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Abstract

This paper describes an approach to image modelling using interscale phase relationships of wavelet

coefficients for use in image estimation applications. The method is based on the Dual Tree Complex

Wavelet Transform (DT-CWT) but a phase rotation is applied to the coefficients to create complex

‘derotated’ coefficients. These derotated coefficients are shown to have increased correlation compared

to standard wavelet coefficients near edge and ridge features allowing improved signal estimation in these

areas. The nature of the benefits brought by the derotated coefficients are analysed and the implications

for image estimation algorithm design noted. The observations and conclusions provide a basis for design

of the the denoising algorithm in [1].

Index Terms
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I. INTRODUCTION

Wavelet transforms have emerged as a popular basis for photographic image modelling and restoration,

due to the statistically useful properties of wavelet coefficients of natural images. Methods of param-

eterising image statistics, including those of neighbourhoods of wavelet coefficients, often involve the

use of covariance information [2]. Here, we examine the covariance information for groups of wavelet

coefficients near discontinuities and show how using phase information from coefficients at the next

coarser level has the potential to make covariance based estimation more effective. The multiscale

transform used is the Dual Tree Complex Wavelet Transform (DTCWT) [3], [4].
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Interscale phase relationships of wavelet coefficients have previously been used in texture synthesis

[5] and in object recognition [6]. Suggesting the use of interscale phase relationships in image quality

measurement, Wang and Simoncelli [7] provide a good analysis of local phase near scale invariant

features for a certain class of continuous wavelets consisting of a low pass filter modulated with a

complex exponential. Romberg et al. [8] discuss interscale phase relationships and the topic is closely

related to Kovesi’s use of phase congruence in edge detection [9], [10].

We focus on discontinuities, assuming initially that the neighbourhood of wavelet coefficients consid-

ered is dominated by the presence of an edge or ridge 1, i.e. any other features present have little effect

on the wavelet coefficient magnitudes. A companion paper to this one [1] demonstrates the successful use

of the proposed image modelling in a state-of-the-art denoising algorithm and shows how to combine the

specific modelling of discontinuities with standard modelling using an adaptive Bayesian model section

framework. A more accessible introduction to the use of interscale phase relationships in covariance

based estimation is given in [11].

§II gives background on the wavelet transform used here and on the phase characteristics of wavelet

coefficients. §III provides a theoretical framework that motivates the use of interscale phase relationships

to improve signal estimation performance by using a representation with higher signal correlation. An

approach to using interscale phase in estimation algorithms is recommended in §IV proposing the use

of a novel ‘derotated’ coefficient. §IV also provides some examples to familiarise the reader with the

coefficients in 2-D then illustrates the limitations of the method and states the implications for image

estimation algorithm design. In §V we show that the greater phase alignment of derotated coefficients

seen in §IV does indeed translate to higher correlation between coefficients (which is not guaranteed)

and examine the nature of the improvement.

II. BACKGROUND

A. Dual Tree Complex Wavelet Transform

The Dual Tree Complex Wavelet Transform uses a dual tree of real wavelet filters to generate the real

and imaginary parts of complex wavelet coefficients. This introduces a limited amount of redundancy

and allows the transform to provide approximate shift invariance and directionally selective filters, while

preserving the usual properties of perfect reconstruction and computational efficiency.

1Note that the discontinuity need only be dominant at the scale and orientation of the neighbourhood considered. For example,

fine texture surrounding a multiscale discontinuity will not greatly disrupt the modelling at coarser levels.
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For a d-dimensional input, an L scale DT-CWT outputs an array of real scaling coefficients correspond-

ing to the lowpass subbands in each dimension and 4d−2d

2 directional subbands of M
2dl complex wavelet

coefficients at level l, where l = 1...L and M is the total size of the input data. The total redundancy of

the transform is 2d and independent of L. The mechanics of the DT-CWT are not covered here. See [3]

and [4] for a comprehensive explanation of the transform and details of filter design for the trees.

In two dimensions the transform produces six directional subbands at each scale. We will often refer to

a local neighbourhood of wavelet coefficients. This is defined as a group of coefficients at nearby spatial

locations and adjacent scales. Parent and child coefficients refer to coefficients in the next coarser and

finer subbands respectively in the same directional subband and at the same spatial location (possibly

interpolated).

B. Phase characteristics of Complex Wavelet Coefficients

A well known property of the Fourier Transform is that a shift in the time or spatial domain corresponds

to a linear phase ramp in the Fourier domain as shown in equation (1).

h(t− α) ­ H(f)e−i2παf (1)

Consider an input signal consisting of an object in the spatial or time domain. A shift of α will result

in a phase shift of 2παf0 at frequency f0 in the Fourier domain. A ‘moving’ object will cause the Fourier

coefficients to rotate at a rate proportional to their frequency f .

DT-CWT coefficients display similar properties to Fourier coefficients for small offsets of a dominant

feature in the vicinity of the coefficient. DT-CWT subbands are centred on a frequency twice that of the

next coarser level. Assume the presence of a single ridge or edge feature at a given scale, orientation

and location. Because adjacent wavelet coefficients are at different locations relative to the feature, the

phase of a complex coefficient will tend to be offset from its neighbour by an amount twice that of the

corresponding parent coefficient (interpolated at the same location as the child), provided the feature is

multiscale and the frequency spectrum of the feature behaves similarly across both of the scales.

This useful relationship is best illustrated in a 1-dimensional setting. Figure 1(a) shows the response of

the magnitude and the real and imaginary parts for a level 3 DT-CWT coefficient as a 1-D step function

is translated past it. The horizontal axes give the translation of the step. Figures 1(b) and 1(c) show the

phase response of the coefficients at levels 3 and 4 to the same step. Figure 2 shows the same results

for an impulse input. In both cases the phase of the level 3 coefficient changes at approximately twice

the rate of its parent at level 4.
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III. CORRELATION AND SIGNAL ESTIMATION

In this section we present a framework that motivates the use of interscale phase in image estimation

applications. We examine the effect of signal correlation in Wiener estimation and show that for two

Gaussian variables in additive Gaussian noise, estimation error decreases as the absolute value of the

difference between the noise and signal correlation coefficients increases. This means that if the noise

correlation magnitude is lower than that of the signal the error variance is a decreasing function of the

signal correlation magnitude.

For a redundant transform like the DT-CWT, noise in the wavelet domain is not strictly uncorrelated.

However, the correlation is generally significantly less than for the signal component. This leads to the

conclusion that if a signal can be represented such that it displays additional correlation, e.g. using the

relationships described in the previous section, signal estimation accuracy could be improved.

A. Effect of Signal Correlation in Wiener Filtering

Consider the estimation of a Gaussian variable from the observation of two correlated variables in

Gaussian noise. We show that the Wiener estimation error as a function of the signal correlation coefficient

is concave and has a local maximum where the value of the signal correlation coefficient is equal to that

of the noise.

The framework used is the standard denoising problem but with only two variables.

y = x + n

 y1

y2


 =


 x1

x2


 +


 n1

n2




x and n are zero mean and have covariance matrices Cx and Cn, i.e. x ∼ N (0,Cx) and n ∼
N (0,Cn). Cx and Cn are parameterised as shown in equations (2) and (3). ρx and ρn are correlation

coefficients and have values between negative one and one inclusive. Note that we exclude the cases

where |ρx| = |ρn| = 1, since in these cases the observations are deterministically linked.

Cx =


 σ2

x ρxσ2
x

ρxσ2
x σ2

x


 (2)

Cn =


 σ2

n ρnσ2
n

ρnσ2
n σ2

n


 (3)
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The standard Wiener estimate x̂ is given in equation (4) for completeness.

x̂ = Cx (Cx + Cn)−1 y (4)

The covariance of the error of a Wiener estimate of x given y, Ce is shown in equation (5).

Ce = E
[
(x− x̂)(x− x̂)T

]

= Cx(Cx + Cn)−1Cn

(5)

The variance of the error for each variable is given in equation (6).

σ2
e =

σ2
xσ2

n

[
(σ2

x + σ2
n)− (ρ2

xσ2
x + ρ2

nσ2
n)

]

(σ2
x + σ2

n)2 − (ρxσ2
x + ρnσ2

n)2
(6)

To analyse the behaviour of σ2
e we take the derivative of (6) with respect to the signal correlation

coefficient and simplify to obtain the expression in (7).

d(σ2
e)

dρx
=

2σ4
xσ4

n

[(σ2
x + σ2

n)2 − (ρxσ2
x + ρnσ2

n)2]2
(ρx − ρn)

[
ρn(ρxσ2

x + ρnσ2
n)− (σ2

x + σ2
n)

]
(7)

The first product term in (7) is positive for all values of ρx, so the roots of (7) are determined by the

final two product terms. Given this, (7) has the roots in (8) and (9).

ρx = ρn (8)

ρx =
1
ρn

+
σ2

n

σ2
x

(
1
ρn
− ρn) (9)

The first root lies in the interval ρx ∈ (−1, 1). In (9), if it exists, either ρn is positive and the root

is greater than one or ρn is negative and the root is less than one. Hence, the second root lies in

ρx ∈ (∞,−1]∪ [1,∞). These are the stationary points of σ2
e as a function of ρx, i.e. where the derivative

is zero.

Since there is a single root of d(σ2
e)

dρx
on the interval ρx ∈ (−1, 1), we can determine the concavity of

the error variance from the values of d(σ2
e)

dρx
at ρx = −1 and ρx = 1. Firstly we consider the estimation

error variance gradient when ρx = −1.

d(σ2
e)

dρx

∣∣∣∣
ρx =−1

=
−2σ4

xσ4
n

[(σ2
x + σ2

n)2 − (σ2
x + ρnσ2

n)2]2
(1 + ρn)

[
σ2

x(1− ρn) + σ2
n(1− ρ2

n)
]

(10)

By inspection we see the expression in (10) is positive for all ρn ∈ (−1, 1). Equation (11) gives the

gradient when ρx = 1.

d(σ2
e)

dρx

∣∣∣∣
ρx =1

=
−2σ4

xσ4
n

[(σ2
x + σ2

n)2 − (σ2
x + ρnσ2

n)2]2
(1− ρn)

[
σ2

x(1− ρn) + σ2
n(1− ρ2

n)
]

(11)
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The expression in (11) is negative for all ρn ∈ (−1, 1). Therefore, σ2
e is concave for all ρx ∈ [−1, 1]

with a local maximum at ρx = ρn. This accords with the intuition that for the lowest estimation error

the signal statistics should be as different as possible to that of the noise.

A consequence of this result is that if the noise correlation is closer to zero than that of the signal,

increased signal correlation magnitude results in a lower estimation error. Note that this also implies that

image restoration techniques using interscale phase to gain increased signal correlation may not be as

effective if the noise present is coloured such that the coefficients of its wavelet domain representation

are more correlated.

IV. DEROTATED COMPLEX WAVELET COEFFICIENTS

The constancy of the phase gradient relationship between wavelet scales demonstrated in section II-

B combined with the result of §III motivates the use of coefficients whose phase has been ‘derotated’

by twice the phase of their interpolated parent coefficient. In the presence of a multiscale feature the

phases of the derotated coefficients should be approximately aligned and therefore highly correlated. This

correlation can then be used to provide improved signal estimation performance at these image features.

In both [6] and [5] the interscale phase relationships are captured using the modified product of

coefficients at adjacent scales shown in equation (12), where x is a wavelet coefficient at a given scale

and orientation, xp is the corresponding parent coefficient at the next coarser scale and r is the product

coefficient. ∠(r) denotes the phase of r.

|r| = |x||xp|

∠(r) = ∠(x)− 2∠(xp)
(12)

However, in an image estimation context avoidance of non-linearity is important for mathematical

tractability so that the new representation can be readily used in an efficient estimation algorithm. For

this reason we propose the use of a coefficient similar to that in equation (12) but with the magnitude

of the child preserved. Equation (13) defines the new derotated coefficient, w.

|w| = |x|

∠(w) = ∠(x)− 2∠(xp)
(13)

Analysis of this derotated coefficient via the DT-CWT filter banks is not straight-forward. However,

analytical insight into the interscale phase relationships of the DT-CWT can be gained by considering

the DT-CWT as a discrete approximation to the continuous Cauchy Wavelet. An analysis along these

lines is included in appendix I and reveals the quadrature nature of the phases of derotated coefficients

near edges compared to those near ridge features.
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A. Derotated coefficients in two dimensions

We now look at some examples of derotated coefficients in 2-D and consider their use in estimation

algorithms. Figures 4 and 5 contain examples of DT-CWT and derotated coefficients overlayed on part

of the Lenna image. Figure 3 shows the original image and the locations of the examples. As we would

expect, derotated coefficients are seen to align at edge and ridge features. Note that we are only considering

features aligned with the orientation of the stated subband. Features with other orientations will not excite

the coefficients’ magnitudes. Note that for derotated coefficients within the same subband there is a 90

degree phase difference between the vectors near edges relative to those near ridges. See appendix I for

an explanation of this in 1-D.

Unfortunately, phase alignment does not guarantee increased correlation. Complex wavelet coefficients

are a bandpass signal and will therefore rotate with an average rate proportional to the ‘centre frequency’

of the subband’s spectrum. This rotation can have the appearance of a lack of correlation. However,

covariance information can adequately describe a linear phase gradient across coefficients. To determine

how the derotation operation contributes to increased correlation we need to examine the correlation

behavior of the two types of coefficient in greater detail. This is done in §V.

B. Limitations of derotated coefficients

We should also consider the limitations of image modelling using derotated coefficients and the

implications this has for their use in image estimation algorithms. Image features which are not multiscale

are not suited to representation using derotated wavelet coefficients. Certain features, in particular areas

of regular texture, tend to be more suited to representation using standard wavelet coefficients. Figure

7 shows standard and derotated DT-CWT coefficients for part of the Barbara image shown in figure

6. The DT-CWT coefficients show significant correlation between neighbouring coefficients whereas the

derotated coefficients show neither alignment nor constant rotation across the vectors and have little

correlation in these regions.

This has important implications for the use of derotated coefficients in image estimation algorithms.

Derotated coefficients are not appropriate for modelling all feature types and restoration algorithms using

them will need to have a mechanism for switching to other modelling methods for neighbourhoods of

coefficients without a dominant edge or ridge feature. In [1], this is achieved using a Bayesian model

selection framework.
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Fig. 1. Magnitude and phase response of a level 3 wavelet coefficient and phase response of a level 4 coefficient to a step

input at a range of offsets. Adapted with permission from code used to generate graphics in [6].
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(c) Phase response at level 4

Fig. 2. Magnitude and phase response of a level 3 wavelet coefficient and phase response of a level 4 coefficient to an impulse

input at a range of offsets. Adapted with permission from code used to generate graphics in [6].
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2

1

Fig. 3. Locations of overlay examples in figures 4 and 5.

(a) DT-CWT coefficients (b) Derotated coefficients

Fig. 4. DT-CWT and derotated coefficients at level 3, direction 1 (15◦) in section 1 of the Lenna image.
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(a) DT-CWT coeffi-

cients

(b) Derotated coeffi-

cients

Fig. 5. DT-CWT and derotated coefficients at level 2, direction 3 (75◦) in section 3 of the Lenna image.

Fig. 6. Location of overlay example in figure 7.
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(a) DT-CWT coefficients (b) Derotated coefficients

Fig. 7. DT-CWT and derotated coefficients at level 2, direction 3 (75◦) in section 1 of the Barbara image.
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V. ANALYSIS OF DT-CWT AND DEROTATED COEFFICIENT CORRELATIONS

As mentioned previously the phase alignment illustrated in IV-A does not guarantee increased correla-

tion (applying a linear phase gradient across a set of coefficients will change their alignment but will not

decrease the level of correlation between them). To apply the result of §III-A to image estimation it is

necessary to show that derotated coefficients have more consistent phase differences between coefficients

and therefore increased correlation at discontinuities compared to DT-CWT coefficients. It is also useful

to know in which situations modelling using derotated coefficients is likely to offer the most improvement.

Therefore, we now compare covariance information of derotated coefficients at discontinuities to that of

standard DT-CWT coefficients. It turns out there are three mechanisms by which derotated coefficients

provide an improved description of image discontinuities:

1) Improved correlation along discontinuities

2) Improved correlation across discontinuities

3) Improved correlation across scale at edge features

To begin, we examine the behaviour of DT-CWT coefficients at discontinuities as a reference point

to see what is gained by using derotated coefficients. This is done in section §V-A before covering the

properties listed above in sections §V-B, §V-C and §V-D. In all cases it is assumed the discontinuity is

approximately aligned with the subband’s direction (i.e. within ±15 degrees). If this is not the case the

coefficients’ magnitudes will be small.

Display of covariance information: To illustrate the complex covariance information for a neighbour-

hood of coefficients we display the cross-correlation of a central coefficient with its neighbours using

vectors with a circle at the base positioned at the location of the neighbour. The cross-correlation with

the parent coefficient is also displayed to the right. For the purpose of clear illustration we use only the

complex covariance information for all DT-CWT and derotated coefficients.

A. Shift invariance of phase differences: Both types of coefficient

Firstly we will consider the relationship between coefficients in the direction approximately perpendic-

ular to the edge. We can explain the behaviour of the phase of DT-CWT and derotated coefficients in 2-D

in terms of the 1-D analysis as follows. The DT-CWT can be implemented using separable filters. For

each subband the decomposition can be expressed as a series of (real) 2-D low pass filtering operations

followed by a lowpass filtering in one direction and highpass in the other direction (near-horizontal

and near-vertical subbands) or high pass filtering in both dimensions (diagonal subbands). Thus, in the
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direction perpendicular to the discontinuity, the phase of the coefficients in 2-D rotate across the filtered

discontinuity in a similar manner to the 1-D case.

Figure 8 shows standard DT-CWT coefficients and derotated coefficients for a vertical edge at two

offsets. The vectors have rotated as a result of the edge’s shift. However, the phase differences between

coefficients across the edge are preserved by the linearity of the step response illustrated in figure 1.

The phase of the DT-CWT coefficients is not shift invariant but the phase differences between adjacent

coefficients across the edge are. Both the phases of derotated coefficients and consequently their phase

differences are shift invariant at the edge.

However, only phase differences between coefficients are relevant in determining covariance informa-

tion. For both DT-CWT and derotated coefficients within a given subband the covariance relationships

for an edge at a particular orientation are independent of the exact position of the edge (note that the

same is not true for the relationship with the parent coefficient). This is illustrated in figure 9 which

shows the covariance information for the edges in figure 8. The covariance information within the same

subband for the edge at offset 1 in 8(a) and 8(b) is very close to that for offset two shown in figures

8(c) and 8(d) for both DT-CWT and derotated coefficients.

B. Improved correlation along discontinuities

Now consider figure 10 where the edge has been rotated clockwise by 30 degrees. The rotation causes

the position of the DT-CWT coefficients relative to the edge to change along the edge. The phase

differences across the edge remain invariant to the positional change caused by the rotation as explained

above. However, there is now a phase change along the edge due to its rotation.

The change in this rate of rotation with the angle of the edge is approximately 135 deg of coefficient

phase rotation per 30 degrees (the angular support of each subband) of edge rotation. In contrast, the

derotated coefficients’ phases are invariant to the rotation of the edge, provided that its orientation is

approximately aligned with that of the subband. This is illustrated by figure 11 showing the covariance

information for the edge in figure 10. For DT-CWT coefficients the covariance relationships in the

direction approximately aligned with the edge are different to that for the vertical edges in figure 9 (by

about 135 deg). However, the derotated coefficient covariance information for the rotated edge in figure

10 is very similar to that for the vertical edge in figure 9.

Covariance information for derotated coefficients at discontinuities is more constant than for DT-

CWT coefficients because the relationships between coefficients along the edge are more stable for

different orientations of the discontinuity. This means that, relative to derotated coefficients, the covariance
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information of wavelet coefficients for an edge at a given angle is sub-optimal in describing the behaviour

of coefficients for edges at other angles within the same angular support of the subband.

C. Improved correlation across discontinuities

We now address the consistency of phase differences in the direction perpendicular to the edge or

ridge. Because the magnitude of wavelet coefficients decreases rapidly in the direction perpendicular to

the discontinuity, we are primarily concerned with the coefficients within a single sample space of the

edge in the direction perpendicular to the discontinuity.

Figure 12 shows the phase gradients for the impulse and step responses of the DT-CWT at levels 4

and 5 in 1-D. This is the first order derivative of the phase responses in figures 1 and 2. The plots are

noisy relative to figures 1 and 2 because high frequencies have been boosted through differentiation.

The gradient becomes smoother if longer q-shift filters are used in the DT-CWT. Nevertheless, the

approximately constant gradient means the phase response is nearly linear over a distance up to about

one sample either side of the discontinuity, although the response is less linear for impulse features than

for edges. Standard DT-CWT coefficients will rotate across the edge or ridge at a rate that is approximately

constant irrespective of the exact position of the feature. However, figure 12 shows that this rate differs

depending on whether the feature is an edge or ridge.

A spectral explanation of this phenomenon is as follows. A forward DT-CWT transform can be

considered to be a complex bandpass filtering operation with negative frequencies suppressed followed

by decimation. Figure 13 shows an illustrative diagram of the frequency spectrum of a particular subband

before decimation in 1-D. Also drawn are the spectrum of the parent level subband, a flat spectrum and

a 1
f spectrum, the latter two corresponding to impulse and edge features respectively.

Complex wavelet coefficients are a bandpass signal and will therefore rotate with an average rate

that scales proportionally with the frequency of the passband. The filtering operation, corresponding to

multiplication of the spectra in figure 13, will result in a higher average rate of rotation for the impulse

than the edge feature. However, provided that a discontinuity at a given level has a similarly shaped

spectrum over the parent subband, as is the case for the impulse and step spectra in figure 13, the phase

differences between derotated coefficients will be close to zero across the feature.

At level 4 the higher rotation rate of coefficients near an impulse results in the phase difference

between adjacent DT-CWT coefficients at an impulse being at most about 40 degrees more than that

between coefficients at an edge, so the effect is less significant than the other effects discussed in this

section.
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D. Improved correlation across scale at edge features

We see in figure 9 and especially in figure 11 that the parent coefficient correlation magnitude for DT-

CWT coefficients is significantly less than that for derotated coefficients. DT-CWT coefficients generally

display very little first-order correlation with their parent coefficient. This is a result of the differing phase

gradients at each scale as illustrated in figure 2.

This lack of correlation was noted in [12] and is illustrated in figures 14(a) and 14(b), which show

the conditional histogram of the real and imaginary parts of wavelet coefficients at two adjacent scales.

A single directional subband at level 2 for various transposition and reflections of the Peppers image is

used to generate the histograms. Figures 14(c) and 14(d) show the same histograms for the corresponding

derotated coefficients. In this case the real parts of the coefficients correspond to edge features and the

imaginary parts to ridge features.

Figure 14(c) shows significant correlation between the real parts of derotated coefficients at adjacent

scales. Derotated coefficients have good correlation with their parent at edges, due to their invariance to

the exact position of the discontinuity, their consistent relationship with feature type at each level and

because edges are commonly scale invariant across a number of scales. Note that the statistics in figure

14(c) are generated using the entire image containing a range of features in addition to multiscale edges,

which contribute to the parts of the bow tie displaying less correlation. Any correlation between the

imaginary parts in figure 14(d) is much less significant. The difference is that a ridge feature of a given

width has an inherent scale, whereas an edge is scale invariant across all scales. A ridge at one scale

acts more like two separate edges at a finer scales where its width becomes significant.

E. Summary of derotated coefficient analysis

The preceding sections show that the phase shift invariance displayed by derotated coefficients means

that covariance relationships between derotated coefficients are stronger than those between standard

wavelet coefficients at structural image features. By extending the logic developed for the two variable

wiener filtering case in §III we conclude that provided the wavelet domain representation of the noise

present is less correlated than that of the image, correlation (Wiener) based estimation of derotated

coefficients will be more accurate than standard wavelet coefficients at image discontinuities.

Derotated coefficients will have the most impact in describing features at different angles including

curving features. If all discontinuities are straight and in the same direction there will be reduced benefit.

The use of derotated coefficients also means a parent coefficient makes a more useful contribution to

predicting the child coefficient.
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VI. CONCLUSIONS

A method for defining the statistics of natural images has been presented and analysed. The method

derotates complex wavelet coefficients by twice the phase of the parent coefficient to create a new

‘derotated’ coefficient. This is a more linear representation than that used previously in [6] and [5]

allowing the use of the coefficient in covariance based image estimation algorithms. Compared to standard

wavelet coefficients, derotated coefficients are more invariant to curvature and rotations of edge and ridge

features and display increased correlation near these features. This allows improved correlation based

signal estimation in these areas. This is demonstrated using a simple Wiener filtering example in [11].

The use of derotated coefficients in a state-of-the-art denoising algorithm is demonstrated in [1].

APPENDIX I

CAUCHY WAVELET ANALYSIS

In this section an analysis of derotated coefficients is performed by considering the DT-CWT as a

discrete approximation to the continuous Cauchy Wavelet. This comparison was previously made by

Romberg et al. in [8] to illustrate the insterscale relationship of wavelet coefficient phases at edges. This

analysis has been adapted to provide a theoretical background on the quadrature nature of the phase

of derotated coefficients near edges and ridges. A similar analysis can be performed using a lowpass

function modulated by a complex exponential. An analysis for such continuous wavelets (not derotated)

is given in [7].

Equation (14) gives a generic form of the Cauchy wavelet including parameters ξ and A to control

the phase and amplitude of the complex function.

ψ(t) = Aeiξ(1− i
t

c
)−α (14)

The dilated and shifted versions of ψ are expressed using the notation in equation (15).

ψv,u(t) =
1√
v
ψ(

t− u

v
) (15)

The real parameters A, ξ, c and α can be chosen to achieve a good approximation to the DT-CWT

impulse response near the centre of the main support of the wavelet function, the region with which we

are primarily concerned. Figure 15 shows the approximation at level 5 in 1-D for the parameter values

in table I.
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Parameter Value

α 9.25

c 1.81

A 1.3

ξ -0.75π

TABLE I

PARAMETER VALUES USED IN CAUCHY WAVELET APPROXIMATION TO DT-CWT IMPULSE RESPONSE IN FIGURE 15.

We now examine the interscale phase relationships of the Cauchy wavelet analytically. The approxi-

mation to the DT-CWT in 1-D at level l and spatial location k is given in equation (16).

dl,k(t) = ψ2l,k(t)

= 2−
l

2 Aeiξ(1− i
t− k

2lc
)−α

(16)

This function has a phase φ, given in equation (17).

φl,k(t) = ∠dl,k(t)

= ξ − α tan−1

(
− t− k

2lc

)

≈ ξ + α
t− k

2lc

(17)

The final line of equation (17) follows if |t − k| is small, i.e. near the centre of the support of the

wavelet function. Hence, derotated coefficients near an impulse have the phase approximation in equation

(18).

∠wl,k(t) ≈ φl,k(t)− 2φl+1,k(t)

= −ξ

(18)

This phase is independent of t and k demonstrating how the multiscale nature of the impulse results

in derotated coefficients whose phases are invariant to the exact location of the feature.

We now consider the step response, s and the corresponding phase response η.
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sl,k(t) =
∫ t

−∞
ψ2l,k(a) da

=
i2

l

2 cAeiξ

−α + 1

(
1− i

t− k

2lc

)−α+1
(19)

This has a phase given in equation (20).

ηl,k(t) = ∠sl,k(t)

= −π

2
+ ξ − (α− 1) tan−1

(
−(t− k)

2lc

)

≈ −π

2
+ ξ +

(α− 1)(t− k)
2lc

(20)

The derotated coefficients corresponding to the step response sl,k(t) have phases as described in

equation (21).

∠wl,k(t) ≈ ηl,k(t)− 2ηl+1,k(t)

=
π

2
− ξ

(21)

The phase in (21) is also invariant to the exact position of the edge feature and comparison with (18)

illustrates the quadrature nature of the phases of derotated coefficients near edges and those near ridge

features.
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(a) DTCWT coefficients - offset 1 (b) Derotated coefficients - offset 1

(c) DTCWT coefficients - offset 2 (d) Derotated coefficients - offset 2

Fig. 8. DTCWT and derotated coefficients for straight edges at different offsets.
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Parent

(a) Covariance information for DT-CWT co-

efficients - offset 1

Parent

(b) Covariance information for derotated co-

efficients - offset 1

Parent

(c) Covariance information for DT-CWT co-

efficients - offset 2

Parent

(d) Covariance information for derotated co-

efficients - offset 2

Fig. 9. Complex covariance information for DT-CWT and derotated coefficients for edges at different offsets. The vector to

the right corresponds to the cross-correlation with the parent coefficient.
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(a) DTCWT coefficients (b) Derotated coefficients

Fig. 10. DTCWT and derotated coefficients for an edge at an angle.

Parent

(a) Covariance information for DT-CWT coeffi-

cients

Parent

(b) Covariance information for derotated coeffi-

cients

Fig. 11. Covariance information for the edge at a different orientation in figure 10. The vector to the right corresponds to the

cross-correlation with the parent coefficient.
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Fig. 12. Phase gradient of DT-CWT step and impulse response. The horizontal axis gives the relative position of the input in

terms of the spatial domain sample rate. 16 x-axis units are equivalent to one sample spacing at level 4.
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Fig. 13. Magnitude spectra of discontinuities and a bandpass signal
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(a) DTCWT coefficients - real parts (b) DTCWT coefficients - imaginary parts

(c) Derotated coefficients - real parts (correspond-

ing to edge features)

(d) Derotated coefficients - imaginary parts (cor-

responding to ridge features)

Fig. 14. Conditional histogram of real and imaginary parts of DT-CWT and derotated coefficients at adjacent scales. The

horizontal axis corresponds to the child and the vertical axis to the parent coefficient.
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(a) Magnitude response at level 3
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(b) Impulse response at level 3

Fig. 15. Comparison of the Cauchy Wavelet and combined DT-CWT decomposition filter at level 5. The scale of the horizontal

axis is that of the input in the spatial domain. Values for the parameters α, c, A and ξ are given in table I.

August 27, 2007 DRAFT


