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Image Denoising Using Derotated
Complex Wavelet Coefficients
Mark Miller, Member, IEEE, and Nick Kingsbury, Member, IEEE

Abstract—A method for removing additive Gaussian noise from
digital images is described. It is based on statistical modeling of
the coefficients of a redundant, oriented, complex multiscale trans-
form. Two types of modeling are used to model the wavelet coef-
ficients. Both are based on Gaussian scale mixture (GSM) mod-
eling of neighborhoods of coefficients at adjacent locations and
scales. Modeling of edge and ridge discontinuities is performed
using wavelet coefficients derotated by twice the phase of the co-
efficient at the same location and the next coarser scale. Other
areas are modeled using standard wavelet coefficients. An adaptive
Bayesian model selection framework is used to determine the mod-
eling applied to each neighborhood. The proposed algorithm suc-
ceeds in providing improved denoising performance at structural
image features, reducing ringing artifacts and enhancing sharp-
ness, while avoiding degradation in other areas. The method out-
performs previously published methods visually and in standard
tests.

Index Terms—Complex, denoising, image, interscale phase,
restoration, wavelet.

I. INTRODUCTION

W AVELET transforms have emerged as the premier tool
for image denoising, due to the statistically useful prop-

erties of wavelet coefficients of natural images. The sparseness
property of wavelet coefficients and tendency of wavelets bases
to diagonalize images allows us to break the problem into mod-
eling a small number of “neighboring” coefficients (in space and
scale) to reduce the dimensionality and improve the tractability
of the problem.

State-of-the-art Gaussian scale mixture (GSM) denoising
algorithms employing over-complete multiscale transforms
achieve impressive results by modeling images according to
the activity within neighborhoods of wavelet coefficients and
attenuating coefficients heavily in “inactive” image regions to
remove noise [1]. However, under the basic GSM model, there
is no distinction between the different basic components of
images that cause a neighborhood to be active. This commonly
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Fig. 1. Popular test images. (a) Lena. (b) Barbara.

leads to ringing artifacts in the vicinity of edge and ridge dis-
continuities when removing medium and high levels of noise.

Consider the popular Lena and Barbara images shown in
Fig. 1. The active regions of these images could be broadly de-
composed into two categories: areas of texture such as Lena’s
boa, and multiscale edge and ridge features such as the outline of
her figure and the edges of background objects. We call the latter
structural features. Texture can also be broadly decomposed
into two types (or perhaps more accurately a spectrum between
two extremes), periodic texture such as Barbara’s clothing and
tablecloth and more random texture such as Lena’s boa.

For areas of significant image activity, we propose a dual
model framework which divides the active areas into two com-
ponents: 1) structural features and 2) other features including
texture.

Structural features will be modeled using interscale phase
relationships of complex wavelet coefficients. The method is
based on the novel “derotated” coefficients introduced in [2].
The transform used is the dual tree complex wavelet transform
(DT-CWT) [3]. This specific modeling of structural features is
combined with standard modeling of other features using com-
plex wavelet coefficients in an adaptive Bayesian model selec-
tion framework. Both models employ the GSM approach to deal
with the spatially varying energy statistics of typical images
within each wavelet subband.

The content of this paper is organized as follows. Section II
provides relevant background information. Section III details
the proposed denoising algorithm. Section IV discusses the con-
stitution of the neighborhoods to which the modeling is applied.
A summary of the algorithm is provided in Section V, and re-
sults are given in Section VI. Sections VII and VIII contain con-
clusions and suggestions for future work.
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II. BACKGROUND

A. Dual Tree Complex Wavelet Transform

The dual tree complex wavelet transform [3] uses a dual tree
of real wavelet filters to generate the real and imaginary parts of
complex wavelet coefficients. This introduces a limited amount
of redundancy and allows the transform to provide approximate
shift invariance and directionally selectivity filters, while pre-
serving the usual properties of perfect reconstruction and com-
putational efficiency.

For a -dimensional input, an scale DT-CWT outputs an
array of real scaling coefficients corresponding to the lowpass
subbands in each dimension and directional sub-
bands of complex wavelet coefficients at level l,
where M is the total size of the input data. The mechanics of the
DT-CWT are not covered here. See [3] and [4] for a compre-
hensive explanation of the transform and details of filter design
for the trees.

In two dimensions, the transform produces six directional
subbands at each scale. We often describe processing on a local
neighborhood or neighborhood window of wavelet coefficients.
This refers to a group of “local” coefficients at nearby spatial lo-
cations and adjacent scales. Parent and child coefficients refer to
coefficients in the next coarser and finer subbands respectively
in the same directional subband and at the same spatial location
(possibly interpolated).

B. Derotated Coefficients

In [2], we introduce complex wavelet coefficients that are
derotated by twice the phase of the parent coefficient, i.e., the
coefficient at the next coarser scale at the same spatial location,
such that their phase (in addition to the magnitude as described
in [3]) becomes invariant at multiscale edges and ridges and is
consistent within each subband for each type of feature. The
derotated coefficients are shown to offer increased correlation at
image edge and ridge discontinuities relative to standard wavelet
coefficients and, therefore, the potential for improved estima-
tion in additive noise. Equation (1) defines the new derotated
coefficient , where is a DT-CWT coefficient and the cor-
responding parent coefficient

(1)

For a neighborhood of wavelet coefficients , we can write
the derotation as a matrix operation as shown in (2). In (2),
is a vector of derotated coefficients and is a unitary rotation
matrix which rotates the each coefficient’s phase by twice the
phase of its parent wavelet coefficient

(2)

C. Statistical Image Modeling With Wavelets

An accurate model, whether implicit or explicit, is a critical
component of nearly all image processing tasks. For statistical

Fig. 2. “Bow tie” characteristic of wavelet coefficients of natural images.
Conditional histogram of two spatially adjacent wavelet coefficients for the Lena
image. Brightness corresponds to probability except that each column has been
scaled to fill the range of available intensities. Although the coefficients are
roughly second-order decorrelated, they are highly dependent. The standard de-
viation of a coefficient scales with the magnitude of the neighboring coefficient.

approaches the choice of a suitable stochastic model is vital.
This section examines how to model wavelet coefficients to
take advantage of the statistical characteristics common to many
photographic images. Apart from the interscale phase properties
introduced here, the key properties of wavelet representations
that we wish to exploit are as follows.

• Sparseness: Good wavelet transforms have an energy
compaction property and the transforms of natural signals
tend to consist of only a few larger coefficients and many
smaller coefficients.

• Spatial clustering: Strong dependencies in the form of
spatial clusters exist between large magnitude wavelet co-
efficients in each subband, due to edges and areas of texture
in the data.

• Persistence across scale: The magnitudes of wavelet co-
efficients are correlated across scale. If a parent coefficient
is small, its children are more likely to be small.

It is widely known that the wavelet coefficients of images dis-
play highly nonstationary non-Gaussian statistics [5]. The mar-
ginal distributions are typically long tailed with high kurtosis
(fourth moment divided by the variance squared). The shape, in-
cluding the sharp peak at zero and the long tails, is the statistical
manifestation of the sparseness property of wavelet coefficients.
These distributions have previously been modeled using inde-
pendent generalized Gaussian distributions also known as gen-
eralized Laplacian distributions [5], [6]. However, this frame-
work fails to take advantage of the spatial clustering property or
the persistence across scale of wavelet coefficients. Coefficients
of natural photographic images exhibit marked higher order de-
pendencies between neighboring coefficients. This form of de-
pendency is illustrated in Fig. 2.

Fig. 2 shows a conditional histogram of two spatially adja-
cent wavelet coefficients typical of natural images. The coef-
ficients were produced using the (DT-CWT) of the 512 512
Lena image and are taken from a near horizontal subband at
level 2. Brightness corresponds to probability except that each
column has been scaled to fill the range of available intensi-
ties. This so called “bow tie” characteristic shape is found for
wavelet coefficients at nearby spatial locations, as well as adja-
cent scales and directional subbands, for a wide range of natural
images [7]–[9].
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The wavelet coefficients of natural images display a self-rein-
forcing characteristic in that if one coefficient is large in magni-
tude, then other coefficients in its neighborhood are also likely
to be large in magnitude. The intuitive explanation for this is that
localized image structures such as edges have substantial power
across many scales and nearby spatial locations at a given ori-
entation. The wavelet coefficients that represent the image will
also have large magnitudes at these scales, locations and ori-
entation. However, the signs and relative magnitudes of these
coefficients will depend on the exact shape, location, and orien-
tation of the structure.

D. GSM Models for Wavelet Coefficients

A simple statistical model that has been used to model natural
signals such as speech, and more recently to describe the nonsta-
tionary behavior of the wavelet coefficients of natural images,
is given in (3). It assumes that each coefficient is specified
by a stationary zero mean Gaussian process and a spatially
fluctuating variance is a position vector

(3)

To model the self-reinforcing property of the coefficients,
must be slowly varying in but need not be symmetric

in all directions. It has been shown that for slowly varying
, this model can successfully simulate the high kurtosis

and longer tails of the marginal distributions in addition to the
bow-tie shape of the marginal histograms of wavelet coeffi-
cients of natural signals [1], [7]. Note that the above model
describes intrascale relationships only. A more comprehensive
model would include a scale parameter so that to
model magnitude persistence across scale.

The stationary portion of the model is Gaussian dis-
tributed over a small neighborhood of wavelet coefficients. It
is generally assumed that varies slowly enough to be con-
sidered constant over that neighborhood of coefficients. Under
this assumption the model is now a particular form of a spheri-
cally invariant random process called a GSM.

For a small neighborhood of coefficients at nearby spatial lo-
cations and scale, we now have a GSM vector , which is the
product of two independent random variables: a positive scalar

referred to as the hidden multiplier or mixing variable and a
Gaussian random vector distributed as . For each
neighborhood of wavelet coefficients, this is written

(4)

It remains to specify the prior probability function for
the multiplier . Prior selection is covered in more detail in [1].
In the proposed algorithm, a Jeffrey’s prior is used for the rea-
sons stated below, at the end of Section II-E.

E. Wavelet Denoising

Image denoising involves finding an estimate of a signal
in noise given a noisy observation . This is summarized

in (5)

(5)

The standard problem definition in much of the denoising lit-
erature is to assume zero mean Gaussian noise with covariance

, so that is distributed as . In many cases the
noise is assumed to be white so that . It is assumed
that the variance or covariance of the noise is known.
If it is not known, it will have to be obtained from an area of
the image known to have little or no signal content or estimated
using some other method, e.g., as in [10].

The common approach to wavelet based denoising is to trans-
form the signal into the wavelet domain, denoise the detail coef-
ficients and transform back to the image domain. Note that the
lowpass scaling coefficients are not usually altered. Taking the
forward transform of (5), we obtain (6)

(6)

In (6), the subscript is dropped to indicate the variables are
in the wavelet rather than the spatial domain and each vector
is the complex wavelet transform of the corresponding vector
in (5). The real and imaginary parts are considered as separate
elements within each vector. In this paper we consider only one
neighborhood of coefficients at a time. In this case, only the
coefficients in the neighborhood are included in (6).

Simple Thresholding Noise Removal: Classical wavelet
based denoising techniques employ straightforward nonlinear
thresholding of noisy wavelet coefficients. They are motivated
by the sparseness property of wavelet coefficients mentioned
in Section II-C and ignore the clustering properties. Their
objective is to suppress low amplitude coefficients which are
more likely to constitute noise, and retain high amplitude
values which contain the bulk of the desired signal. Two of the
earliest thresholding operators were hard and soft thresholding
[10], [11]. Various other operators have been suggested [6] and
[12]–[15].

GSM Techniques: A significant block of wavelet denoising
literature proposes variations on a common methodology.
Although the reasoning used to derive each denoising scheme
varies, many of the resulting methods can be described in terms
of the GSM framework outlined in Section II-C. In general,
the assumption of spatial and spectral locality is invoked and
the estimate is based on a “local” neighborhood of wavelet
coefficients at the same or adjacent spatial locations and scales.
The inclusion of coefficients at the parent scale is often used to
capture the “persistence across scale” characteristic.

Equation (4) can be combined with (6) to produce (7), where
the vector of coefficients is a “local” neighborhood

(7)

Conditioned on the hidden multiplier for a neighborhood, the
noisy observation is Gaussian distributed with zero mean and
covariance , as given by (8) in which is the size of
the neighborhood

(8)
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As a consequence, for a given value of , the minimum mean
square error (MMSE) estimate for the original coefficients in the
neighborhood is given by (9), which is an adaptive Wiener esti-
mate with signal covariance . See Jain [16, pp. 276–279] for
further details of Wiener filtering. and are the covariance
matrices for the vectors of wavelet coefficients of the Gaussian
component of the mixture model and noise, respectively

(9)

In 2003, Portilla et al. proposed a somewhat new approach to
estimation of the wavelet coefficients using a GSM framework
and the Steerable Pyramid wavelet transform [1]. They resolved
to calculate the Bayesian MMSE estimate for a particular coeffi-
cient in a neighborhood of coefficients considered to be a GSM.
As for the aforementioned two-step procedure, this technique is
implemented on a number of overlapping neighborhoods—one
for each coefficient. The result is presented in (10), where is
the estimate for the “central” complex coefficient

(10)

In a discrete implementation, this takes the form of (11),
where is the number of discrete values assigned to

(11)

Conditioned on the multiplier , the MMSE estimate for the
neighborhood of coefficients is given by (9). The
posterior density is also required for (11). This can be
calculated using Bayes formula, as shown in (12)

(12)

The density is given by (8), but a decision must be
made on the choice for the prior . In [1], Portilla et al.
selected a Jeffrey’s prior, because it produced superior results
to other the options implemented.

The results produced by this advance by Portilla and col-
leagues are impressive. A recent adjunct to this work attempts
to use a spatially adaptive signal covariance matrix by assuming
geometrically close areas have similar covariance statistics [17].
It is interesting to compare this approach with the algorithm
presented here where the covariance information is adapted
for multiscale features throughout the image using information
from the next coarser scale to adjust for the type of feature and
its particular angle.

F. Test Images

The images used in this article are well known test images
that have been used in a variety of image estimation literature.
However, most of the images are available in more than one ver-
sion, with differences between them due to cropping, scanning,
resizing, compression or conversion from color to gray level.
For comparative purposes, the images used to test the proposed

TABLE I
IMAGES USED TO TEST THE PROPOSED DENOISING ALGORITHMS

denoising algorithm are those used in [1] which are available at
http://decsai.ugr.es/~javier/denoise/test_images/.

However, the Peppers image was found to have a row and
column of zero pixels at the top and left-hand edges of the
image. These were filled in using the adjacent row and column,
although for comparison purposes the original version is also
used in the results section. Table I lists the images used.

III. PROPOSED DENOISING ALGORITHM

The top-level denoising strategy used here is the same as most
other wavelet based denoising algorithms: decompose the noisy
image into levels of six directional subbands and a set of (low-
pass) scaling coefficients, denoise the complex wavelet coeffi-
cients in each subband except for the scaling coefficients and
invert the transform to obtain the image estimate.

A. Modeling

Based on the investigations in [2], derotated wavelet coeffi-
cients are used to model structural features. Complex wavelets
have been shown in recent denoising literature to be an effec-
tive method of representing images and have been shown in [2]
to be particularly good, in terms of covariance information, as a
basis in areas of periodic texture. Hence, standard wavelet coef-
ficients are used to represent the image areas not near structural
features. The two models are combined using a Bayesian model
selection method.

Because the derotated coefficients have the same magnitude
as standard DT-CWT coefficients we can retain the GSM mod-
eling of wavelet coefficients used in [1] to capture the clustering
characteristic and persistence across scale of wavelet coefficient
magnitudes for both models.

If derotated coefficients are to be used, an accurate estimate
of the phases of the parent coefficients will be required. This is
afforded by the nature of multiscale denoising algorithms. Due
to the spectral characteristics of typical natural images, wavelet
coefficients of noisy images have a significantly higher signal
to noise ratio at the parent scale relative to that of the child. If,
in addition, the coefficient has been otherwise denoised, we can
assume that a denoised parent coefficient is relatively noise free
compared to a noisy child coefficient.

Because the parent subband is sampled at 1/4 of the density
of the child subband, parent coefficients need to be interpolated
from the next coarser subband of the same orientation. Effective
interpolation of the parent coefficients is crucial in obtaining ac-
curate phase information. The method used here is bandpass in-
terpolation which unwraps the expected phase rotations within
each subband before interpolation. Details of this method are
provided in [18, Appendix C].

The modeling uses a neighborhood approach standard in
wavelet based GSM algorithms. The wavelet coefficients are
divided into overlapping groups of coefficients “neighboring”
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one another in spatial location and scale. Denoising is per-
formed on a “central” complex coefficient based on the model
for the whole neighborhood.

A vector of observed wavelet coefficients in a given neigh-
borhood can be written in terms of wavelet coefficients and

representing the clean image and noise as given in (6). Within
each neighborhood, the real and imaginary parts of complex co-
efficients are treated as separate variables. This is necessary to
fully capture the statistics of the derotated coefficients and is
discussed further in [18, Appendix D].

To integrate the specific modeling of structural image features
with standard GSM modeling two different models are assumed
for the neighborhoods of coefficients and a Bayesian frame-
work is used to combine them. The models are presented in (13)
and (14). As discussed in the Introduction, model 1 is intended
to represent areas of texture using standard complex wavelet co-
efficients and model 2 to represent the major structural features
of the image using derotated complex wavelet coefficients.

Model 1

(13)

Model 2

(14)

Model 1 is the standard GSM modeling of a neighborhood
of wavelet coefficients as described in Section II-E where
is the hidden or GSM multiplier and is a neighborhood of
Gaussian variables with zero mean and covariance . In model
2, is a vector of Gaussian distributed random variables with
covariance . is a unitary spatially varying inverse derota-
tion matrix, which converts a set of derotated coefficients to
the corresponding DT-CWT coefficients using the phase of the
interpolated parent coefficients. Based on the assumption that
an edge or ridge feature of a given polarity is equally likely to
one of the opposite polarity, is assumed to have zero mean.
See [2] for more background on derotated coefficients.

B. Denoising

For each neighborhood of coefficients we wish to estimate a
“central” coefficient from the set of noisy coefficients in the
neighborhood . To manage selection between the two models,
we introduce a discrete model selection random variable
which can have values and . The Bayesian MMSE
estimate is given in (15) derived in a similar manner to (10)

(15)

It remains to determine the expected value of the neighbor-
hood’s central coefficient for a given for each model and
an expression for the joint posterior probability for the model
and multiplier variables given the observed noisy coefficients,

.
A key advantage of the GSM framework is the tractability

of the estimator . Because the noise, as well as
the vectors and , are Gaussian, for both models the expected
value is a Wiener estimator conditioned on a value for and in
the case of model 2 the rotation matrix , with signal covari-
ances for model 1 and for model 2. The estima-
tors for each model are given in (16) and (17).

Model 1

(16)

Model 2

(17)

The joint posterior probability for the model and GSM multi-
plier are determined using Bayes formula as shown in (18) with
the denominator defined in (19)

(18)

(19)

In (18), is Gaussian with zero mean and covariance
for model 1 and in the case of

model 2.
Model 1

(20)

Model 2

(21)

C. Prior Probabilities

The prior is decomposed as shown in (22)

(22)

1) Prior for the Hidden Multiplier : Although the prior for
the hidden multiplier could potentially be model depen-
dent, currently a Jeffrey’s prior is used for both models, i.e.,

. A Jeffrey’s prior was used in [1],
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where it was found to produce superior denoising results com-
pared to several other possibilities. It also has the advantage of
simplicity, although it is an improper probability density and
when implemented needs to be set to zero on an interval ,
where is a small positive number.

2) Prior for the Model Selection Variable : It is not log-
ical to apply model 2 to a neighborhood if the neighborhood’s
dominant feature is not multiscale. That is, if the parent coeffi-
cients are not of sufficient magnitude, the phase of the derotated
coefficients becomes meaningless. This issue is dealt with as
follows: if the normalized weighted sum of the magnitudes of
the parents of the coefficients in a neighborhood is less than the
standard deviation of the noise on each complex coefficient then
the parent phase is deemed “untrustworthy” and is set to
zero for that neighborhood. Otherwise it is assumed we have
no information about the likelihood of structural features in the
target image and the models are given equal prior probabilities,
i.e., . This is described by (23) and (24)

if
otherwise

(23)

(24)

In (23), are the estimates for the parents of the coeffi-
cients in the neighborhood used for derotation and is the stan-
dard deviation of the noise on a complex coefficient in the parent
subband. The positive weightings , which sum to unity, are
defined in (25)

(25)

In (25), is the index of the complex coefficient that is to
be denoised. is the complex covariance matrix for the dero-
tated coefficients obtained from the larger real covariance ma-
trix is given in (26), where and are the real and
imaginary parts of . is calculated using

(26)

Note that using the adapted covariance instead of
gives the same weights .

D. Calculation of Covariance Matrices

It is necessary to calculate covariance matrices for the
noise and the Gaussian components of both of the image
models and . Separate matrices are calculated for each
directional subband and level of the transform. All covariance
matrices are real, treating the real and imaginary parts of com-
plex coefficients separately but the matrices are constrained
according to the guidelines in Appendix D of [18]. That is, for
derotated image coefficients and level 1 wavelet coefficients,
real covariance matrices are used where the real and imaginary
parts are treated separately. All other coefficients are treated as
having complex covariance matrices.

is estimated by generating noise data with the appropriate
power spectrum and transforming this into the wavelet domain.

Provided the number of observations is large, the sample co-
variance can be calculated using (27). In this case, are the
vectors of wavelet coefficients of the noise in each neighbor-
hood, i.e., and

(27)

Given , the signal covariance is computed from the ob-
servation covariance matrix using as in [1].

is calculated from the wavelet coefficients of the observed
noisy signal using (27) where are now the neighborhoods of
noisy coefficients . A similar procedure can be used to calcu-
late , as shown in (28) and (29)

(28)

As done in [1], we set to unity, resulting in (29)

(29)

and are required for (29). To obtain the derota-
tion phases used in the neighborhood dependent required to
calculate these we have two options. We can use the noisy coef-
ficients or use the coefficients resulting from , i.e.,
those denoised using model 1 only. If the latter option is chosen,
the coefficients need to be projected into the range space of
the wavelet transform by inverse transforming and transforming
back into the wavelet domain, as this improves the accuracy of
the estimate. and can then be calculated using (30)
with as the noisy coefficients and noise coefficients ,
respectively

(30)

Finally, an eigenvector/eigenvalue decomposition of and
is performed and any negative eigenvalues are set to zero to

ensure that and are positive semidefinite.

E. Recalculation of Covariance Information

Ideally, the statistics for each of the models would be gen-
erated only from neighborhoods which they are intended to
model. For example, when estimating the model 2 covariance
matrix , it is assumed that contributions from neighbor-
hoods not close to discontinuities will be incoherent and
will be dominated by the statistics of the neighborhoods with
edges and ridges as the dominant feature. Although this is
true, other neighborhoods will effectively contribute noise to
the estimation. This effect can be combatted by recalculating
the covariance matrices after an initial denoising iteration and
weighting the observations by the posterior probability for the
model selection variable . For model 1, this is done
using (31) to recalculate where are the noisy coefficients
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and is the probability of model 1 for neighborhood

(31)

A similar procedure is applied for and for
model 2 using (32) with and , respectively

(32)

Following this recalculation, the algorithm may be re-run
with the updated covariance matrices. In this case, any phases
required for derotation may be obtained from the (range-space
projected) result of the previous denoising iteration.

F. Computational Considerations

We now examine the computational implications of including
the proposed additional modeling of structural image features
for the GSM algorithm.

Define as a model dependent covariance matrix such that
for model 1 and for model 2.

Note that in the case of model 1, is fixed for each subband
whereas for model 2 it is dependent on the neighborhood. For
(16), (17), (20), and (21), calculation of is re-
quired. Without manipulation, this would require an inversion
for each discretization of for each neighborhood.

Let , where is the symmetric square root of
, which can be calculated from the eigenvector/eigenvalue

decomposition of . Let be the eigenvector/eigen-
value decomposition of . Consider (33) and (34)

(33)

(34)

Equations (33) and (34) show that for model 1, all of the
inversions and eigenvector/eigenvalue decompositions are
independent of and need only be done once for each subband.
Note that is diagonal and trivial to invert. How-
ever, for model 2, an eigenvector/eigenvalue decomposition
of needs to be calculated
for each neighborhood, since is neighborhood dependent.
Nevertheless, we have removed the dependance on the hidden
multiplier, so the number of decompositions is independent of
the number of values used in the discrete representation of .

Apart from the necessary estimation of covariance ma-
trices, the algorithm’s computational bottleneck is the eigen-
vector/eigenvalue decomposition of . The
time taken for the Matlab implementation of the algorithm
to run on a 512 512 image using a PC with a Pentium IV
processor is approximately 2.5 min per denoising iteration
compared to 45 s when model 2 is omitted from the algorithm,
so the method is quite computationally demanding.

IV. NEIGHBORHOOD SUPPORT

There is a tradeoff with regard to the size of neighborhood
used for GSM based denoising. On one hand, it is desirable
that the support of the Wiener filter is large to take advantage
of the correlations between coefficients in the redundant trans-
form. However, because the variance of wavelet coefficients can
change over a relatively short distance, a larger window can re-
sult in an inaccurate estimate for . This tradeoff is also
discussed by Mihçak et al. [19].

In recent literature, the neighborhood size is generally
selected in an ad hoc manner. There are many variations in
window selection for variance estimation and GSM based
denoising methods. Voloshynovskiy et al. use different sized
neighborhoods at different scales [20]. Strela et al. use differ-
ently shaped neighborhoods for different directional subbands
with a more primitive form of GSM denoising in an attempt to
capture the correlation structure along edges [21]. Mihçak et al.
determine the size of the neighborhood dynamically for each
neighborhood using a technique called the bootstrap method
[19]. Finally, for GSM denoising using the steerable pyramid
transform [1], Portilla et al. hand optimized the neighborhood
structure and chose a “ ” neighborhood consisting of
the coefficient to be denoised, the eight surrounding coefficients
from the same directional subband and the parent coefficient
at the same spatial location from the adjacent coarser scale.
Note that the inclusion of parent coefficient in the neighbor-
hood is consistent with the “persistence across scale” property
described in Section II-C.

A. Optimal Fixed Neighborhood

For the denoising algorithm implemented, a number of
different neighborhood windows were considered. The optimal
fixed neighborhood was found to be a “ ” neighborhood
which contains the coefficient to be denoised, the four directly
adjacent coefficients (which together form the shape of a “ ”)
and the parent coefficient. It was found to produce marginally
better results than the neighborhood. A smaller neigh-
borhood makes sense because the DT-CWT is less redundant
than the steerable pyramid and has a complex coefficient at each
spatial location, whereas the steerable pyramid coefficients are
real, so the locations of DT-CWT coefficients are more sparsely
populated. Hence, the variance of a DT-CWT coefficient is
likely to become decorrelated over fewer coefficients than for
the steerable pyramid.

The possibility of using smooth windows, i.e., windows
where some coefficients are given less weight than others, has
been investigated. This problem is nontrivial. Even if a system
is devised to implement a smooth window, there is still the
problem of how to assign weights to the coefficients in the
neighborhood. The techniques developed are not included in the
algorithm here due to their limited benefit, added complexity,
and computational requirements.

B. Subband Dependent Neighborhoods

In the proposed algorithm, we would like to take advantage
of the directional nature of structural features and some types
of texture. In particular, we would like to take advantage of the
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Fig. 3. GSM neighborhoods used at levels 1 and 2 of the proposed algorithm.
The line indicates the direction of edges captured by that subband. (a) Near-
horizontal subband. (b) Diagonal subband.

Fig. 4. GSM neighborhood used in the proposed algorithm at level 3 and higher
for all directional subbands—“+ + p.”

correlation of derotated coefficients along the length of struc-
tural features demonstrated in [2]. We propose varying the size
and shape of the neighborhood window depending on the sub-
band orientation and scale. This is based on the assumption that
coefficient magnitudes will display greater clustering in the di-
rection of the subband’s orientation and at finer scales where the
coefficients have a much smaller support relative to the size of
the features. In addition, at finer scales a larger neighborhood
assists in determining an accurate estimate for in the pres-
ence of noise.

The direction and scale dependent neighborhood window
used was roughly optimized to improve SNR performance. The
neighborhoods used are not exactly optimal but as will be shown
in Section IV-E, the overall impact is not insignificant and this
demonstrates the stronger relationships between wavelet coef-
ficients in the direction of the subband’s orientation.

Figs. 3 and 4 show the coefficients included in the GSM
neighborhoods. The line indicates the direction of edges cap-
tured by each of the subbands. At levels 1 and 2, the directional
windows in Fig. 3, flipped or rotated appropriately, are used. At
coarser scales, the directionally independent “ ” neighbor-
hood shown in Fig. 4 is used. As in [1], at the coarsest level
denoised the parent is omitted.

V. ALGORITHM STRUCTURE

The following list summarizes the steps in the proposed de-
noising algorithm.

1) Decompose image using a multiscale transform.
2) Calculate model 1 covariance matrices and as de-

tailed in Section III-D.
3) Calculate expected values and probabilities for model 1,

and , using (16) and (20).
4) Obtain model 1 coefficient estimates using (15) with

.
5) Obtain phases for derotation by projecting model 1 esti-

mates into the range space of the transform.

6) Calculate for each subband as detailed in Section III-D
using derotation phases from step 5.

7) Calculate expected values and probabilities for model 2,
and , using (17) and (21).

8) Combine coefficient estimates using (15) and (18).
9) Project estimated coefficients into range space of trans-

form.
10) Recalculate and as detailed in Section III-E.
11) Recalculate expected values and probabilities for both

models using (16)–(18).
12) Obtain final estimate for coefficients using (15).
13) Reconstruct image from the estimated wavelet coefficients

via the inverse wavelet transform.

VI. RESULTS

Results have been obtained using 8-bit grayscale images cor-
rupted with random Gaussian white noise. The algorithm de-
tailed above was implemented with the Q-shift version of the
DT-CWT with near-symmetric 13,19 tap filters at level 1 and
Q-Shift 14,14 tap filters at higher levels [3]. The wavelet coef-
ficients were denoised at five levels for the 512 512 sized im-
ages and 4 levels for the 256 256 images so that the denoised
subbands had at least 16 16 coefficients. The image was de-
composed to a further 2 levels so that parent and grandparent
coefficient phases were available for use in derotation. 20 dis-
crete values were used to define the prior for .

To illustrate the effects of the novel components—di-
rectionally dependent neighborhoods and the dual model
framework—comparisons are made with a standard GSM
algorithm (model 1 only and a fixed neighborhood size) as
described in [1] but implemented with the DT-CWT and with
all other parameters, such as the prior for and covariance
estimation, identical to the dual model algorithm. Comparisons
are made with the SNR results given in [1] to ensure our GSM
implementation is adequate and to allow comparison with the
best published results.

A. Model Selection Results

First, we verify that the model selection framework is oper-
ating as intended and that the Bayesian framework is indeed
selecting model 2 for neighborhoods near structural features.
Fig. 5 shows the value of after the first denoising iter-
ation (after step 9) and second denoising iteration for a single
wavelet subband of the Lena image. We see that at major struc-
tural features aligned with the subband’s orientation the value
of is close to unity meaning model 2 is selected as
intended. Notice that in flat areas the criterion in (23) forces

to zero.

B. Error Analysis

Next, we illustrate the improvement achieved by the new
modeling and verify that the dual model algorithm offers
improvement in areas near structural discontinuities as it was
designed. To do this, we plot two images displaying the im-
provement and degradation of the proposed algorithm relative
to standard GSM denoising. We quantify the improvement of
the algorithm proposed here over standard GSM denoising
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Fig. 5. Model selection results for the Lena image. Value of p(m jy) for directional subband 4 (105 ) at level 2. The noise standard deviation is 20. (a) Original
image. (b) A posteriori model 2 probabilities after first iteration. (c) A posteriori model 2 probabilities after second iteration.

Fig. 6. Error analysis of proposed algorithm compared to standard GSM denoising for the Lena image. The noise standard deviation is 25. (a) Lena image.
(b) Improvement of proposed algorithm over standard GSM denoising. (c) Degradation of proposed algorithm compared to standard GSM denoising.

Fig. 7. Denoising results for the Barbara image. The noise standard deviation is 25. (a) Clean image. (b) Noisy image. (c) Denoising algorithm proposed here.

as the difference in absolute error with negative values set to
zero, i.e., , and the degradation as

. is the error of the dual model
algorithm proposed here and is the error for standard GSM
denoising implemented with the DT-CWT using only model 1
and a fixed neighborhood size. Fig. 6 shows these comparisons
for the Lena image plotted as an inverted grayscale image. The
proposed algorithm performs better at structural features than
the standard GSM method, particularly in areas directly next to
discontinuities. Note that it is not better for every pixel as the
improvement is based only on improved statistics.

C. Visual Analysis

Fig. 7 shows clean, noisy, and denoised versions of the Bar-
bara image using the proposed algorithm. Fig. 8 shows a close
up comparison of the proposed algorithm with that implemented
using standard GSM denoising. Ringing artifacts are reduced
and edges tidied.

Some noise suppression algorithms have the tendency to
smooth discontinuities. The specific modeling of discontinuities
in the proposed algorithm reduces ringing artifacts near dis-
continuities as well as sharpening edges. This is demonstrated
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Fig. 8. Comparative denoising results for the Barbara image. (a) Clean image. (b) Noisy image. (c) Denoising algorithm proposed here. (d) Standard GSM
denoising.

Fig. 9. Comparative denoising results for the House image. The noise standard deviation is 25. (a) Clean image. (b) Noisy image. (c) Denoising algorithm proposed
here. (d) Standard GSM denoising.

in Fig. 9 where the algorithm incorporating interscale phase
relationships produces a sharper image than standard GSM for
the House image corrupted with noise of standard deviation
25. Note the relative widths of the edge and ridge features that
make up the roof in the estimates in Fig. 9(c) and (d).

In most cases, ringing is not eliminated entirely but it is sig-
nificantly reduced and importantly the improvement comes with
the sharpening of edges rather than softening. The improvement
at edges is subtle and difficult to see on paper. A demonstration
of the results is provided at http://www-sigproc.eng.cam.ac.uk/
~ngk/denoise.zip.

D. SNR Results

In this section, a numerical assessment of the algorithm’s per-
formance is presented and compared to other state-of-the-art
approaches. Note that improvement in traditional SNR terms
will be limited as the algorithm focuses primarily on improving
structural features, which do not always constitute a large pro-
portion of the image area. For this reason, an adapted measure
of SNR improvement focussing on the areas affected by the al-
gorithm is also provided in this section.

Results were obtained for four 8-bit grayscale images each
corrupted with random white noise at different levels. This was
repeated for eight different noise samples for each image and
noise level. The images used to obtain these results are identical
to those used to produce the results obtained by Portilla and col-
leagues and additional results are given for the Peppers image
without zero edge pixels as detailed in Section II-F. Input PSNR
is defined as dB, where is the standard de-

viation of the noise. The noise standard deviations used ranged
from 5 to 50.

Standard SNR Improvement Measure: The results of the
standard GSM modeling implemented using the DT-CWT
are very similar to those published by Portilla et al. in [1], as
would be expected. The differences may be due to the different
basis functions used including the lower number of oriented
subbands, handling of edges and the discrete parameterization
of the hidden multiplier. The results are presented in Fig. 10.
The proposed algorithm provides consistent improvement on
standard GSM denoising implemented with the DT-CWT and
that implemented by Portilla et al. Table II gives results for the
algorithm proposed here for a broader range of PSNR inputs.

Adapted SNR Improvement Measure: SNR improvement is
a measure of the fractional reduction in error energy achieved
by the algorithm. Therefore, in evaluating the effects of the
proposed algorithm on structural features, it is not appropriate
to consider areas of the image not altered by the new algo-
rithm. Consider that if only part of an image is restored using
the new approach, the SNR improvement for the whole image
will never drop below a certain level dictated by the areas re-
maining unchanged.

The DT-CWT is an energy preserving transform. The image
domain error energy is equal to that of the wavelet coefficients,
provided they are in the range-space. To better evaluate the im-
provements of the proposed modeling at discontinuities we mea-
sure SNR improvement of range-space projected wavelet co-
efficients multiplied by the weight given to the new modeling
(model 2) for each coefficient, i.e., . Scaling coeffi-
cients, which are left unaltered before range-space projection,
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Fig. 10. SNR improvement versus input SNR compared to the best known wavelet based denoising methods. Crosses (x): Proposed denoising algorithm. Pluses
(+): Standard GSM denoising using the DT-CWT. Diamonds (�): GSM denoising using Steerable Pyramid as published in [1]. Circles (�): Best of the compar-
isons published in [1] from [22] for Barbara and Lena and [23] for House and Peppers. For Peppers, we also plot the results for the original image without zero
edge pixels. Stars (�): Proposed denoising algorithm. Triangles (�): Standard GSM denoising using the DT-CWT. (a) Barbara. (b) Lena. (c) House. (d) Peppers.

TABLE II
OUTPUT PSNR OF PROPOSED DENOISING ALGORITHM (DECIBELS)

TABLE III
SNR IMPROVEMENT OVER STANDARD GSM DENOISING

USING ADAPTED SNR METRIC (DECIBELS)

TABLE IV
EFFECTS OF VARIOUS CHANGES TO PROPOSED ALGORITHM

are not included. The SNR improvements over standard GSM
denoising obtained using this metric are displayed in Table III.

E. Miscellaneous Results

We now look at the effect of various changes to the proposed
algorithm. The first change is using a neighborhood at all
levels and directional subbands. The second change is to restrict
the algorithm to a single denoising run so that the covariance
matrices are not recalculated using the posterior neighborhood
probabilities, i.e., steps 10–13 in Section V are skipped. The
final change considered is that of using “oracle” phases, i.e.,
the phases of the clean coefficients, to derotate the coefficients
for model 2. This should indicate how much of the power of
derotated coefficients is lost by using an approximation of the
parent phase in our denoising algorithm.

Table IV contains the average impact on SNR of each of
the changes averaged over the Barbara, House, Lena, and Pep-
pers images for a noise standard deviation of 25. Note that the
average SNR improvement offered by the proposed algorithm
over standard GSM denoising with a directionally independent
neighborhood for these images at this noise level is 0.26 dB.

The effect of using orientation and level dependent windows
is a considerable 0.15 dB, meaning the directionally depen-
dent neighborhood is key to realising the full potential of the
algorithm. However, this figure overstates the independent
contribution of this component. If the directionally dependent
neighborhood is used with the standard, single model GSM
denoising algorithm, the effect is an average improvement
of only 0.07 dB. The improvement is much larger for the
Barbara image, which has large areas of periodic texture, and
is on average only 0.03 dB for the other images. The insight
gained here is that the phase invariance offered by derotated
coefficients allows the dual model algorithm to take advantage
of correlations with neighboring coefficients further from the
central coefficient at finer scales. The high dependence of
the phase of DT-CWT coefficients on the relative position
of nearby edges means this is much less true for standard
DT-CWT coefficients near multiscale features.

The effect of performing the second denoising iteration is
small but useful. Surprisingly little improvement is lost by using
an approximation for the parent phases for derotation.

VII. CONCLUSION

A denoising method based on GSM modeling of the wavelet
coefficients of a shift-invariant, directionally selective transform
has been presented. The proposed algorithm reduces artifacts
near edges while maintaining edge sharpness.

Image processing algorithms designed specifically to perform
well at discontinuities often suffer from impaired performance
in areas of images not suited to the algorithm. Characterization
using derotated wavelet coefficients is not suited to all images
or all regions of images but the adaptive model selection frame-
work used in the denoising method proposed here ensures that
it does not degrade areas dominated by features more suited
to characterization using standard complex wavelet coefficients
while offering good improvement near discontinuities.

VIII. FUTURE WORK

It may be possible to use information obtained at coarser
scales to help define the model probabilities at finer scales. The
presence of an edge feature at a given scale should increase the
probability of a ridge at a finer scale. Similarly the presence of an
edge should indicate the presence of two ridges at finer scales.
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This information should result in more accurate model proba-
bility estimates.

Potentially, the most promising area for future work using
interscale phase relationships is in deconvolution and other
inverse problems. Deblurring algorithms commonly encounter
problems in reconstructing discontinuities as the observations
have often lost high frequency information and there is usually
a trade-off to be made between over-smoothing of edges and the
amplification of noise and ringing artifacts. By encouraging the
correct relationships between wavelet coefficients at adjacent
levels, it may be possible to constrain the inversion such that
ringing is reduced and edges sharpened as has been done for
denoising.

Finally, the model selection framework developed has poten-
tial for integrating better models for other parts of the images
with different statistical characteristics. For example, it may be
possible to distinguish between areas of periodic texture and
areas where the texture is more random.

REFERENCES

[1] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image
denoising using Gaussian scale mixtures in the wavelet domain,” IEEE
Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[2] M. A. Miller and N. G. Kingsbury, “Image modeling using interscale
phase properties of complex wavelet coefficients,” IEEE Trans. Image
Process., vol. 17, no. 9, pp. 1491–1499, Sep. 2008.

[3] N. G. Kingsbury, “Complex wavelets for shift invariant analysis and
filtering of signals,” J. Appl. Comput. Harmon. Anal., vol. 10, no. 3,
pp. 234–253, May 2001.

[4] I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex
wavelet transform,” IEEE Signal Process. Mag., vol. 22, no. 6, pp.
123–151, Nov. 2005.

[5] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
11, no. 7, pp. 674–693, Jul. 1989.

[6] E. P. Simoncelli and E. H. Adelson, “Noise removal via Bayesian
wavelet coring,” in Proc. IEEE Int. Conf. Image Processing, Lausanne,
Switzerland, Sep. 1996, vol. I, pp. 379–382.

[7] L. C. Parra, C. Spence, and P. Sajda, “Higher-order statistical proper-
ties arising from the non-stationarity of natural signals,” Adv. Neural
Inf. Process., vol. 13, pp. 786–792, Dec. 2000.

[8] M. J. Wainwright, E. P. Simoncelli, and A. S. Willsky, “Random cas-
cades on wavelet trees and their use in analyzing and modeling natural
images,” Appl. Comput. Harmon. Anal., vol. 11, pp. 89–123, 2001.

[9] E. P. Simoncelli, “Modeling the joint statistics of images in the wavelet
domain,” in Proc. SPIE, 44th Annu. Meet., Denver, CO, Jul. 1999, vol.
3813, pp. 188–195.

[10] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[11] S. Mallat, A Wavelet Tour of Signal Processing. New York: Aca-
demic, 1998.

[12] H.-Y. Gao and A. Bruce, “Waveshrink with firm shrinkage,” Statist.
Sin., vol. 7, pp. 855–874, 1997.

[13] N. G. Kingsbury, “Image processing with complex wavelets,” Phil.
Trans. Roy. Soc. Lond., vol. 357, pp. 2543–2560, Sep. 1999.

[14] H.-Y. Gao, “Wavelet shrinkage denoising using the non-negative gar-
rote,” J. Comput. Graph. Staist., vol. 7, pp. 469–488, 1998.

[15] M. A. T. Figueiredo and R. D. Nowak, “Wavelet-based image esti-
mation: An empirical Bayes approach using Jeffrey’s noninformative
prior,” IEEE Trans. Image Process., vol. 10, no. 9, pp. 1322–1331, Sep.
2001.

[16] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[17] J. A. Guerrero-Colon and J. Portilla, “Two level adaptive denoising
using Gaussian scale mixtures in overcomplete oriented pyramids,” in
Proc. IEEE Int. Conf. Image Processing, Genova, Italy, Sep. 2005, pp.
105–108.

[18] M. A. Miller, “Multiscale techniquers for imaging problems,” Ph.D.
dissertation, Dept. Eng., Cambridge Univ., Cambridge, U.K., Sep.
2006.

[19] M. K. Mihçak, I. Kozintsev, and K. Ramchandran, “Spatially adaptive
statistical modeling of wavelet image coefficients and its application
to denoising,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, Phoenix, AZ, Mar. 1999, vol. 6, pp. 3253–3256.

[20] S. Voloshynovskiy, O. Koval, and T. Pun, “Wavelet-based image de-
noising using non-stationary stochastic geometrical image priors,” in
Proc. ISJT/SPIE’s Annu. Symp. Electronic Imaging 2003: Image and
Video Communications and Processing V, Santa Clara, CA, Jan. 2003,
pp. 675–687.

[21] V. Strela, J. Portilla, and E. P. Simoncelli, “Image denoising using a
local Gaussian scale mixture model in the wavelet domain,” in Proc
SPIE 45th Annual Meeting, San Diego, CA, Jul. 2000, pp. 363–371.
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