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Enhanced Shift and Scale Tolerance for Rotation
Invariant Polar Matching With Dual-Tree Wavelets

James D. B. Nelson and Nick G. Kingsbury, Member, IEEE

Abstract—Polar matching is a recently developed shift and rota-
tion invariant object detection method that is based upon dual-tree
complex wavelet transforms or equivalent multiscale directional
filterbanks. It can be used to facilitate both keypoint matching,
neighborhood search detection, or detection and tracking with
particle filters. The theory is extended here to incorporate an
allowance for local spatial and dilation perturbations. With exper-
iments, we demonstrate that the robustness of the polar matching
method is strengthened at modest computational cost.

Index Terms—Feature extraction, object detection, wavelet
transforms.

I. INTRODUCTION

S OME well known important wavelet properties include
(bi)orthogonality, Besov regularity, compact support, and

symmetry. Commonly, however, object detection problems
require the consideration of extra properties because two ob-
jects are often defined to be in the same class if one object is
similar to some transformation of the other. If wavelets are to
be used for object detection tasks, then either the objects must
somehow be normalised first, or the wavelet coefficients must
be invariant to certain transformations.

In practice, normalization can be difficult. For translation in-
variance, some previous works have implemented a variant of
the “spin-cycle” method of Coifman and Donoho [2] whereby
extra training samples are created by shifting the original ones.
A more elegant and computationally efficient method is to con-
struct transforms which are themselves invariant.

The shiftable wavelet, introduced by Simoncelli et al. [17],
satisfies a slightly weaker condition than shift invariance but is
less redundant than the spin cycle. Monogenic wavelets [1], [13]
are a 2-D extension of 1-D analytic wavelet transforms. They are
rotationally steerable but not very directionally selective and can
be expensive to compute. The dual-tree complex wavelet trans-
form (DTCWT), introduced by Kingsbury [9], [15], has good
shift invariance and offers low redundancy with good compu-
tational efficiency and good directional selectivity. Moreover, a
recent extension of the DTCWT, known as polar matching [10],
also possesses approximate rotation invariance. Unlike earlier
DTCWT rotation invariant work of Hill et al. [8], polar matching
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retains the phase information of the complex coefficients and,
therefore, represents a richer descriptor.

Polar matching applications include keypoint matching,
neighborhood search detection, and detection and tracking
with particle filters [12]. Keypoint matching proceeds by first
using a keypoint detector to find salient features such as edges,
corners, and blobs in two different images. Features are then
extracted from keypoints in one image and compared to those
in the second image. The pairwise correlation scores can then
be binned over different shifts, dilations, and rotations to allow
for limited affine transformations between the two different
images. Since keypoints will not necessarily be centered on
exactly the same object components from one image to the
next, robustness to small displacement errors can be the key to
the success of the method. The scale invariant feature transform
(SIFT) offers improved robustness to changes in image scale
compared with earlier keypoint detectors such as the Harris
corner detector [7]. In a similar way to SIFT [11], DTCWT
keypoints can be established in scale and space [4]. Contrary
to SIFT, the polar keypoint matching method does not choose
a dominant orientation for each keypoint but rather makes
use of correlation scores at all rotations. In [4], the DTCWT
method was shown to be more robust to rotation, and gave less
redundant keypoints, than SIFT.

A second application is to use polar matching in a template
matching approach for object detection in video [12]. Assuming
that we have access to one or more examples of the target or
object of interest, we can use polar matching to search an un-
known test image by extracting features from some neighbor-
hood or window in the test image and correlating each one with
a template stored in a database. Hence, a correlation surface can
be obtained. The steepness of the correlation surface about the
maximum can be controlled to some extent by the template size
and the choice of wavelet decomposition levels used. However,
the size of the template relative to image size will be determined
by the application, data, and object of interest. In practice, the
correlation surface is computed over a discretised set of points.
A full, exhaustive computation would involve the extraction of
test features at every pixel, or perhaps subpixel, in the search re-
gion. If such an approach proves intractable then it becomes nec-
essary to calculate the correlation surface over a sparser set of
locations. On the other hand, a sparser search carries with it the
risk of missing the correlation peak altogether. In this setting,
robustness to shifts allows sparser sampling of the test features.

In the same context, particle filtering has also been used with
polar matching [12]. Here, polar matching scores are computed
at each particle location to form the observational model. With
added shift and scale tolerance the location and scale of the par-
ticles becomes less critical and can either add robustness to the
observational model or allow fewer particles to be used.
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In all of these applications, scale tolerance would add robust-
ness to unknown changes in distance between sensor and target.

In this paper we shall consider the question of how to ef-
ficiently incorporate an allowance for an unknown local spa-
tial and dilation perturbation into the polar matching method.
The next section summarizes the basic polar matching method
and Section III introduces a shift tolerant extension to polar
matching. This is further extended to include scale tolerance in
Section IV. Experiments on a 73 image dataset from Caltech
are described in Section V. Finally, conclusions are drawn in
Section VI.

II. POLAR MATCHING

At each scale level, the 2-D DTCWT decomposes an image
into six subbands [15]. Each subband coefficient can be thought
of as a response to a bandpass directional filter at a particular lo-
cation. Together with their complex conjugates, the coefficients
constitute 12 different directions, regularly spaced at

, for . For the purposes of polar matching
the 2-D real and imaginary impulse responses in the 45 and
135 directions are modified, as described in [10] and depicted
in Fig. 1, to have center frequencies that match those of the
other directions or subbands. In addition, the phases of the six
band outputs are all centered to zero by a simple multiplication
of , respectively. In doing so, six opposing
directions can be obtained by conjugating the six complex sub-
band coefficients.

As illustrated in Figs. 2 and 3, the elementary form of the
polar matching method samples these six subband coefficients
at 12 points around a circle and at one point at the circle center.
The coefficients are then assembled into what is known as a
polar matching matrix (P-matrix), thus

where the subscripts determine the subband orientations
, the coefficients labelled are taken from the

midpoint, and the coefficients determine the locations
of the sample points as in Fig. 2. The arrangement of the
DTCWT coefficients ensures that each 30 rotation of the
image about the center point of the sampling circle produces
a cyclical shift by one element of each of the columns of the
polar matching matrix (P-matrix).

Given two images, one a rotation of the other, a sum-
mation of the column-wise correlations between the two P-ma-
trices will give a response curve with respect to rotation angle,
and with a maximum at a shift of . Hence, the location of the
correlation peak can be used to estimate the difference in orien-
tation angle between two similar objects. However, when com-
puted directly, this correlation response curve will only give re-

Fig. 1. In the interests of rotation invariance, the DTCWT 2-D real and imagi-
nary impulse responses in the 45 and 135 directions are modified. Taken from
[10]. (a) Dual-tree complex wavelets: real part. (b) Modified complex wavelets:
real part.

Fig. 2. Sampling locations of the DTCWT coefficients for the polar matching
method. Taken from [10].

sponses at increments of 30 . The resolution can be improved
by performing the correlations as a sum of zero padded dot prod-
ucts in the Fourier domain before using a single inverse FFT to
obtain an upsampled correlation result. Typically, the original
12 samples are upsampled by a factor of 4 to obtain 7.5 rota-
tional spacing. One then arrives at a response curve as a function
of orientation, sampled at , for .

The P-matrix represents an approximately rotation invariant
feature under the operation of correlation. In a similar fashion
to the Fourier–Mellin transform [3], [16], polar matching ex-
ploits radial sampling to transform rotations of the original ob-
ject into shifts in the feature space. Unlike Fourier–Mellin, the
polar matching descriptor is constructed from coefficients that
are well localised in both space and frequency. Although the
Fourier–Mellin descriptors are also scale invariant, they are not
designed to detect the location of a template by searching a
larger image. Accordingly, they are usually applied to image re-
trieval [3] or global registration [6] problems where the two im-
ages to be compared have either been captured or preprocessed
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Fig. 3. Locations and orientations of the DTCWT coefficients and how they are
arranged in the polar matching matrix (P-matrix). Each orientation describes a
coefficient, or conjugate, of one of the six subbands. The numbers denote the
orientation and the P-matrix row position. Taken from [10].

such that the background or clutter is removed. A local ver-
sion of the Fourier–Mellin can be computed using a windowed
Fourier approach [5]. Strictly speaking, if this was used directly
to perform a template matching search on an image then a win-
dowed Fourier transform would have to be computed at every
single pixel in the search image. This is not necessary for polar
matching.

To enrich the polar matching descriptor, further scale levels,
sampling circles, and color channels may be considered by ap-
pending coefficients as extra columns of the P-matrix. For the
experiments carried out in this paper, two sampling rings and
their center point from the third finest level are used, together
with one ring and center point at the fourth finest, and just the
center point at the fifth finest level. This is illustrated in Fig. 4.
The sampling pattern used in our experiments was chosen to be
the same one used in a target detection and tracking application
of polar matching [12]. Generally, the scale levels and sampling
ring radii are chosen such that the outer rings approximately
overlap at least part of the object boundary. For simplicity, color
information was converted into monochrome values prior to any
processing. This results in 13 columns of 12 coefficients from
the third finest level, seven columns from the fourth, and one
column from the fifth. Hence, the number of columns .

Consider the column-wise Fourier transform of a template
P-matrix taken about some center point. As stated previously,
the 12 Fourier coefficients in each column are periodically ex-
tended by a factor of four to generate rows. In practice,
there are computational short-cuts for this process, which will
be discussed later. Denote the th element of the resulting
matrix by and its conjugate by . Likewise, let be
the elements in the extended column-wise Fourier transform of a
test image P-matrix taken about the point . The polar matching
operation between the two can be expressed as

Fig. 4. Multiple scale level sampling locations of the DTCWT coefficients for
the polar matching method. A 128� 128 subimage is extracted from the center
of the image (top most) and decomposed into three levels of detail. Upper left:
original subimage. Upper right: fifth finest level. Bottom left: fourth finest level.
Bottom right: third finest level. For illustrative purposes, only the absolute values
of the DTCWT coefficients in subband 1 are shown. In practice, the real and
imaginary parts are used from all subbands. The original image is “201.jpg”
from Caltech’s “PP_Toys_03” full resolution dataset [14].

The element-by-element products between the columns of the
two matrices are carried out in the second summation. Before
the products are taken, the elements are multiplied by the indi-
cator function which, for each column , takes
zeros over an appropriate part of the Fourier domain and ones
elsewhere; this can be seen as an ideal bandpass filter. The in-
verse Fourier transform is then carried out in the outer summa-
tion over .

The part of the spectrum to be zero padded should be tailored
differently to suit each column of the P-matrix. In particular,
consider the P-matrix formed at the center of rotation of a single
step edge. As the edge is rotated, the response of column 1 will
vary as a lowpass function. Columns 2 and 7 will vary slightly
quicker as bandpass functions, columns 3 and 6 quicker still, and
columns 4 and 5 the quickest as highpass functions. The rate of
change depends upon the subband orientation with respect to
the radial direction. Denoting this angle by , and referring to
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Fig. 5. Step edge orientated at 15 to the horizontal, and placed in the center
of a 128 � 128 subimage is decomposed by the DTWCT. The phase angle of
the center DTCWT coefficient from subband 1 at the fourth finest scale level
is plotted with respect to vertical displacement. Note how the phase completes
approximately 3/4 of a cycle over the sampling period of � � �� pixels.

Fig. 3, we have for columns 2 and 7, 45 for columns
3 and 6, and 15 for columns 4 and 5. Generally, the center
frequency of the columns is proportional to .

Now consider the DTCWT decomposition of a step edge ori-
entated at 15 to the horizontal, placed in the center of a 128
128 subimage. Fig. 5 shows that the phase response of the center
coefficient at the fourth finest scale level taken from subband 1
(oriented such that the stripe direction is parallel to the edge di-
rection) shifts by almost radians over a displacement
of 12 pixels (note that 12 pixels is equivalent to
samples at the fourth finest scale level). Hence, over one sample
interval at the fourth finest scale level, the phase will shift by

radians. Therefore, the rate of phase change with respect
to a rotating step edge at a radius of one sample will be approx-
imately equal to .

Since the column 1 coefficients vary as a lowpass function

if , and
if

Likewise, the center points from any other scale level will be
multiplied by . For columns 2 to 7, since the rate of phase
change is approximately , it follows that, for

:

The inner rings at other levels will similarly be multiplied
by . Since the outer ring at the third finest level
(see Fig. 4) has twice the radius of the inner ring, the rate of
phase change will double. If the outer rings are assembled into
columns 16 to 21, then

Generally

where is the subband orientation with respect to the radial
direction of the filters. Note that the maximum allowable shift
of the function is (any further shifts would make the
high pass functions and become band pass functions).
The radius of the sampling circle is measured in samples of
the respective coefficient space. In our experiments, the fourth

finest level has a ring of unit radius, and the third finest level has
an inner ring of radius 1 and outer ring of radius 2.

The fast Fourier transform can be used to speed up the polar
matching computation. The inverse DFT only needs to be done
once on the accumulated sum of all the columns of the dot-
product matrix, rather than on every column. Alternatively, if
there exists prior information about the orientation of the target,
the inverse DFT need only be computed for a subset of . For
example, when tracking objects using video it is reasonable to
assume that the target orientation rate of change is bounded.
Finally, the real component is taken in order to return the
purely real correlation intensity. For simplicity, and to aid the
development of the shift and scale tolerant polar matcher in the
next section, this is first rewritten as

(1)

where

Now put , and . Define the column vector
as

That is, concatenates the columns of the matrix . Like-
wise, form and . We then have

which is now just a weighted inner product, namely
, where the superscript denotes com-

plex conjugate (Hermitian) transpose. For each orientation ,
the matrix is diagonal. This summation
only takes place over nonzero terms because of the
Fourier domain zero padding.

To summarise, the polar matching operation between the tem-
plate Fourier P-vector and test image Fourier P-vector about
the point is

(2)

Since both and are independent of the test image, the
product can be precomputed and stored. The operator

also reduces computation by a factor of 2.
Choosing a sampling circle radius of 1 or 2 will cause some

overlapping of test feature samples which can be exploited
for a modest computational speed-up. Including multiple scale
levels effectively increases the number of P-matrix columns.
Note, however, that in the polar matching operation (1) only
the th column of is compared (via dot product) with the th
column of . In other words, only template coefficients from
scale level 3, say, are compared with test coefficients from scale
level 3. Although multiple scale levels are used, no cross-scale
comparisons are computed. This means that the original method
is not, in general, scale invariant. In contrast, the terminology
“scale tolerance” refers to the ability of the matcher to deal with
the situation where the template is a zoomed in (or out) version
of the test image.
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In the following, the polar matching approach is strengthened
so that a P-matrix constructed from a center point location

and scale will still obtain a large correlation
score when matched with the same image centered on at
scale .

III. SHIFT TOLERANT ALGORITHM

In this section, we present an extension to the original polar
matching method to incorporate an allowance for larger local
spatial displacement errors and . In doing so, it will be seen
that the steepness of the correlation surface about the maximum
is reduced.

As shown previously, let and be the Fourier transforms of
the polar matching features of the template subimage and test
image, respectively. It is usually advantageous to normalise the
features by a scalar such that , in order to give
improved resilience to varying contrast levels between images.
After normalization, the features can be considered mappings
from the original pixel coordinates to the -dimensional com-
plex hypersphere . That is

From (2) polar matching, denoted by , is the real part of a
sesquilinear form

from the complex -sphere to the real -cube, where is the
number of bins for . (We choose in our experiments.)
Now define . We assume that is linear
with respect to small spatial shifts . That is

This is equivalent to a first order Taylor series expansion of
, which is reasonably accurate because of the smooth

bandlimited nature of the complex wavelet coefficients. Then

As Fig. 6 illustrates, the problem that shift tolerant polar
matching addresses is to find the maximum shifted polar
matching correlation score with respect to an unknown small
shift . Since and are both normalised to unit length, the
aim is to get close to by moving a distance of , from ,
along the surface of the hypersphere in a direction orthogonal
to the radial vector . That is

(3)

Ideally, we want such that

(4)

Fig. 6. Shift tolerance problem, simplified in 2-D space. Find the shift distance
�� along the surface of the hypersphere � , such that the unit vector � is
rotated into � � .

for some . However, because is a much larger di-
mensional space than the domain of , which has only two
dimensions, this is an overdetermined set of equations. Instead,
the solution, in the least squares sense, is

(5)

Note that, since and , the denominator of (3)
is

Hence, substituting from (5) into the right hand side of (3)
gives shift tolerant polar matching

(6)

where . The term is a 2 2 matrix and
is independent of the test image term . Under the reasonable
assumption that and are linearly independent,

is a positive definite matrix and is, therefore, invertible. All
other terms involve polar matching operations on the test image
with the template and two spatial derivatives of the template.
Therefore, the template , Jacobian , and matrix should be
precomputed and stored in memory.

Compared with the original polar matching method, which
just requires computation of , this shift tolerant version
also requires . This comprises two
weighted inner products, each of similar complexity to .
Alternatively, using the inverse fast Fourier transform to com-
pute the polar matching operations, we now require three FFTs
(rather than one) per test location . Since an upsampling of four
is used, these are 48-point FFTs. Once has been computed,
there is a minor additional cost for each and , of
six multiplications and two adds to compute the quadratic form

, one add for the numerator, one add and a
square root for the denominator, and a division.

However, the overall computation of both the original and tol-
erant method is often dominated by calculating the features
at each point . This overhead involves a DTCWT to decom-
pose the test image. More crucially, at each it also requires
bandpass interpolations to generate the coefficients around the
sampling circles. As we will illustrate with some experiments
in Section V, the extra costs of the new method are likely to
be worthwhile in order to reduce the sensitivity to displacement
error.
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IV. SCALE TOLERANT ALGORITHM

Shift tolerant matching can be extended quite naturally to
shift and scale tolerant matching. We introduce a dilation vari-
able , such that

Now

Define . Then, for small
and , assume

i.e., this is a first order Taylor series expansion of the shifted and
dilated template . Similar to the shift tolerant
case, we want

(7)

The solution, in the least squares sense, is

(8)

The shift and scale tolerant polar matching takes the same form
as (6). The only difference is that has been appended as
an extra column to , (4) and (5) are replaced by (7) and (8),
and is now a 3 3 matrix.

V. EXPERIMENTS

Caltech’s “PP_Toys_03” full resolution dataset [14] was
used to investigate the effectiveness of the shift and scale
tolerant methods. The 73 image dataset mostly comprises
various toys against a grassy or stony background. To simplify
reproducibility of results, no attempt was made to find suitable
template center points. Instead, templates of size 128 128
pixels were simply taken from the center of each image. For
simplicity, prior to any further processing, the RGB values
were converted to intensity via . Fig. 4
illustrates the three levels of DTCWT sampling used.

Fig. 7 shows correlation surfaces obtained by performing
polar matching between the template and test image regions
centered about the template. We compute
about a local neighborhood of . As discussed
earlier, the polar matching output is a function of
space and orientation . Denote the shift tolerant matcher
output as , and the shift and scale tolerant output as .
For each template, the test images are shifted, rotated, and
dilated versions of the template. Rotations were performed on
the test images to show that the rotational invariance property
of polar matching is not significantly affected by the tolerant
methods. For each rotation and dilation

, and for each of the 73 test images, we
obtain a correlation output . The shift tolerant
matcher was applied to the shifted and rotated test images to
give the correlation surfaces . The shift and scale

Fig. 7. Mean correlation values over 73 image dataset, with respect to �.
(a) Unrotated and undilated. (b) Mean over rotations. (c) Mean over dila-
tions. (d) Mean correlation values with respect to dilation. The original polar
matching is plotted with a dotted red line, the shift tolerant method with a blue
dashed line with crosses, and the shift and scale tolerant method with a green
solid line with crosses. The error bars denote variance over all experiments.
(a) � ��� �� ��. (b) ���� � ��� �� ��. (c) ���� � ��� �� ��.

(d) � ����� ��.
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tolerant matcher was applied to the shifted and dilated test
images to give .

Fig. 7(a) shows the original correlation output , the shift
tolerant output , and the shift and scale tolerant correlation
output with rotation, dilation, and -shift set to zero. It can
be seen that and show more tolerance to shifts than .
For example, shows a correlation value of 0.9 and higher is
obtained over the interval 2 pixels, whereas the tolerant ver-
sions obtain 0.9 and higher for the interval 4 pixels. This also
occurs in the direction. A similar improvement is evident at
correlation values over 0.8 or 0.7.

Interestingly, we see that the shift-scale tolerant method
seems a little more tolerant to shifts than the shift tolerant
method. The reasons for this not completely clear and are a
subject for further investigation.

In Fig. 7(b), and are compared by averaging over all
rotations and fixing dilation and to zero. This shows that
retains better shift tolerance even when there is a rotational dif-
ference between the template and test image. Fig. 7(c) compares

with by fixing rotation and to zero and averaging over
all dilations from 1 to 1.4. In Fig. 7(d), the rotations and loca-
tion are set to zero to compare with over the dilations 1,
1.05, , 1.5. Fig. 7(c) and (d) show that is more tolerant to
scale than the original method. Fig. 7(d) also shows that the test
image needs to be scaled by a factor of more than 1.35 before
the shift and scale tolerant correlation score falls below 70% of
the maximum.

Further experiments were carried out on 64 64 base image
patch sizes. The second, third, and fourth finest scale levels were
used and the radii were kept the same as the original experi-
ments. As might be expected, when we halve the scale of the
subimages, the shift tolerance approximately halves. However,
the shape of the curves is consistent with the trend of those de-
picted in Fig. 7.

A sum over all values of the correlation surfaces that
are above 90% of the theoretical maximum of 1 is computed
for the original and tolerant matchers. A ratio of the tolerant
matcher score over the original score is then computed for com-
parison. That is, for the shift tolerant matcher, the ratio

gives a measure of the area of the region within 0.9 of the height
of the maximum. The mean and standard deviation of , taken
over all experiments are given in Table I for subimage sizes of
128 128 and 64 64.

The behavior with respect to nontargets was also investigated.
Ten random points were taken from each of the 73 images at a
minimum distance of 64 pixels from the center. Images of size
128 128 centered at these points were correlated by polar
matching with each of the 73 templates (also of size 128 128).
The histograms of the resulting 53290 correlation scores are
shown in Fig. 8. By inspection, a small proportion of the image
pairs in this experiment resemble scaled, rotated, and shifted
versions of each other. Hence, the histogram overestimates the
number of false positives. As might be expected, the discrimina-
tive ability tends to diminish a little as more tolerance is added.

The P-matrix of the template features is a 12-by- complex
matrix. In our experiments, . For the shift tolerant
method, three complex 12-by- matrices are required: one for

TABLE I
ENERGY IMPROVEMENT RATIOS

Fig. 8. Histograms of nontarget correlation scores.

and two for . For the shift-scale tolerant method 4 complex
12-by- element matrices are required. To sacrifice memory
for speed, one could precompute and store ,
with at most nonzeros for each . For this imple-
mentation, the tolerant methods would, in addition, require
storing , for each , where for the shift
tolerant method and for the shift-scale tolerant method.
To extract the template features from a 128 128 subimage
takes 0.06 s for the original method, 0.18 s for the shift tolerant
method, and 0.25 s for the scale tolerant method. To extract
the test features from a 128 128 subimage over a 33 33
pixel neighborhood and compute the polar matching operation
between the template and all 33 33 test features takes 3.0 s
for the original method, 3.6 for the shift tolerant method and
3.8 for the shift-scale tolerant method.1 For the experiments
shown in Fig. 7, the shift tolerant matcher requires 20% more
computation time than the original polar matching method. The
shift-scale tolerant version requires 27% more time than the
original method.

VI. CONCLUSION

Fig. 7 and Table I show that the shift and scale tolerant
methods behave as intended. Both the shift and shift-scale
tolerant methods extend the polar matching shift tolerance by
approximately four pixels in both the horizontal and vertical
direction when DTCWT levels 3–5 are used for polar matching
as in Fig. 4. Furthermore, the scale tolerant method extends
the tolerance of polar matching to dilations of around 1.3:1.
If, however, the distance between sensor and known object is
available then scale tolerance is less important. In this case,
shift-rotational invariance and shift tolerance is still important

1Using Matlab 7.3.0 with Windows XP and a 2.4 GHz dual core processor.
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and the shift tolerant polar matcher may be more appropriate
than the shift-scale tolerant version.

In practice the Jacobian is approximated by a finite differ-
ence. For example, the partial derivative with respect to is es-
timated by

The value of a pixel was used in all experiments per-
formed in this paper. It is conceivable that the finite difference
increment could be optimised. Furthermore, the finite differ-
ence approximation could potentially be replaced with a more
sophisticated discrete derivative.

It is also important to note that the shift and scale tolerant
approach implied by (3) could be applied to any other correla-
tion operation that can be expressed as a weighted inner product,
or sesquilinear form, . A simple example would be the
classic matched filter with , where and are simply
normalised intensity values of two images.

Investigations of shift and shift-scale tolerant matching to
specific applications like keypoint matching and target detection
and particle filter tracking in video should make for interesting
further work as would an investigation into the choice of scale
levels and the number and radii of sampling circles.
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