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ABSTRACT smooth basis function. Successive enhancement to the approxima-

. tion accuracy is then achieved by adding localized basis functions
We propose the enhancement of Support Vector Machines forwith increasingly finer scale until a desired level of accuracy is

class:fi(t:atri](_)ln, byrt]he “ff ﬁf mulg-slqale klernel sl;fucgu_res (bast?c:lonachieved. We show how this approach can be used to improve
wavelet p 'O_Sl_(r)]P y)w_dlc can (ejtlnedar )]/‘fC[;)T ine 'E.l"?‘tsﬁ’a 1aY the ability of SVMs to learn complicated decision functions which
varying way. This provides a good tradeoft between ability 10 9en- ., yiain hoth fine detail and large smooth regions. Note that this
eralize well in areas of sparse training vectors and ability to fit fine approach is quite different from the work in [6], in which some

detail of the decision surface in areas where the training vector o ; ;
L e ; L : ; " wavelet principles are employed but only with a single kernel.
density is sufficient to provide this information. Our algorithm is P P ploy y g

a sequential machine learning method in that progressively finer
kernel functions are incorporated in successive stages of the learn- 2. SINGLE KERNEL - KEY RESULTS
ing process. Its key advantage is the ability to find the appropriate

kernel scale for every local region of the input space. We start by summarizing the well-known key formulae arising

from the use of conventional kernel-based support vector machines
(SVMs) for binary classification. The reader is referred to tutorial
1. INTRODUCTION papers [1, 11] for more details.

We consider training the SVM to interprétdimensional in-
put vectorsx into just two classegs = +1. We assume that th¥
training vectors are of the forfix; . ..xy} with associated deci-
sion variablegy; ... yn }, wherex; € R% andy; = +1, V.

Kernel methods assume a non-linear mapgie ), generally

The Support Vector Machine (SVM) is a machine learning tech-
nique that is receiving considerable attention in the scientific com-
munity for its superior ability to solve many types of classification
problem, particularly in the non-linear form based on ici-

ple of kerneld1, 2]. Much of the power of SVM algorithms lies 1, 5 mych higher dimensional space tharknown as thdeature
in the |r_an|C|t non-linear mapping of the input da_ta to a higher- space such that, for any pair of input vectats andx;, the scalar-
dimensional f_eature space_by the_kernel, and choice of the correct,5| o4 kernel functiork(x:, x; ) is defined by the following dot-
kernel fo_r a given probler_n is very important. _ _ _ product in the feature space

The issue of the choice of kernel has received relatively little
attention in the research community until recently. Amari and Wu k(xi,x;) = k(xj,%:) = ®(x;) - ®(x5) 1)
[3] proposed a simple way of modifying a given kernel function
by exploiting the structure of the Riemannian geometry induce
by the kernel function. Based on the concept of Reproducing Ker- f(x)=w-®(x)+b (2)
nel Hilbert Space from functional analysis Ong et. al. [4] propose
the use of hyperkernels as a way to learn the optimal kernel givensuch thaty; f(x;) > 1 for all training samples. This corresponds
the data. The hybrid kernel method of Tan and Wang [5] is a way to finding the projection vectow, normal to a pair of parallel hy-
to construct a complex kernel by what is essentially a polynomial perplanes in the feature space, such that all points in eldsare
expansion of a basic kernel (eg. GRBF). The use of wavelet func- ‘above’ one hyperplane and all points in clas$ are ‘below’ the
tions for kernel construction was considered by Zhang et. al. [6] other hyperplane. The distance between the hyperplanes is maxi-
where a basic wavelet, namely the Modulated Gaussian, was usednized whenw - w = ||w||” is minimized.
in the simulations. The use of frames has been proposed in [7]. In order to find thew with minimal magnitude which satisfies

In this paper, we present a way to enhance the SVM through v:f(x:) > 1, we define a Lagrangian function
the use of multiple kernels. This approach is a significant depar- N
ture from previous approaches described above and our philoso- ol . N
phy is motivated by ideas and principles from multi-resolution and L=sww ; Ay £0xi) = 1] @)
wavelet theory [8, 9], although a multiscale approach quite simi- B
lar to ours has been presented briefly in [10]. With wavelets, one For a given set of Lagrange multipliefa . .. Ax } which must be
first obtains a coarse approximation to a signal using a globally non-negative, we differentiaté with respect to each component
of w and also td and set the results to zero to minimizewhich
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d When designing a SVM, the aim is to find a function of the form




Substituting expressions (1), (2) and (4) into (3) and combining 3. MULTIPLE KERNEL METHOD
the %w - w term with the first summation term, produces the well-

known dual Lagrangian formulation: Returning to equation (7), we note thax) is just a linear com-
bination of kernel functions, located around the support vestors
N N N for which the weightsy; = \;y; are non-zero. For RBF kernels,
L= f% Z Z Ai\jysy; k(xi, x5) + Z A 5) these functions are radially symmetric and are centred upon each
i=1j=1 i=1 support vector, as shown in fig. 1(a) for a pair of 2-D support vec-

) o ] ] o tors (one of class+1 and the other of class-1). The polarities
Now we solve for the\; which maximize thisL while satisfying  of the weights are given by thg values, which are the classes of

the constraints the support vectors. The composite surfgi¢g) for all 6 support
N vectors is shown in fig. 1(b) and the class decision surface is the
Z Ayi =0 and A >0 ®) boundary (black contour) correspondingftex) = 0.

It is straightforward to see that if a GRBF kernel, such as the
one defined by (10), is used and its standard deviatitslarge,
This produces the result which minimizes- w while satisfying then the surface (x) will be a smooth function ok. Hence the
yif(x:) > 1. The decision function then becomes decision surface, wherg(x) = 0, will also be smooth. This will

be good for generalizing in regions of sparse training data, but it
N will be poor at fitting any rapidly fluctuating parts of the decision
Fx) =D Neya k(xi, %) +b (7) boundary.
i=1 On the other hand, a GRBF kernel with smalkill be good at
. ) fitting rapid fluctuations (as long as there is enough training data
The Karush-Kuhn-Tucker (KKT) conditions require that, atthe op- i, sych regions) but it will be poor at generalising in regions of
timum solution, each term of the summation on the right-hand side sparse training data, singéx) will tend back to zero in between
of (3) is zero, and this is achieved By only being non-zero for  neighhoring points of the same class which are significantly more
the terms wherey; f(x;) = 1 exactly. These non-zerd; then than2s apart. Hence it is desirable to allow kernel functions of
select thesupport vectors:;, used to producg(x) in (7). more than one scale to be used to define a given decision surface.

If slack variables¢; > 0, are introduced which allow some  Fig. 2 shows the same support vectors as fig. 1, but now different

of the values of); f(x:) to be(1 — &) instead of unity, inorderto  \a1yes are used for the kernels. Note how this modifies the decision

reduce thew - w term, then two straightforward solutions emerge, poundary contour into a much sharper curve around the support

depending on the penalty function introduced into the Lagrangian ygctor with the small kernel
function (3). If the penalty function is the, norm, C'>:_, &, We choose to start by defining the form thfd) should take

then this simply causes an upper limit@fto be introduced to the for just two kernel functiong; andk:, which is:
i, SO that the constraint (6) now becomes

=1

fx) = fix)+ fa(x) (11)
o< <C (8) N
where f1 (X) = Z o k1 (Xi, X) + b1 (12)
The main expressions above can be simplified if vector and =1

matrix notation is used. Hence the dual Lagrangian (5) becomes N
and x) =  ko(xi,x) + b 13
L=-1NYKYXx + A1 ©) f2(x) ;6 2(xi,3) b2 (13)
Our aim is thatk: should be a coarse-scale kernel (e.g. a
GRBF with larges) and thea; should select support vectors in
smooth regions off (x), while k2 should be a finer-scale kernel
(smallero) and theg; should select support vectors in regions
wheref(x) needs to vary more rapidly.
We can define separate feature space mapgingand®- so
that, for anyx; andx;:

where is a column vector of all the\; terms,Y” is a diagonal
matrix of all they; terms, K is the kernel matrix with elements
K;; = k(xi,%;), andl is a column vector of lengtfv with unit
elements.

Note thatK is a symmetricdV x N matrix, and, for a unique
finite solution to be guaranteefl; must be positive definite. (This
also implies thaly K'Y is positive definite becausé is diagonal

and full-rank.) This is equivalent to requiring that the kernel func- P (xi) P1(x;) = ki(xi, %) (14)
tion satisfies Mercer’s condition. If the kernel is shift-invariant _

(i.e. it is a function only of the vector difference; — x;), then Po(xi) - B2(xy) = ko, x5) (15)
the positive definite condition is equivalent to requiring that the and ®:1(x;) - P2(x;) = 0 (16)

Fourier transform ok is purely real and non-negative.
For example, a Gaussian radial basis function (GRBF) kernel
is shift invariant, since it is defined by

The orthogonal relation betwed, and®- in (16) is useful, and
can be easily achieved (notionally) by increasing the dimension-
ality of the feature space and allowing the two functions to use

lI%; — x |\2> separate sets of dimensions in that space, such that no dimension
—[|xi — x;

557 (10) component is ever non-zero in both functions. If we let
g

Kgrbe (xi, %) = exp (
N N

W, = Zai <I>1(xi) and Wo = Zﬂz Qg(xi) (17)
=1

=1

Its Fourier transform is another radial Gaussian functioniin
dimensional frequency space and is therefore non-negative, as re-
quired. then we can rewritg (x) from (11) in the form of equation (2) as
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Fig. 1. Example of the formation of a decision surfaggx) with Fig. 2. Example of the formation of a decision surfaggx) with
a GRBF kernel of single scale (= 1). Support vector locations  multi-scale GRBF kernels(= 0.5, 1, 1.5).
are shown by the large dots on the base plane.

a single smooth kerndl,, so that it fits the training data as well

f(x) = w1 -®1(x)+b1+ w2 Pa(x)+ b2 as it can in smooth areas but leaves significant errors elsewhere.

= (wi+wa) (P1(x)+®2(x))+b  (18) Then we use a less smooth (finer scale) kekaeb createfs(x)
such that the combined functiof (x) + f2(x) is a better fit to

whereb = b1 + ba, since the cross termsy; - ®2(x) andws - the data than jusf: (x). Slack variables must be used for the first
P, (x), are zero because of the orthogonalityof and®.. step, to prevent the smooth kernel from ‘trying too hard’ to fit the
Given the equivalence between equations (2) and (18) 4 data everywhere and thus leaving nothing to be done in the second

w1 + we and®(x) = ®;(x) + P2(x), it seems natural totry to  step. Similarly they can also be used in the second step, and if
find thea; and3; which solve the same Lagrangian optimization there are still regions of poor fit, then additional steps may be used

as before in (3). We will call this the parallel method of solution. with kernel functions of progressively finer scales. We want the

Solving for zero gradient of the primary Lagrangian function as in distribution of slack variables to be relatively sparse (to encourage
(4) requires that the best fit in areas where kernel smoothness is not a problem), so

N N the £, error norm is chosen in preference to the norm as the
w1 = Z Xiyi®1(x;) and wo = Z iy ®a(x;) (19) most app_ropriate minimization c_riterion i_n this_ appli_cation_. _
i=1 im1 The first step of the sequential algorithm is basically identical

Comparing equations (17) and (19), we see it is necessary that0 the single-kernel case, outlined in section 2. Hence we obtain

ai = Ay andB; = M\syi, and hencey; = 3;, for all i. This isnot fi(x) from (12) wherea = YA, and, as in (9, is the set

what we were hoping for as it implies th#tx) is comprised of of Lagrange multipliers from step 1 which maximize the dual La-

equal amounts of each kernél, and k., at every support vector ~ grangian r r

location. It conflicts with our aim of using; predominantly for Li=—3AYKiYA +A11 (20)

!0(|:ations in s'r:wooth parts of the decision function &pdvhere it subject to

is less smooth. Tira ‘ .
To overcome the problems of undesirable linkage between the A1 }./1 =0 and 0< Ay, < Ch, Vi (1)

o andg terms in the parallel method, we now propose a sequential The kernel matrixi(; has elements; (x;, x;).

method of solution. It is based on the observation that, when slack  In the second step of the algorithm, and hencev, and f1,

variables are introduced into the SVM model (as in equation (8)), are fixed, while we solve fog and f.. The primary Lagrange

the magnitudes of the; terms are constrained so thatx) has ~ function is derived from (3) using (18), but excludes the - w
less than unit magnitude at the locations where the slack variableserm as it is constant and tive, - w» terms are zero. Hence
& are non-zero. If the kernel function is too smooth, thenghe N
will tend to be non-zero at the locations where this smoothness is Ly=1%wo-wo— Y Aoslyif(xi) — 1] (22)
a problem. i=1

Our sequential strategy is first to solve for theusing a fairly We now substitute fof (x) from (18) and differentiate only with

low value for the slack parametét, in order to creatd (x) from respect tow., asw; is fixed, to obtain
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Comparing (24) with (20) shows that the only effect that step Koo * b .
1 of the sequential algorithm has on step 2, is the contribution 3 = " 0 = 2 3

=Y £1(X) to the final term. This represents the amount that the
f1(x;) terms reduce the desired minimum values fo(x;), so
thaty; [f1(x:) + f2(x:)] > (1 — &) at each locatiox;.

As indicated above, if there are still regions of poor fit to the
training data (and this is judgeadbt to be due to measurement
noise), then further iterations may be employed, using progres-Whereg. = of/(of — o§) andg1 = o5/(of — o5) in order to
sively finer-scale kernels until an acceptable level of fit is achieved. obtain zero gain at zero frequency and unit amplitude at the centre
The only change in later iterations to the above algorithm is the in- 0f the BRBF. In 2-D this is the familiar ‘mexican hat’ function.
clusion of all previous functions in the final term of (24). Hence
for iterationp the dual Lagrangian becomes 4. RESULTS

p—1

1 \T T To demonstrate our proposed multi-scale techniques, we took a
Ly==3 0 YE YA + A1V Z - (X)] (26) 2-D example of part of a decision boundary which is a zig-zag
shape, as shown by the dashed line in figure 3. This shape con-
tains features at multiple scales and is representative of the sort
{a,8,7,0...} =Y{A1, A2, A3, A\s...} (27) of boundary that conventional single-scale kernel functions would
have difficulty in matching.

Training samples were generated randomly from a 2-D Gaus-
sian circular distribution, of standard deviatien 1.5, truncated
to lie betweent3. Samples which were within a small distance
r5ﬂchosen to be 0.1 in this case) of the decision boundary were re-

oved, as such samples would tend to lead to unreliable decisions
in practice. Our set ofV = 500 training samples are shown in
figure 3. For testing we used 10,000 samples,arranged on a
uniform 100 x 100 grid covering the whole region shown. Our

bandwidth will be twice that ok;. Wavelets tend to be designed algorlthm_used a GRBf with = 2 for the first iteration, and then

o produce low correlation between the basis functions at adiacentt RBFS With{o1, o2} = {2,1},{1,0.5} and{0.5,0.25} for the

op € low correlation between the basis functions at adjace second, third and fourth iterations respectively. We§et= 5V p.
scales. This is achieved by starting with a lowpass scaling function The results after each iteration are shown in figure 4, (a) to
for the lowest frequencies of interest, and then defining wavelets to (d). The level-zero decision contour is a solid line ar%d the ,dashed
be bandpass functions with octave bandwidths to cover the higherlmé shows the ‘ideal’ decision contour of the mo,del from which
frequency components of the signal. A key feature of a bandpass the training data was generated and to which we hope the solid
wavelet function is that it has zero gain at zero frequency (all ad- g 9 P

missible wavelets must have this property). A potentially conflict- :‘:?:t i\;\(le"rla(t:i?):vgg& ts moéesg%vgt;lhgeggsn(g%zu?RWE;lli:ck?f d?:s not
ing requirement for SVMs is that all kernels should satisfy Mer- '

cer's condition, which for shift-invariant RBFs means that their Iﬁgo(‘:’gr:cfEiﬁ)ntéz?sﬁggrstﬁggitﬂ?:;géglétf';g?gdiitnejg;nitént%e
Fourier transforms must be non-negative. A good way to create y 9 9 P

o . - - relative low density of training samples in these regions (see figure
bandpass RBFs (BRBFs) ifrdimensional space, which satisfy . ’ 2
this condition, is to take the difference of two lowpass GRBFs: 3). Beside each figure we quote the hard and soft probabilities

of error, measured using tfe = 10,000 uniformly spaced test
—|xs — Xj|‘2> samplesx; and defined (in Matlab-style notation) as follows:

s — x5 7 X [vef (xe) < 0] (29)
— g1 €xXp <720—% J ) (28) Psoft = % Z’tl—‘:l max[l — ytf(xt), O} (30)

Fig. 3. Training data (500 points) for the ‘zig-zag’ test example,
shown as 4+’ and ‘x’ for points above and below the decision
boundary (dashed line) respectively.

r=1
and the vectors of support coefficients are

We now turn to the choice of function type for kernels
ko ...k, which may well depend on the application area. We
can make some progress however by assuming thaits a
d-dimensional GRBF of the form of (10). This will have a low-
pass frequency response that is also a radially symmetric Gaussial
function ind-dimensional frequency space, with a bandwidth that
is inversely proportional to the standard deviatien, of k.

In accordance with multi-scale wavelet philosophyfghave
half the standard deviation &f, so thate, = 01/2 and its radial

koot (x4, x5) = gzeXp< 557
2

Phara



(a)
Iteration 1:
oc=2
Piogy = 0.125
Phara = 0.034
(b)
Iteration 2:
g1 = 2,0’2 =1
Psots = 0.078
Phara = 0.021
(c)
Iteration 3:
g1 = 1,0’2 =0.5
Psoft = 0.065
Phara = 0.013
NG
Iteration 4.
o1 =0.5,00=0.25
Piory = 0.065
Phara = 0.013
(e)
Single kernel:
oc=0.7
Psosy = 0.089
Phara = 0.018
fH -
Single kernel:
o=0.25
Pt = 0.190 -2
Phara = 0.018
-3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Fig. 4. Evolution of the decision surface and support vectors for four iterations of the multi-scale algorithm (a to d) and two single-kernel
examples (e and f). The gray-scale image is of the surfdg¢ with dotted contours at levelst1, +3, £5}. Support vectors whosk;

are below the upper bound; = 5, are shown as circles, while support vectors withat the upper bound are shown as crosses for

class+1 and ‘x’ for class—1).



() Soft error measure single-kernel cases and achieves a hard error probability of 1.9%
‘ X (i.e. 98.1% probability of correct classification), compared with a
y best result of 2.4% for single kernels under the same input condi-
1 tions. The plots ofP.s show a similar trend.

] Note that the multiple-kernel systems are much less critical
of the precise choice and range of valuesdasince their curves
display a broader minimum than the single-kernel curves.

5. CONCLUSION

(b) Hard error measure

We have presented a generalization of the SVM by introducing

0.051- x ol

ooal < .7 | multiple kernels and multi-scale learning, motivated by wavelet

‘ S i concepts of coarse to fine scale approximations. We have shown

0.03- Tl 7 ~ . A -
\ﬂs\\g/o how different kernels can learn different parts of a complicated

0.02- 4

decision boundary comprising both smooth and sharp parts. Com-
putation tends to rise only linearly (or less) with the number of

o7 o o kernel scales and the dimensionality of the input space. This work
1/ (sigma of the kernel) is an initial step in multi-scale SVM research, with many aspects

Fig. 5. Results of tests with the Wisconsin breast cancer databasestill to be investigated such as the choice of parameterglikad

the dashed line witht’ shows the single kernel results and the the range obr. Alternative kernel types, computational efficiency

solid line with ‘0’ shows the multiple kernel results. aspects, and linkage with Bayesian ideas (e.g. Relevance Vector

Machines) are also key areas for future work.
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