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Abstract

We describe a method for verifying seismic modelling parameters.  It is equivalent to performing several iterations of unconstrained least-squares migration (LSM).  The approach allows the comparison of modelling/imaging parameter configurations with greater confidence than simply viewing the migrated images.  The method is best suited to determining discrete parameters but can be used for continuous parameters albeit with greater computational expense.

Introduction

When performing seismic imaging or modelling there are a number of potentially unknown parameters which may need to be determined.  Many of these are estimated and the approximations may have errors.  Erroneous parameter values lead to inferior modelling and incorrect or degraded images.  Experienced practitioners will often be able infer information about modelling quality from migrated images.  However, the smoothing nature of migration can sometimes make it difficult to reliably say which of the possible parameter choices is the correct one.

Least-squares migration (LSM) corresponds to a more accurate inversion the seismic modelling operator, as opposed to Kirchhoff migration which is based on application of the transpose of the matrix equivalent of the seismic modelling operator (Nemeth et al., 1999).  LSM works by attempting to find the subsurface reflectivity model parameters that best correspond to those which would produce the recorded scattered acoustic data.  This is achieved by iteratively minimising a cost function consisting of a data matching term and a constraint term.  We propose a technique whereby the relative suitability of a particular parameter configuration is evaluated using unconstrained LSM (no constraint term).  

Such a method for estimating unknown parameters would be particularly useful in frontier exploration situations where information from other sources such as wells is not available to corroborate migration results.  Alternatively, the approach could be used to refine previously estimated parameters.  It is well suited to estimating discrete parameters, where the number of possible values is finite.  One example of this in 2D imaging is the decision whether to use 2.5D or 3D modelling, which depends on whether the reflectors imaged can be assumed to be homogeneous in the direction perpendicular to the plane of imaging.  In this abstract the method is used to adjust a background velocity profile in a rather blunt but effective manner.  The main constraint of the method is its computational expense.  Previously, Nemeth et al. (1999) have noticed the effect of incorrect modelling parameters causing the deterioration of reflectivity model estimates in LSM.
Theory

LSM relates the observed scattered acoustic data 
[image: image1.wmf]d

to the subsurface reflectivity model 
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 via the linear forward modelling operator 
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where the additive noise 
[image: image5.wmf]n

 is assumed Gaussian distributed with covariance 
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C

. The probability density function for the scattered data is then:
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The maximum a posteriori (MAP) estimate for the reflectivity model, which maximizes the posterior probability
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The second line of (3) follows from Bayes’ theorem. The probability
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is the prior probability for the reflectivity model. Taking the negative logarithm yields the appropriate cost function to be minimised:
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where the first term in (4) is the data matching term and 
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 is referred to as the constraint term.

LSM obtains an estimate for the subsurface reflectivity by minimising (4) using an iterative method such as a conjugate gradient algorithm, as is done here.  If the data is highly redundant, the constraint term can often be ignored since its contribution to the cost function is small compared to the data matching term.  However, if the data is incomplete, the constraint plays a greater role and without it an iterative minimisation technique will start to diverge after a few iterations.

We frame inaccurate modelling as an increase in the system noise 
[image: image14.wmf]n

, since this must account for all discrepancies between the data and the result of the modelling.  If we assume the modelling error is Gaussian, it can be shown that a higher modelling error noise level results in a lower overall value for the data matching component of the cost function.  Of course the modelling error noise is unlikely to be Gaussian but we use the result to motivate the following: if increasing the modelling error results in increased reliance on the constraint term, we hypothesise that inferior modelling will cause an unconstrained LSM to diverge more rapidly.  

Although putting a constraint or prior on the reflectivity model parameters would result in a much better reflectivity image, our aim is to deduce the suitability of one set of modelling parameter compared to another in as few iterations of the minimisation of equation (4) as possible.  Hence, the constraint is omitted to allow the effects of an inaccurate parameter to be seen as soon as possible.  In addition, doing this allows the data matching energy to be analysed without interference from the constraint term.

Example – synthetic data

The synthetic data shown in figure 2 was generated using Seismic Unix (Cohen and Stockwell, 2003). This sparse dataset consists of six common shot gathers spaced at 300m with 30 traces in each gather.  The maximum offset in each gather is 1500m. The velocity field is linearly increasing with depth from 1500
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at depth
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at a rate of 0.8
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 per meter.  The reflectors used to generate the data are displayed in figure 1. 
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	Figure 1 – Synthetic data reflectors
	Figure 2 – Synthetic data


Figure 3 displays the Kirchhoff migrated section for the data. Unconstrained LSM is now applied to the data.  The result of 10 iterations of unconstrained LSM using conjugate gradient descent is shown in figure 5 and the corresponding cost function in figure 7.

We now reconstruct the same data but assume that the velocity profile has been wrongly estimated such that it would need to be scaled up by 5% to be correct.  This modelling error is chosen to provide background and verification for the real data example given in the next section.

The Kirchhoff migration for the data with the assumed velocity error is shown in figure 4, alongside the original Kirchhoff migration.  The main differences between the results are the vertical shift and the minor artefacts near the cusps of the reflector.  However, the healing effect of Kirchhoff migration means the velocity error has not significantly affected the result.

Figure 6 contains the result of 10 iterations of unconstrained LSM assuming the erroneous velocity profile.  The iterations amplify the effects of the modelling imperfections on the reflectivity and the number and severity of the artefacts in figure 6 are visibly higher that those in figure 5.  We conclude that in this case it would be easier to determine which of the velocity profiles are correct from the results of the unconstrained LSM than from the Kirchhoff migrated images.  Figures 7 and 8 show the energy of the cost function (4) for the two cases.  When the modelling is correct, the energy decreases more rapidly and to a lower value.

Example – real data

The following example arose during a real parameter estimation situation.  The data used are from a 3­D survey acquired in 2001 over the offshore Gippsland Basin near Australia. 14216 traces from a single shot/streamer line along a length of 2km were selected from the data volume.  A background velocity profile was obtained using semblance velocity analysis in Promax(.  It was then smoothed before ray tracing.

Figures 9, 11 and 13 contain the Kirchhoff migration, the result of 10 iterations of unconstrained LSM and the corresponding cost function respectively.  Figures 10, 12 and 14 contain the same results after scaling up the velocity profile by 5%.  Without any a priori information about the reflectivity it would be difficult to judge 
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	Figure 3 – Kirchhoff migration, velocities correct
	Figure 4 – Kirchhoff migration, velocities incorrect
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	Figure 5 – Unconstrained LSM, velocities correct
	Figure 6 – Unconstrained LSM, velocities incorrect
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	Figure 7 – Cost function, velocities correct
	Figure 8 – Cost function, velocities incorrect
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	Figure 9 – Kirchhoff migration, velocities correct
	Figure 10 – Kirchhoff migration, velocities incorrect
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	Figure 11 – Unconstrained LSM, velocities correct
	Figure 12 – Unconstrained LSM, velocities incorrect
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	Figure 13 – Cost function, velocities correct
	Figure 14 – Cost function, velocities incorrect


which of the Kirchhoff migration results in figures 9 and 10 is a result of inferior modelling, even though the results are quite different including a relative vertical shift of approximately 80m.  The far more rapid divergence of the reflectivity for the lower velocities case and the behaviour of the cost functions in figures 13 and 14 provide a more certain method of distinction.  It is clear that increasing the velocities has improved the modelling.

Conclusions

We have presented a method of estimating seismic modelling parameters using unconstrained least-squares migration.  Although the availability of increasingly more powerful computers continues to make more computationally intensive seismic processing techniques practical, the computational expense is still a major issue for methods using iterative least-squares techniques.  In this case, computational requirements can be reduced by using only part of the data available and by choosing a reasonably small target volume to reconstruct.  

When searching for a suitable value for a continuous parameter, comparing the cost function values after one or two iterations may be adequate.  However, there are situations where relying solely on the cost function may be unreliable and for final selections it is likely to be useful to look at the results after a number of iterations and to check that the reflectivity model parameters are have not diverged to an implausible result.  Since the method is based on data misfit, there is the potential to decrease the error by adjusting one parameter to compensate for another which has a greater error.  Viewing the convergence of the reflectivity model may also help in these situations.
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