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Abstract—Sand ripples present a difficult challenge to current Williams and Coiras [4] recently proposed a filter bank
mine hunting approaches. We propose a robust and adaptive with 6 directions and 6 scale levels, which resembled a Gabor
method that suppresses sand ripples prior to the detectiontage. basis, to detect sand ripples in synthetic aperture sorfter A

The method exploits a fractal model of the seabed and the . : . . .
connection between: dual-tree wavelets and local, directnal applying the 36 (undecimated) convolutions with the input

fractal dimension; interscale energy ratios, scale invaant fre- image, a ‘ripplicity’ measure was computed by taking the
quency localised fractal dimension, and a novel wavelet sinkage difference between filter responses at mutually orthogonal
approach. Tests on a reasonably large, real synthetic apaerte  directions. Given that the location and orientation of ipples

sonar imagery dataset show that the ripple suppression metd could be found robustly, they proposed that the heading of

preserves detection performance of the matched filter on non th hould be ch dt directi lel to th
rippled data and significantly increases the detection pedrmance € sensor shou € changed 1o a direction parailel to the

on data that contain ripples. ripple propagation in order to moderate the ripple effelctsa
sense, they ventured a hardware, as opposed to our proposed
. INTRODUCTION software, ripple suppression approach. Unfortunatelynguo

HERE is growing interest in the analysis of sonar imagepgariations in wave frequency and am_plitude of c_urrentsdsan
for automatic mine hunting. Manual inspection of sucHPP€S are not guaranteed to result in regular, linearepast

data can be a time consuming task that requires significaht 4#her. the ripples, as seen from above, form pseudo saisoid
constant concentration. It is hoped that future computtechi Pifurcated, and braided patterns [5] (see Fig. 3(a)). Infie,
systems will help eliminate distraction or fatigue and parf this could potentially mean that the hardware solution iegu

faster, more consistent, processing. A practicable mimging that the sensor re-inspect the same region of seabed from
system must overcome some difficult challenges includifgultiPle angles each time a ripple field was encountered.

clutter and seabed variability. Sand ripples, which carresha USING wavelets to preprocess sonar imagery prior to mine
some of the characteristics of mine-like objects, presaataf detection has been attempted before. However, these nsethod

the major challenges for automatic mine hunting applicatio have only been use_d to denoise the sonar speckle rather than
11, [2]. to suppress sand ripples. Chen and Nguyen [6] employ an

Amongst the most promising techniques that have tjdecimated, overcomplete Haar wavelet transform before a
potential to overcome the effects of sand ripples is the vafrk (wavelet decomposed) matched filter i.s applied to .each scale
Reed et al. [3]. They used unsupervised Markov random fieRY€l- A scale dependent threshold is then applied to the
based detection to segment the image into shadow, seaG@elation surfaces at each scale level and the resultimagyo
and object highlight regions. Cooperating statisticalkesa Maps are intersected to _form the final binary detection map.
were used to extract highlight and shadow regions for objédpfortunately, an undecimated wavelet transform, togethe
classification. Some robustness to sand ripples, compatad W/ith multiple instances of fully sampled matched filter op-
previous methods, was reported. erations (at each scale level) is computationally expensiv

In the following, we present a method that automaticallj 1S @lso unclear as to how the vertical, horizontal, and
suppresses sand ripple effects. Our scale and rotatiorianta diagonal subbands are co_mbmed, and ho_w the scale dependent
method exploits ideas from fractal analysis to distinguishrésholds are predetermined or generalised to unseen data
rippled from non-rippled seabed regions. The information Huynh etal. [7] used several different denoising methoés in
obtained is used to design a space, direction, and scaléalagF!uding Gaussian, difference of Gaussian, and standareleav
wavelet shrinkage operator that targets and attenuates $idnkage. After some experimentation with real sidescan
ripple energy. Although our method is not necessarily idegh Sonar data, they reported that wavelet shrinkage gaveaise t
as an alternative to that of Reed et al. [3], it can potelytialfhe best matched filter detector performance and tha_t shgnk
facilitate the use of simpler detection/classification moets ©Nly the 2nd finest scale level gave the best detection gesult
which were previously ineffectual in the presence of sargfing non-adaptive purely linear operators which blur the
ripples. As an example, we will use the matched filter detectBighlight/shadow regions associated with mines, the Ganiss
as a validation tool to compare the detection performante wnd difference of Gaussian filters in [7] gave worse results

and without ripple suppression. than not performing any preprocessing.
In Section Il the connection between wavelets and fractal
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manner as well as a wavelet shrinkage method to suppressahgclockwise direction from the horizontal (see [11], [1@r
ripples. The same model motivates a modification of a matchedre details). Moreover, unlike other fast wavelet transf
filter, proposed by Dobeck et al. [8], which is presentethe DTCWT also has good shift invariance which ensures that
in Section IV. In Section V, validation is carried out bythe magnitudes of its complex coefficients remain stable and
comparing the receiver operating characteristic (ROCyeasir large near any singularities.

obtained from applying a matched filter with and without the

ripple suppression preprocessing step. IIl. RIPPLES FRACTAL DIMENSION, AND COMPLEX

WAVELET SHRINKAGE
Il. FRACTAL DIMENSION

A. Satigtical self-similarity
Of particular interest for this application are statisicaelf-
similar processes. That j6: R? — R, such that

A. Measuring ripples with fractal dimension

In order to help distinguish between rippled and non-rigple
patches of seabed, we consider a measure of local dual-tree
wavelet root-energy, nameligy ., (x) = |(Wf) (k, m;x)|, at
E[f(yx)f(v€)] = V*"E[f(x)f(€)] , (1) scalek, directional subbandn, and locationx. The root-
energy is plotted against thgh finest scale level in Figure 1
for a rippled and non-rippled seabed region. It can be oleserv
that the non-rippled region gives rise to an approximategrow
Faw spectrum as in (2) whereas the rippled region contains
spikes in more than one directional subband that invalidate
(Pf) (w) o ||wl||~2HTD (2) the power law. That the relatively flat seabed follows a power
law relationship corroborates the model of Pailhas et &] [1
who used fractional Brownian surfaces, discussed briefilyen
previous section, to synthesise sonar imagery data of deabe
From (3), a surface with a power law spectrum satisfies:

whereH € [0,1] for somey € R. Statistical self similarity is
one of the key properties that informally defines a (stoébpast
fractal process [9]. It is satisfied by processes with pow
spectraP f that satisfy the power law decay:

In this case , the fractal dimension pis ¢ £ 3— H. Statistical
self-similarity is also satisfied by fractional Brownianrfaces.
These are stochastic processgg: R? — R, with initial
condition B (0) = 0, such that the local increments:
4—d)k
(ABu) (%) 2 By (x + Ax) — B(x), Bim(x) o< 2479%,
whereg¢ (nominally € [2, 3]) is fractal dimension. Hence, for a

are stationary Gaussian random fields with variance i | . ,
relatively flat seabed region, we arrive at the following bdu

E [l(ABH)(X)|2 o [l ax|* . condition for a non-rippled seabed:
Again, the fractal dimension i§3 — H), and the power law 1 Epm (%) — 99—4 < 1 Vi . (4)
(2) holds in an average power spectrum sense [9]. 47 Egy1,m(x) -2
_ _ Here, the root-energy at scaleis divided by the root-energy
B. Wavelet transforms and fractal dimension at scalek + 1 for each location and subband direction. This
The wavelet transform of a surfage: R? — R can be interscale wavelet energy ratio results in a value independ
written as of scale level. Since the bounds are independerit, dhis is
. a scale invariant condition. Since the ratio only involves t
WF) (k,m;x) =27 . f(&)m (27F(x — §))d¢, scale levels, it is akin to a frequency localised measure of
R

] . . _ fractal dimension. Because of the space, direction, freque
where ¢, is a zero-mean mother wavelet with orientatiofycajised (approximate) nature of this measure, and becaus
indexed bym, and wherék: denotes theth finest scale level e only want to shrink a wavelet coefficient if we have strong
(k = 0 being the scale of the original ‘pixel’ coordinates), andyidence that it contributes to a ripple region, the uppet an
wherex is the spatial location. Appendix A shows that lower bounds are relaxed somewhat in practice to same

SN2 )\2.
log B ||OV) (I, m3 )| } =2MHA+ D+ Cy G Conversely, at scalé, subbandn, locationx, the wavelet
holds for statistically self similar processes. Thg, ; term coefficientwy ., (x) £ (W) (k,m;x) is deemed to contribute
is independent of scale and the right-hand-side is a linearto rippled seabed region if, for somg < X\, € R™:
function of scalek. Hence, the exponeri{ can be computed Er1m(x)

by measuring the average slope, over each of the directional Rp 1m(x) & /10 <)\ (5)
i g . ’ Ek m(x)
subbandsm, of (3) via linear least squares regression. In or ,
practice the variance is approximated by the sample vagianc B (x)
LS (W F) (k,m;x,)[°. In [10], the authors proposed the Rem(x) = ﬁ > A (6)
+1,m

use of the dual-tree complex wavelet transform (DTCWT) [11]
[12] to estimate local and directional fractal dimensioheT In this way, we can distinguish between rippled and non-
DTCWT is fast (decimated) and, with 6 strongly directionalippled regions. By considering the distance between the
subbands, it has good directional selectivity. The stripe dhterscale energy ratio and the bounds, we also have a neeasur
rections of the filters are oriented &30m — 15)°}¢ in an of how certain we are that a given region contains ripples.
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Fig. 2. The dual-tree wavelet adaptive shrinkage functidrfee function
S—, given by (8) is designed to threshold or shrink wavelet ficiefits that
— give rise to a wavelet energy rati;_; that is low enough to satisfy (5). On

¢ ® eth finest scale level ¢ the other hand, the shrinkage functiit given by (9) thresholds or shrinks
) coefficients that give rise to an energy rafig, that is large enough to satisfy
(c) Rippled seabed (d) Wavelet energy. (6).

Fig. 1. A patch of non-rippled seabed (a), gives rise to a \ea\amplitude
spectrum (b) that follows a power law decay with respect terfiscales (it o .
decays as frequency increases). Conversely, a ripplecedazdtch (c) will o Compute the DTCWT coefficients of the inpjit
invalidate the power law at one or more scales and subbaedtidins (d).

Wk,m (Xn) — W) (k,m;x,),

at scalek, in subband (directionn, at locationx,,.

« Estimate local root-energfy, m (x) < >_ [wk,m(Xn)],
in some spatial neighbourhogdof x.

o Compute ratio Ry, (x) «— Eim(X)/Ekt1,m(x). In

B. Fractal-dimension-based complex wavelet shrinkage

Given an imagef, a general wavelet shrinkage procedure
can be summarised by:

() Take wavelet transform: w = Wf practice, the sampling rate is proportionalfq therefore
(i) Shrink wavelet coefficients: w~ = Sw Ej11,m is up-sampled by a factor of 2 to compuig ,,,.
(iiiy Take inverse wavelet transformy~ = W~1lw™ « Compute ratiory, ., (x) < down-sampled (by a factor of
More specifically, for the ripple suppression applicatibwe t 2) version of Ry_1 .

shrinkage operation in the second step is designed to redfuce « Compute adaptive shrinkage functions:
threshold any coefficientsy, ,,, (x) that contribute the ripples. Fem () — A

To this end, the shrinkage operator is applied to the wavelet S,;m(x) ~— min (1,max (0, %))
coefficients via: 1= Ao

. )\ _R m
W (9) = St (i (x) S+ (ki) e 0,1]. (7) St min (Lm0, 20 )

The shrinkage functiorby ., (x) £ S, ,.(x)S/ . (x) adapts  « Combine functionssSy, ,»(x) « S (X) S, (%).
to scale, direction, and location according to the minimax « Apply shrinkagew;’,,, (x) <+ Sk.m (X)wg,m (x).
functions: o Take inverse DTCWTf™ — W~ wy, ..

Ri—1.m(X) — Ao o [~ is a ripple suppressed version of input image
S, (x) = min|(1lmax(0, ————— (8) : :
k,m AL — Ao In the results provided later, the shrinkage thresholdsewer
N ) A3 — R (x) set to{\,} = {0,0.25,2.5,3.5} and the size of the spatial
Spm(x) = min (LmaX (07 N )> (9)  neighbourhoody was set to 256-by-256 pixels. In practice,

_ _ o we found that the success of the ripple suppression method
These functions are plotted and explained in Figure 2. NGfgs not unduly sensitive to these parameters choices; irapro
that this strategy differs from the standard wavelet sta@ik ments (compared to no suppression) in detection perforenanc

approach which shrinks wavelet coefficients that have smglére realised even when the parameters were varied signifi-
absolute values or are uncorrelated with respect to spacecgtly.

scale.

IV. MATCHED FILTER

C. Ripple suppression algorithm Since objects protruding above the seabed tend to be more

To summarise, the ripple suppression algorithm proceedsrafiective than the sediment they return a higher intensity s
follows. nal back to the sensor. Moreover, such objects will alsokbloc



the signal from reaching the seabed behind them, thus rgeatiVithout loss of generality, we assume that the data is gather

a shadow region. This motivated Dobeck et al. to constructfram the starboard side of the sensor platform. We requae th
matched filter that comprises a highlight region, dead-zortkee raised cosine for the highlight region is centred pf2; i.e.

and shadow region [8]. Depending on seabed elevation, the= ¢;/2. The dead-zone is constructed to intersect zero at
shadow length will vary significantly with respect to rang¢he same location that the highlight takes its maximum; benc
Consequently the shadow component of the matched filigr = (/1 + ¢2)/2. The shadow region is designed such that it
is varied in length as a function of range. In studies whemmnly overlaps the dead-zone at a single point and we have that
sand ripples are not present or considered, the matched filte = ¢+ (¢1+¢3)/2. In order to eliminate any zero-frequency
detector of Dobeck et al. has received some attention,@],f. [bias, the matched filter is required to have zero mean. That is

[7], [14]. we want [ ho(z)dz = 0, or «,, such that
To validate the ripple suppression method described in the 3

previous sections, we compare detection results obtanoed f Z o / hon(z)dz = 0.

using a matched filter, similar to that of Dobeck et al, witld an — '

without the ripple suppression preprocessing step. Aghou 3

the matched filter is too simplistic to accurately and unigueTnis implies .., a,f, = 0. We choosev; = 1,a; = 1/3,
represent the wide variety of potential targets, it is merevhich assumes the highlight region gives a response 3 times
intended as an initial detection step to discard any regidnsStronger than the deadzone. We also assume that the highligh
the data that are very unlikely to contain mine-like-olge and deadzone lengths in the range direction are similar. l.e
classifier can then be trained and tested on positive resporls = f2 = as = —4(1/(3(3). In the track, or cross-range

to the detector. The matched filter operation can be degtrigrection, the filter component, (y) is defined by another
as the 2-dimensional cross-correlation raised cosine with widthYy. The precise choices of¢,,}

N should be tailored according to scenario dependent paeasjet
g(x) = Zh(xn)f(x +Xn), (10)  which are usually known, such as sensor altitude, resolutio
" and approximate target size. The shadow is also lengthened,
between imag¢, and filterh. Putting(z, y) £ x, the matched by increasings = ¢3(x), with respect to range in a piecewise
filter is constructed with manner.

h(x) £ ho(z)h1(y) .

V. RESULTS
That is, it is a separable filter and it follows that (10) can be Figure 3 shows a typical result of applying a matched filter
implemented as a 1-dimensional correlation down the cofumn. . . . .

) with and without the ripple suppression step, together tith
followed by another across the rows of the image. Along thce mputed shrinkage functions and resulting ripple supees
range., th_e filter .iS constructed as a superposition of Shiﬁe| age. Note that most of the ripples have an orientationighat
raised cosines, viz.. roughly aligned with the 3rd subband direction of the DTCWT

N 2 (stripe direction af5° anticlockwise from the horizontal), and

ho(#) £ ) anhon(x), that the associated shrinkage functich ) takes low values
n=l Lo in a region that coincides with the ripples. The shrinkage

wheren = 1,2 and 3, correspond to the highlight, deadynctions in the neighbouring directions also take low eslu
zone, and shadow regions respectively. Unlike Dobeck etigl-the same region: this correctly captures the fact that the

[8], our matched filter is constructed as a superposition gf a5 manifest bifurcated and braided behaviour rathen t

rasigd cosines rather than theirstep_ functipns. Our réag 5 perfectly parallel pattern. We can see that the ripples are
motivated by the fact that the sand ripples in our data cab@ot;,, jeeq suppressed by the ripple suppression method and that

well approximated by pure sinusoidal plane waves. Obsgrvif,o non-rippled regions remain largely the same as the input

Figure 1, we see that the ripples are more like square waves; 4 ge |n this example, for both suppressed and unsupptesse
the frequency domain, the ripples will therefore contahleir

it g cases, the lowest (local maxima) correlation score assatia
frequency harmonics in addition to the fundamental freyenyith the true positives was chosen as a threshold. All scores

The ripple suppression method will usually only suppress t,qye that threshold were labelled as true positives if they
fundamental frequency. A matched filter constructed from\gare in a neighbourhood of the ground truth. Otherwise, they
superposition of square waves will also have higher frequengre |ahelled as a false positive. We can see that most, if not

harmonics_ which will be _excited by the harmonics left OVel|| of the false positives lie in the ripples and that thepkip
from the ripple suppression method. On the other hand, Byynression method gives rise to fewer false positives.

shaping the matched filter into raised cosines, the matcheq ,jidation of the ripple suppression preprocessing step wa
filter will attenuate the left-over ripple harmonics. From-e .,.ried out by comparing the receiver operating charatteri
perimentation, we have also observed that the raised singoc) curves obtained from applying a matched filter with
give better ROC curves than the step functions with or withoy,4 without the ripple suppression preprocessing step &iver
ripple suppression. The filter regions are described by rippled images and 140 non-rippled images, most of which
cos? T (=B, if |z =B < by comprised 14 megapixels. The data is real synthetic agertur
hon(z) = 4, " "= sonar data and was acquired by the NATO Undersea Research
0, otherwise Centre (NURC) and provided to us by the DSTL Data Centre.



TABLE |

NUMBER OF FALSE POSITIVES INCURRED IN ORDER TO RECOVE®0%, 1407 - e i
95%, 98%, 99%AND 100%OF THE TOTAL NUMBER OF TRUE POSITIVES
_ 120r ]
Number of Number of false positives
Seabed type| true pos. No suppression| Suppression !
270 22 21 s 1007} ]
285 59 60 o
Non-rippled | 294 259 253 = 801 |
297 460 473 2
300 806 793 <3
127 6320 2029 o 60 ]
134 10468 3345 2
Rippled 138 15032 7753 =
140 38348 18209 40 1
141 55719 19427
397 2585 676 |
419 7854 2256 20 —ripple suppressed
Both 432 15332 4683 a1
437 22640 8494 0 ‘ ‘ 0“9'“""" ‘ ‘ ‘
441 57457 21143 0 1 ) 3 4 5 6
False positives % 10
Rippled data
To construct the ROC curves, a series of thresholds index -
. . 300r ‘
by ¢, say, were applied to the correlation surface and ti
number of true positivep™(¢), and false positivep~(¢), /,’f
recorded. Thenp™(¢) was plotted againgi~(¢). To combine 250 ]
curves(p,,,p,; )Y overn =1,..., N images, we simply plot
N . N _
Y n—1 Drt (t) @gainsty, ", p;, (). @ 200 |
Figure 4 shows the ROC curves for the suppressed and >
suppressed methods for the rippled, non-rippled, and coeabi @
dataset. On the rippled and combined dataset, we observe & 150 )
the matched filter achieves better detection results when 1 g
ripple suppression method is used. For the non-rippled, de = 100 1
the suppressed and unsuppressed methods give very sin
results, as expected and required. 50 |
Table | records the number of false positives incurred i —ripple suppressed
order to recover a certain percentage of the true positiv - - -original
For example, the table shows that all the mines (targets) 0 : ; : :
0 200 400 600 800

the rippled data can be detected at a cost of 55,719 fa
positives with no suppression and 19,427 false positivéls wi
suppression: a reduction of some 65%.

False positives
Non-rippled data

VI. CONCLUSION 400 F-—-'“'—
We have introduced the technique of fractal dimensic ,’J
based dual-tree wavelet shrinkage to suppress sand ripple:  350|f 1
sonar imagery. Results on a reasonably large dataset iadic » 300 |
that the method can act as a useful preprocessing stagetric o
mine detection. It is worth pointing out that the matcheafilt = 250 1
detector discussed here is a separate development to (e rij
suppression step. It is anticipated that our ripple suspues o 200 1
method could also enhance other previous and current m = 150 |
detection strategies. This method is only intended as tke fi
phase in a larger detection/classification system. As inipus 100 1
detector/classifier mine hunting approaches, it is ardieig -
that a classification phase will further reduce the number 50 —rlpp!e suppressed i
false positives incurred by the detection phase. 0 ‘ -~ ;original : ‘
0 1 2 3 4 5
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(a) Sonar image (b) Ripple suppressed image

Ss5.1 Ss.2 Ss5.3 Ss.,4 Ss5,5 Ss5.,6

(c) Unsuppressed correlation surface (d) Suppressed correlation surface

Fig. 3. The shrinkage functionS;, ,,, at scalek, subband directionn are computed adaptively from the synthetic aperture sanagé (a) using (8) and
(9). The shrinkage operation results in the ripple suppeénage (b). If no suppression is applied prior to applicatf the matched filter, the result is the
correlation surface shown in (c). The yellow (resp. redysishow the location of the true (resp. false) positives -fRjuve (d) shows the resulting correlation
surface when suppression is applied before the filter.
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