aim is to find a function of the form

f(x) = w ·Φ(x) + b (2)

such thatyif(xi) ≥ 1 for all training samples. This corresponds
to finding the projection vectorw, normal to a pair of parallel hy-
perplanes in the feature space, such that all points in class+1 are
‘above’ one hyperplane and all points in class−1 are ‘below’ the
other hyperplane. The distance between the hyperplanes is maxi-
mized whenw ·w = ||w||2 is minimized.

In order to find thew with minimal magnitude which satisfies
yif(xi) ≥ 1, we define a Lagrangian function

L = 1
2
w ·w −

NX
i=1

λi[yi f(xi)− 1] (3)

For a given set of Lagrange multipliers{λ1 . . . λN}which must be
non-negative, we differentiateL with respect to each component
of w and also tob and set the results to zero to minimizeL, which
gives

w =

NX
i=1

λiyiΦ(xi) and
NX

i=1

λiyi = 0 (4)



Substituting expressions (1), (2) and (4) into (3) and combining
the 1

2
w ·w term with the first summation term, produces the well-

known dual Lagrangian formulation:

L = − 1
2

NX
i=1

NX
j=1

λiλjyiyj k(xi,xj) +

NX
i=1

λi (5)

Now we solve for theλi which maximize thisL while satisfying
the constraints

NX
i=1

λiyi = 0 and λi ≥ 0 (6)

This produces the result which minimizesw · w while satisfying
yif(xi) ≥ 1. The decision function then becomes

f(x) =

NX
i=1

λiyi k(xi,x) + b (7)

The Karush-Kuhn-Tucker (KKT) conditions require that, at the op-
timum solution, each term of the summation on the right-hand side
of (3) is zero, and this is achieved byλi only being non-zero for
the terms whereyif(xi) = 1 exactly. These non-zeroλi then
select thesupport vectorsxi, used to producef(x) in (7).

If slack variables, ξi ≥ 0, are introduced which allow some
of the values ofyif(xi) to be(1− ξi) instead of unity, in order to
reduce thew ·w term, then two straightforward solutions emerge,
depending on the penalty function introduced into the Lagrangian
function (3). If the penalty function is theL1 norm,C

PN
i=1 ξi,

then this simply causes an upper limit ofC to be introduced to the
λi, so that the constraint (6) now becomes

0 ≤ λi ≤ C (8)

The main expressions above can be simplified if vector and
matrix notation is used. Hence the dual Lagrangian (5) becomes

L = − 1
2
�T Y KY � + �T 1 (9)

where� is a column vector of all theλi terms,Y is a diagonal
matrix of all theyi terms,K is the kernel matrix with elements
Kij = k(xi,xj), and1 is a column vector of lengthN with unit
elements.

Note thatK is a symmetricN ×N matrix, and, for a unique
finite solution to be guaranteed,K must be positive definite. (This
also implies thatY KY is positive definite becauseY is diagonal
and full-rank.) This is equivalent to requiring that the kernel func-
tion satisfies Mercer’s condition. If the kernel is shift-invariant
(i.e. it is a function only of the vector difference,xi − xj), then
the positive definite condition is equivalent to requiring that the
Fourier transform ofk is purely real and non-negative.

For example, a Gaussian radial basis function (GRBF) kernel
is shift invariant, since it is defined by

kgrbf(xi,xj) = exp

�−||xi − xj ||2
2σ2

�
(10)

Its Fourier transform is another radial Gaussian function ind-
dimensional frequency space and is therefore non-negative, as re-
quired.

3. MULTIPLE KERNEL METHOD

Returning to equation (7), we note thatf(x) is just a linear com-
bination of kernel functions, located around the support vectorsxi

for which the weightsαi = λiyi are non-zero. For RBF kernels,
these functions are radially symmetric and are centred upon each
support vector, as shown in fig. 1(a) for a pair of 2-D support vec-
tors (one of class+1 and the other of class−1). The polarities
of the weights are given by theyi values, which are the classes of
the support vectors. The composite surfacef(x) for all 6 support
vectors is shown in fig. 1(b) and the class decision surface is the
boundary (black contour) corresponding tof(x) = 0.

It is straightforward to see that if a GRBF kernel, such as the
one defined by (10), is used and its standard deviationσ is large,
then the surfacef(x) will be a smooth function ofx. Hence the
decision surface, wheref(x) = 0, will also be smooth. This will
be good for generalizing in regions of sparse training data, but it
will be poor at fitting any rapidly fluctuating parts of the decision
boundary.

On the other hand, a GRBF kernel with smallσ will be good at
fitting rapid fluctuations (as long as there is enough training data
in such regions) but it will be poor at generalising in regions of
sparse training data, sincef(x) will tend back to zero in between
neighboring points of the same class which are significantly more
than2σ apart. Hence it is desirable to allow kernel functions of
more than one scale to be used to define a given decision surface.
Fig. 2 shows the same support vectors as fig. 1, but now differentσ
values are used for the kernels. Note how this modifies the decision
boundary contour into a much sharper curve around the support
vector with the small-σ kernel.

We choose to start by defining the form thatf(x) should take
for just two kernel functionsk1 andk2, which is:

f(x) = f1(x) + f2(x) (11)

where f1(x) =

NX
i=1

αi k1(xi,x) + b1 (12)

and f2(x) =

NX
i=1

βi k2(xi,x) + b2 (13)

Our aim is thatk1 should be a coarse-scale kernel (e.g. a
GRBF with largeσ) and theαi should select support vectors in
smooth regions off(x), while k2 should be a finer-scale kernel
(smallerσ) and theβi should select support vectors in regions
wheref(x) needs to vary more rapidly.

We can define separate feature space mappingsΦ1 andΦ2 so
that, for anyxi andxj :

Φ1(xi) ·Φ1(xj) = k1(xi,xj) (14)

Φ2(xi) ·Φ2(xj) = k2(xi,xj) (15)

and Φ1(xi) ·Φ2(xj) = 0 (16)

The orthogonal relation betweenΦ1 andΦ2 in (16) is useful, and
can be easily achieved (notionally) by increasing the dimension-
ality of the feature space and allowing the two functions to use
separate sets of dimensions in that space, such that no dimension
component is ever non-zero in both functions. If we let

w1 =

NX
i=1

αi Φ1(xi) and w2 =

NX
i=1

βi Φ2(xi) (17)

then we can rewritef(x) from (11) in the form of equation (2) as
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Fig. 1. Example of the formation of a decision surfacef(x) with
a GRBF kernel of single scale (σ = 1). Support vector locations
are shown by the large dots on the base plane.

f(x) = w1 ·Φ1(x) + b1 + w2 ·Φ2(x) + b2

= (w1 + w2) · (Φ1(x) + Φ2(x)) + b (18)

whereb = b1 + b2, since the cross terms,w1 · Φ2(x) andw2 ·
Φ1(x), are zero because of the orthogonality ofΦ1 andΦ2.

Given the equivalence between equations (2) and (18) ifw =
w1 + w2 andΦ(x) = Φ1(x) + Φ2(x), it seems natural to try to
find theαi andβi which solve the same Lagrangian optimization
as before in (3). We will call this the parallel method of solution.
Solving for zero gradient of the primary Lagrangian function as in
(4) requires that

w1 =

NX
i=1

λiyiΦ1(xi) and w2 =

NX
i=1

λiyiΦ2(xi) (19)

Comparing equations (17) and (19), we see it is necessary that
αi = λiyi andβi = λiyi, and henceαi = βi, for all i. This isnot
what we were hoping for as it implies thatf(x) is comprised of
equal amounts of each kernel,k1 andk2, at every support vector
location. It conflicts with our aim of usingk1 predominantly for
locations in smooth parts of the decision function andk2 where it
is less smooth.

To overcome the problems of undesirable linkage between the
α andβ terms in the parallel method, we now propose a sequential
method of solution. It is based on the observation that, when slack
variables are introduced into the SVM model (as in equation (8)),
the magnitudes of theαi terms are constrained so thatf(x) has
less than unit magnitude at the locations where the slack variables
ξi are non-zero. If the kernel function is too smooth, then theξi

will tend to be non-zero at the locations where this smoothness is
a problem.

Our sequential strategy is first to solve for theαi using a fairly
low value for the slack parameterC, in order to createf1(x) from
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Fig. 2. Example of the formation of a decision surfacef(x) with
multi-scale GRBF kernels (σ = 0.5, 1, 1.5).

a single smooth kernelk1, so that it fits the training data as well
as it can in smooth areas but leaves significant errors elsewhere.
Then we use a less smooth (finer scale) kernelk2 to createf2(x)
such that the combined functionf1(x) + f2(x) is a better fit to
the data than justf1(x). Slack variables must be used for the first
step, to prevent the smooth kernel from ‘trying too hard’ to fit the
data everywhere and thus leaving nothing to be done in the second
step. Similarly they can also be used in the second step, and if
there are still regions of poor fit, then additional steps may be used
with kernel functions of progressively finer scales. We want the
distribution of slack variables to be relatively sparse (to encourage
the best fit in areas where kernel smoothness is not a problem), so
theL1 error norm is chosen in preference to theL2 norm as the
most appropriate minimization criterion in this application.

The first step of the sequential algorithm is basically identical
to the single-kernel case, outlined in section 2. Hence we obtain
f1(x) from (12) where� = Y �1 and, as in (9),�1 is the set
of Lagrange multipliers from step 1 which maximize the dual La-
grangian

L1 = − 1
2
�T

1 Y K1Y �1 + �T
1 1 (20)

subject to

�T
1 Y 1 = 0 and 0 ≤ λ1,i ≤ C1, ∀ i (21)

The kernel matrixK1 has elementsk1(xi,xj).
In the second step of the algorithm,�, and hencew1 andf1,

are fixed, while we solve for� andf2. The primary Lagrange
function is derived from (3) using (18), but excludes thew1 ·w1

term as it is constant and thew1 ·w2 terms are zero. Hence

L2 = 1
2

w2 ·w2 −
NX

i=1

λ2,i[yif(xi)− 1] (22)

We now substitute forf(x) from (18) and differentiate only with
respect tow2, asw1 is fixed, to obtain



w2 =

NX
i=1

λ2,iyiΦ2(xi) and so � = Y �2 (23)

Hence�2 is chosen to maximize the dual Lagrangian:

L2 = − 1
2

NX
i=1

NX
j=1

λ2,iλ2,jyiyj k2(xi,xj)

+

NX
i=1

λ2,i(1− yif1(xi))

= − 1
2
�T

2 Y K2Y �2 + �T
2 [1− Y f1(X)] (24)

subject to
�T

2 Y 1 = 0 and 0 ≤ λ2,i ≤ C2, ∀ i (25)

where f1(X) is a column vector comprising the values of
f1(xi) ∀ i.

Comparing (24) with (20) shows that the only effect that step
1 of the sequential algorithm has on step 2, is the contribution
−Y f1(X) to the final term. This represents the amount that the
f1(xi) terms reduce the desired minimum values forf2(xi), so
thatyi[f1(xi) + f2(xi)] ≥ (1− ξi) at each locationxi.

As indicated above, if there are still regions of poor fit to the
training data (and this is judgednot to be due to measurement
noise), then further iterations may be employed, using progres-
sively finer-scale kernels until an acceptable level of fit is achieved.
The only change in later iterations to the above algorithm is the in-
clusion of all previous functions in the final term of (24). Hence
for iterationp the dual Lagrangian becomes

Lp = − 1
2
�T

p Y KpY �p + �T
p [1− Y

p−1X
r=1

fr(X)] (26)

and the vectors of support coefficients are

{�,�,, � . . .} = Y {�1,�2,�3,�4 . . .} (27)

We now turn to the choice of function type for kernels
k2 . . . kp which may well depend on the application area. We
can make some progress however by assuming thatk1 is a
d-dimensional GRBF of the form of (10). This will have a low-
pass frequency response that is also a radially symmetric Gaussian
function ind-dimensional frequency space, with a bandwidth that
is inversely proportional to the standard deviation,σ1, of k1.

In accordance with multi-scale wavelet philosophy, letk2 have
half the standard deviation ofk1, so thatσ2 = σ1/2 and its radial
bandwidth will be twice that ofk1. Wavelets tend to be designed
to produce low correlation between the basis functions at adjacent
scales. This is achieved by starting with a lowpass scaling function
for the lowest frequencies of interest, and then defining wavelets to
be bandpass functions with octave bandwidths to cover the higher
frequency components of the signal. A key feature of a bandpass
wavelet function is that it has zero gain at zero frequency (all ad-
missible wavelets must have this property). A potentially conflict-
ing requirement for SVMs is that all kernels should satisfy Mer-
cer’s condition, which for shift-invariant RBFs means that their
Fourier transforms must be non-negative. A good way to create
bandpass RBFs (BRBFs) ind-dimensional space, which satisfy
this condition, is to take the difference of two lowpass GRBFs:

kbrbf(xi,xj) = g2 exp

�−||xi − xj ||2
2σ2

2

�
− g1 exp

�−||xi − xj ||2
2σ2

1

�
(28)
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Fig. 3. Training data (500 points) for the ‘zig-zag’ test example,
shown as ‘+’ and ‘×’ for points above and below the decision
boundary (dashed line) respectively.

whereg2 = σd
1/(σd

1 − σd
2) andg1 = σd

2/(σd
1 − σd

2) in order to
obtain zero gain at zero frequency and unit amplitude at the centre
of the BRBF. In 2-D this is the familiar ‘mexican hat’ function.

4. RESULTS

To demonstrate our proposed multi-scale techniques, we took a
2-D example of part of a decision boundary which is a zig-zag
shape, as shown by the dashed line in figure 3. This shape con-
tains features at multiple scales and is representative of the sort
of boundary that conventional single-scale kernel functions would
have difficulty in matching.

Training samples were generated randomly from a 2-D Gaus-
sian circular distribution, of standard deviation= 1.5, truncated
to lie between±3. Samples which were within a small distanceε
(chosen to be 0.1 in this case) of the decision boundary were re-
moved, as such samples would tend to lead to unreliable decisions
in practice. Our set ofN = 500 training samples are shown in
figure 3. For testing we used 10,000 samples,xt, arranged on a
uniform 100 × 100 grid covering the whole region shown. Our
algorithm used a GRBF withσ = 2 for the first iteration, and then
BRBFs with{σ1, σ2} = {2, 1}, {1, 0.5} and{0.5, 0.25} for the
second, third and fourth iterations respectively. We setCp = 5 ∀ p.

The results after each iteration are shown in figure 4, (a) to
(d). The level-zero decision contour is a solid line, and the dashed
line shows the ‘ideal’ decision contour of the model from which
the training data was generated and to which we hope the solid
line will converge. Note how the wide (largeσ) GRBF of the
first iteration results in a smooth decision contour, which does not
follow the sharp transitions of the zig-zag, but is good at estimating
the correct boundary near the outer edges of the region despite the
relative low density of training samples in these regions (see figure
3). Beside each figure we quote the hard and soft probabilities
of error, measured using theT = 10, 000 uniformly spaced test
samplesxt and defined (in Matlab-style notation) as follows:

Phard = 1
T

PT
t=1[ytf(xt) < 0] (29)

Psoft = 1
T

PT
t=1 max[1− ytf(xt), 0] (30)
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(a)
Iteration 1:
σ = 2
Psoft = 0.125
Phard = 0.034

(b)
Iteration 2:

σ1 = 2, σ2 = 1
Psoft = 0.078
Phard = 0.021
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(c)
Iteration 3:
σ1 = 1, σ2 = 0.5
Psoft = 0.065
Phard = 0.013

(d)
Iteration 4:

σ1 = 0.5, σ2 = 0.25
Psoft = 0.065
Phard = 0.013
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(e)
Single kernel:
σ = 0.7
Psoft = 0.089
Phard = 0.018

(f)
Single kernel:

σ = 0.25
Psoft = 0.190
Phard = 0.018
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Fig. 4. Evolution of the decision surface and support vectors for four iterations of the multi-scale algorithm (a to d) and two single-kernel
examples (e and f). The gray-scale image is of the surfacef(x) with dotted contours at levels{±1,±3,±5}. Support vectors whoseλi

are below the upper bound,C = 5, are shown as circles, while support vectors withλi at the upper bound are shown as crosses (‘+’ for
class+1 and ‘×’ for class−1).
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Fig. 5. Results of tests with the Wisconsin breast cancer database:
the dashed line with ‘×’ shows the single kernel results and the
solid line with ‘o’ shows the multiple kernel results.

Phard measures the (quantized) area between the solid and
dashed lines in figures 4(a) to 4(f) as a proportion of the total area
of each figure.Psoft measures the mean amount by whichytf(xt)
is less than unity, and is a more sensitive measure of lack of fit
betweenf(x) and the desired model.

In figure 4 we see thatPhard improves from 0.034 to 0.013,
while Psoft improves from 0.125 to 0.065 over the four iterations.

To provide a comparison with single-kernel methods, figures
4(a), (e) and (f) show corresponding results for coarse (σ = 2),
medium (σ = 0.7) and fine scale (σ = 0.25) GRBF single kernels,
trained on identical data. We can see that the proposed sequential
multi-scale method achieves a good fit to the model (dashed line)
by iteration 3 (figure 4(c)), and that this is significantly better than
that achieved by the single-kernel examples, which demonstrate
either a poor ability to fit the finer features (corners) of the model
(figures 4(a) and (e)) or over-fitting of the data with a poor ability
to generalize in between test samples (figure 4(f)). Figure 4(d)
shows that the algorithm converges to a sensible final solution that
is appropriate to the density of training samples provided.

The above examples are limited to 2-dimensional data. To
show that the multi-scale concept works for real data of much
higher dimensionality, we have applied it to the well-known Wis-
consin breast cancer dataset [12], which is 30-dimensional and
comprises 569 samples, of which 357 are classed as benign and
212 as malignant. To test our systems, we randomly chose 400
samples as a training dataset and used the remaining 169 as test
data, and repeated this for 5 random selections in total. The only
preprocessing performed on the data was to scale each of the 30
components to have unit variance over the 569 samples. Figure 5
shows the results of these tests.

The plots showPsoft andPhard respectively as a function of
1/σ on a log scale; from left to rightσ = {32, 16, 8, 4, 2}. For the
multiple-kernel system, these are the consecutive values ofσ or σ2

on each iteration, 1 to 5, and the results are shown by the solid line
with circles at the data points. The dashed line with crosses plots
the results with a single GRBF kernel whoseσ takes the 5 values
in turn. As before, the multiple-kernel system uses a GRBF on the
first iteration and BRBFs on iterations 2 to 5.Cp is again set to 5
for all p. The multiple-kernel system consistently outperforms the

single-kernel cases and achieves a hard error probability of 1.9%
(i.e. 98.1% probability of correct classification), compared with a
best result of 2.4% for single kernels under the same input condi-
tions. The plots ofPsoft show a similar trend.

Note that the multiple-kernel systems are much less critical
of the precise choice and range of values forσ since their curves
display a broader minimum than the single-kernel curves.

5. CONCLUSION

We have presented a generalization of the SVM by introducing
multiple kernels and multi-scale learning, motivated by wavelet
concepts of coarse to fine scale approximations. We have shown
how different kernels can learn different parts of a complicated
decision boundary comprising both smooth and sharp parts. Com-
putation tends to rise only linearly (or less) with the number of
kernel scales and the dimensionality of the input space. This work
is an initial step in multi-scale SVM research, with many aspects
still to be investigated such as the choice of parameters likeC and
the range ofσ. Alternative kernel types, computational efficiency
aspects, and linkage with Bayesian ideas (e.g. Relevance Vector
Machines) are also key areas for future work.
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