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ABSTRACT

A novel method for modelling the statistics of 2D photographic
images useful in image restoration is defined. The new method
is based on the Dual Tree Complex Wavelet Transform (DT-
CWT) but a phase rotation is applied to the coefficients to
create complex coefficients whose phase is shift-invariant at
multiscale edge and ridge features. This is in addition to the
magnitude shift invariance achieved by the DT-CWT. The in-
creased correlation between coefficients adjacent in space and
scale provides an improved mechanism for signal estimation.

1. INTRODUCTION

The set of natural images is a small fraction of the space of all
possible images. Modelling the statistics of natural signals is
a challenging task partly due to the high dimensionality of the
signal. To make progress, it is essential to reduce the dimen-
sionality of the space on which one defines the probability
model. Certain assumptions are commonly made about the
signal in order to simplify matters.

The sparseness property of wavelet coefficients and ten-
dency of wavelets bases to diagonalise images allows us to
break the problem into modelling a small number of ‘neigh-
bouring’ coefficients (in space and scale) to reduce the dimen-
sionality and improve the tractability of the problem.

State-of-the-art wavelet image restoration methods are based
on two major properties particular to image wavelet coeffi-
cients:

1. Sparsity: Energy tends to be concentrated in a small
number of large coefficients with most coefficients be-
ing small.

2. Clustering: Coefficients display a self-reinforcing prop-
erty where large-magnitude coefficients cluster in spa-
tial location and in frequency (the latter is also known
as persistence across scale).

We introduce a new third property of complex wavelet co-
efficients for image denoising:

3. Interscale phase consistency: The phases of wavelet
coefficients display a consistent relationship between
coefficients at adjacent scales near image discontinu-
ities, such as the edges of objects.

Methods of parameterising image statistics, including those
of neighbourhoods of wavelet coefficients, also commonly in-
volve the use of covariance information [2]. Here, we exam-
ine the covariance information for groups of coefficients near
discontinuities and show how the information may be better
represented using coefficients whose phase is adjusted using
phase information from coefficients at the next coarser level.

The method is derived from the principle that the spec-
trum of an edge or ridge feature behaves similarly across a
range of scales. The technique also makes use of the ten-
dency of images to have significantly greater spectral content
at lower frequencies and the resulting ability of multiscale
denoising algorithms to achieve higher SNR performance at
coarser scales.

In the following we use the q-shift version of the DT-CWT
[1]. Coefficients in the subband at the next coarser level are
referred to as parent coefficients. In the case of the DT-CWT,
these need to be interpolated.

Although the method may be applicable to other image
modelling applications, we develop the framework with sig-
nal estimation and separation applications in mind. The Wiener
filtering example given in section §3 is chosen as the simplest
way to illustrate the advantages of the interscale phase ap-
proach. We have also extended the new modelling to a more
advanced multi-scale Gaussian Scale Mixture (GSM) denois-
ing algorithm similar to that in [2]. Preliminary results are
promising with improvement achieved visually and numeri-
cally at image discontinuities. However the resulting algo-
rithm is beyond the scope of this paper and will be subject of
a journal submission in the near future.



2. INTERSCALE PHASE RELATIONSHIPS

2.1. Background

A well known property of the Fourier Transform is that a shift
in the time or spatial domain corresponds to a linear phase
ramp in the Fourier domain.

h(t − α) � H(f)e−i2παf (1)

Consider an input signal consisting of a particular object
in the spatial or time domain. A shift of α will result in a
phase shift of 2παf0 at frequency f0 in the Fourier domain.
A ‘moving’ object will cause the Fourier coefficients to rotate
at a rate proportional to their frequency.

DT-CWT coefficients display similar properties to Fourier
coefficients for small shifts of the dominant feature in the
vicinity of the coefficient. DT-CWT subbands are centred on
a frequencies exactly twice those of the next coarser level. As-
sume the presence of a single ridge or edge feature at a given
scale, orientation and location. Because adjacent wavelet co-
efficients are at different locations relative to the feature, the
phase of a complex coefficient will tend to be offset from its
neighbour by an amount twice that of the corresponding par-
ent coefficient interpolated at the same location as the child,
provided the feature is multiscale and the frequency spectrum
of the feature behaves similarly across both of the scales.

2.2. Motivation

Anderson et al. illustrated that the phase response to a step
input is approximately linear for a 1-D wavelet transform near
the main support of the wavelet basis function [3]. A similar
result can be obtained for an impulse input. In both cases the
phase of the child coefficient changes at approximately twice
the rate of its parent.

The constancy of this phase gradient relationship near dis-
continuities motivates the definition of a new modified com-
plex wavelet coefficient ‘derotated’ by twice the phase of the
interpolated parent coefficient. In the presence of a multiscale
feature the phases of these derotated coefficients should be ap-
proximately aligned and therefore highly correlated at major
edge features. This correlation can then be used to provide
improved modelling at image features.

2.3. Previous uses of interscale phase

Interscale phase relationships of wavelet coefficients have pre-
viously been used in other signal processing areas including
object recognition [3] and texture synthesis [4]. Romberg et
al. [5] discuss interscale phase relationships and it is closely
related to the use of phase congruence in edge detection [6].
In both [3] and [4] the interscale phase relationships are cap-
tured using the modified product of coefficients at adjacent
scales shown in equation (2), where x is a wavelet coefficient

at a given scale and orientation and xp is the corresponding
interpolated parent coefficient at the same location.

|p| = |x||xp|
∠(p) = ∠(x) − 2∠(xp)

(2)

2.4. Derotated complex wavelet coefficients

In some applications, including Bayesian estimation contexts,
avoidance of non-linearity is important for mathematical tractabil-
ity so that the transformation can be readily used in an es-
timation algorithm. For this reason we opt to preserve the
magnitude at a given scale and simply derotate the child by
twice the phase of the parent. The magnitude of the coeffi-
cient is preserved, thus avoiding the non-linearity of taking a
product. Equation (3) defines the new derotated coefficient.

|q| = |x|
∠(q) = ∠(x) − 2∠(xp)

(3)

Interpolation of the parent level coefficients to obtain xp

is achieved using bandpass interpolation. This involves fre-
quency shifting the subband to be centred on the origin of the
frequency plane, performing standard 2D interpolation then
reversing of the shift.

Figure 1 illustrates the alignment and improved correla-
tion of the derotated coefficients as defined in (3) at an image
edge.

Note that vectors not being aligned does not mean the co-
efficients are not correlated. Complex wavelet coefficients are
a bandpass signal and will therefore rotate with an average
rate that scales proportionally with the frequency of the pass-
band. Note that covariance information can adequately de-
scribe a constant phase difference between coefficients across
the image. However, for standard wavelet coefficients the
phase differences between coefficients are governed by the
particular characteristics of the dominant feature in a given
area. For example, wavelet coefficients will rotate more slowly
across a multiscale ridge than a edge because the spectrum
has a lower ‘centre of mass’. Also, the exact angle of the
dominant feature impacts on the rate of rotation of vectors
in a given area making the phase relationships inconsistent
across the image. As seen in figure 1 the phase of the dero-
tated coefficients is invariant to the exact feature angle within
the angular support of the subband.

The increased correlation provides a new mechanism for
signal prediction. An explanation of the mechanism in the
case of image denoising is as follows. In the presence of noise
the complex coefficients will be rotated from their correct po-
sitions. However, we know that the phases of the new coeffi-
cients should be aligned at discontinuities. Hence we can use
an average of the phases in a small area to better predict the
central one. In reality, we can use a probabilistic framework
to perform the estimation in an optimal manner but it is based
on this principle.



(a) Image (b) Standard complex wavelet coefficients (c) Derotated coefficients

Fig. 1. New property of wavelet coefficients for image restoration: interscale phase consistency at discontinuities.

3. WIENER FILTERING

To demonstrate the effect of improved covariance informa-
tion in signal estimation and to demonstrate the advantages of
modelling using interscale relationships we show the effect
of performing Wiener denoising of neighbourhoods of dero-
tated wavelet coefficients compared to using standard wavelet
coefficients. Wiener filtering is chosen for the demonstration
for its simplicity and its potential for use in more advanced
algorithms such as that in [2].

The denoising problem is stated in equation (4), where y s

and xs are the noisy and clean images.

ys = xs + ns (4)

Transforming (4) to the wavelet domain, we use equation
(5) to describe a neighbourhood of observed wavelet coeffi-
cients y. x and n represent the wavelet coefficients of the
image and noise.

y = x + n (5)

To model the signal using derotated coefficients we use
equation (6). A is a unitary rotation matrix, which converts a
set of derotated coefficients q to the corresponding DT-CWT
coefficients using the phase of the interpolated parent coeffi-
cients. Based on the assumption that an edge or ridge feature
of a given polarity is equally likely to one of the opposite po-
larity, q is assumed to have zero mean.

x = Aq (6)

Wiener estimation of a neighbourhood of wavelet coeffi-
cients from the observed coefficients y is given in equation

(7). It assumes both the noise and signal are Gaussian with
covariance Cn and Cm.

E {x|y} = Cm (Cm + Cn)−1 y (7)

When using standard wavelet coefficients, Cm is the co-
variance matrix Cx of the neighbourhood x. When employ-
ing derotated coefficients, Cm becomes ACqAT where Cq

is the covariance of q. In this case the covariance becomes
spatially adaptive and conditional on the phase of coefficients
at the parent level. Cx and Cq are estimated from the noisy
data based on the methods described in [2].

Figure 2 shows the results of Wiener denoising using a
six coefficient neighbourhood including the parent and four
directly adjacent coefficients. The noise is white with stan-
dard deviation 25. We have obtained the final image esti-
mates by performing an inverse wavelet transform of the cen-
tral wavelet coefficients in each neighbourhood. The parent
level phases required for derotation are approximated using
the noisy coefficients. This approach assumes that the spectral
characteristics of typical noisy natural images have a signifi-
cantly higher signal to noise ratio at the parent scale relative
to that of the child. The reconstructions contain the dappled
noise typical of stationary Wiener filtering. However, when
using the derotated coefficients, the noise level is lower and
edges are significantly less blurred.

The SNR improvement gained by using the derotated co-
efficients for the whole Peppers image is 0.49dB averaged
over eight different noise sample sets. For the full algorithm
using GSM modelling the improvement is 0.18dB.
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Fig. 2. Denoising via wiener filtering of neighbourhoods of derotated DT-CWT coefficients compared to that using standard
DT-CWT coefficients for the Peppers image.

4. CONCLUSIONS

Significant gains in noise reduction can be made by modelling
the non-stationarity of images, i.e. that various image compo-
nents display different behaviour, for example, smooth areas,
areas of texture and discontinuities. State-of-the-art GSM de-
noising algorithms do an excellent job of using the clustering
property of wavelet coefficients to model images according
to the activity within neighbourhoods of wavelet coefficients
and attenuating coefficients heavily in the ‘inactive’ regions
to remove noise [2]. The use of interscale phase relationships
affords modelling of the non-stationary nature of the coeffi-
cients’ phase and to specifically model edge and ridge dis-
continuities and other active areas.
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