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Enhanced shift and scale tolerance for rotation
invariant polar matching with dual-tree wavelets

J. D. B. Nelson and N. G. Kingsbury

Abstract—Polar matching is a recently developed shift and ro-
tation invariant object detection method that is based on dual-tree
complex wavelet transforms or equivalent multiscale directional
filterbanks. It can be used to facilitate both keypoint matching,
neighbourhood search detection, or detection and tracking with
particle filters. The theory is extended here to incorporate an
allowance for local spatial and dilation perturbations. With
experiments, we demonstrate that the robustness of the polar
matching method is strengthened at modest computational cost.

I. INTRODUCTION

Some well known important wavelet properties include
(bi)orthogonality, Besov regularity, compact support, and
symmetry. Commonly however, object detection problems
require the consideration of extra properties because two objects
are often defined to be in the same class if one object is similar
to some transformation of the other. If wavelets are to be
used for object detection tasks, then either the objects must
somehow be normalised first, or the wavelet coefficients must
be invariant to certain transformations.

In practice, normalisation can be difficult. For translation
invariance, some previous works have implemented a variant of
the ‘spin-cycle’ method of Coifman and Donoho [1] whereby
extra training samples are created by shifting the original ones.
A more elegant method is to construct transforms which are
themselves invariant.

The shiftable wavelet, introduced by Simoncelli et al [10],
satisfies a slightly weaker condition than shift invariance but
is less redundant than the spin cycle. The dual-tree complex
wavelet transform (DTCWT), introduced by Kingsbury [4], [9],
has good shift invariance and offers even lower redundancy
with greater computational efficiency. Moreover, a recent
extension of the DTCWT, known as polar matching [5],
also possesses approximate rotation invariance. Unlike earlier
DTCWT rotation invariant work of Hill et al [3], polar matching
retains the phase information of the complex coefficients and
therefore represents a richer descriptor.

Polar matching applications include keypoint matching,
neighbourhood search detection, and detection and tracking
with particle filters [7]. Since keypoints will not necessarily
be centred on exactly the same object components from one
image to the next, robustness to small displacement errors can
be the key to the success of the method. In neighbourhood
search detection, robustness to shifts allows the polar matching
features to be sampled more sparsely. Added shift tolerance for
particle filter polar matching would mean that the location of
the particles would be less critical. This can add robustness to
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the observational model or allow fewer particles to be used. In
all of these applications, scale tolerance would add robustness
to unknown changes in distance between sensor and target.

In this paper we shall consider the question of how to
efficiently incorporate an allowance for an unknown local
spatial and dilation perturbation into the polar matching method.
The next section summarises the basic polar matching method.
Section III introduces a shift tolerant extension to polar
matching. This is further extended to include scale tolerance in
Section IV. Experiments on a 73 image dataset from Caltech
are described in Section V. Finally, conclusions are drawn in
Section VI.

II. POLAR MATCHING

At each scale level, the DTCWT decomposes an image
into six subbands. Each subband coefficient can be thought of
as a response to a bandpass directional filter at a particular
location. Together with their complex conjugates, the coeffi-
cients constitute 12 different directions, regularly spaced at
(30k − 15)◦, for k = 1, . . . , 12. For the purposes of polar
matching the 2-d real and imaginary impulse responses in the
45◦ and 135◦ directions are modified, as described in [5] and
depicted in Figure 1, to have centre frequencies that match
those of the other directions or subbands. In addition, the
phases of the 6 band outputs are all centred to zero by a
simple multiplication of {j,−j, j,−1, 1,−1} respectively. In
doing so, 6 opposing directions can be obtained by conjugating
the 6 complex subband coefficients.

As illustrated in Figures 2 and 3, the elementary form of the
polar matching method samples these 6 subband coefficients at
12 points around a circle and at one point at the circle centre.
The coefficients are then assembled into what is known as a
polar matching matrix (P-matrix), thus:

P =



m1 j1 k1 l1 a1 b1 c1
m2 i2 j2 k2 l2 a2 b2
m3 h3 i3 j3 k3 l3 a3

m4 g4 h4 i4 j4 k4 l4
m5 f5 g5 h5 i5 j5 k5

m6 e6 f6 g6 h6 i6 j6
m∗

1 d∗1 e∗1 f∗1 g∗1 h∗1 i∗1
m∗

2 c∗2 d∗2 e∗2 f∗2 g∗2 h∗2
m∗

3 b∗3 c∗3 d∗3 e∗3 f∗3 g∗3
m∗

4 a∗4 b∗4 c∗4 d∗4 e∗4 f∗4
m∗

5 l∗5 a∗5 b∗5 c∗5 d∗5 e∗5
m∗

6 k∗6 l∗6 a∗6 b∗6 c∗6 d∗6


where the subscripts k determine the subband orientations
(30k − 15)◦, the coefficients labelled m are taken from the
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(a) Dual−Tree Complex Wavelets: Real Part

Imaginary Part

 15  45  75 105 135 165 

(b) Modified Complex Wavelets: Real Part

Imaginary Part

 15  45  75 105 135 165 

Fig. 1. In the interests of rotation invariance, the DTCWT 2-d real and
imaginary impulse responses in the 45◦ and 135◦ directions are modified.
Taken from [5].
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Fig. 2. Sampling locations of the DTCWT coefficients for the polar matching
method. Taken from [5].

midpoint, and the coefficients a, b, . . . l determine the locations
of the sample points as in Figure 2. The arrangement of the
DTCWT coefficients ensures that each 30◦ rotation of the
image about the centre point of the sampling circle produces
a cyclical shift of each of the columns of the polar matching
matrix (P-matrix).

Given two images, one a 30k◦ rotation of the other, a
summation of the column-wise correlations between the two
P-matrices will give a response curve, with respect to rotation
angle, and a maximum at a shift of k. Hence the location of
the correlation peak can be used to estimate the difference in
orientation angle between two similar objects. Furthermore,
the estimate can be improved by performing the correlation
as a zero padded dot product in the Fourier domain before
using an inverse FFT to obtain an upsampled correlation result.
Typically, the original 12 samples are extended by a factor of
4 to obtain 7.5◦ rotational spacing.
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Fig. 3. Locations and orientations of the DTCWT coefficients and how
they are arranged in the polar matching matrix (P-matrix). Each orientation
describes a coefficient, or conjugate, of one of the six subbands. The numbers
denote the orientation and the P-matrix row position. Taken from [5].

The part of the spectrum to be zero padded should be tailored
differently to suit each column of the P-matrix. In particular,
consider the P-matrix formed at the centre of a rotation of a
single step edge. As the edge is rotated, the response of column
1 will vary as a lowpass function. Columns 2 and 7 will vary
slightly quicker as bandpass functions, 3 and 6 quicker still,
and 4 and 5 the quickest as highpass functions. The rate of
change depends on the subband orientation with respect to the
radial direction. Denoting this angle by α, and referring to
Figure 3, we have α = 75◦ for columns 2 and 7, 45◦ for 3
and 6, and 15◦ for 4 and 5. Generally, the centre frequency of
the columns is proportional to cosα.

Now consider the DTCWT decomposition of a step edge
orientated at 15◦ to the horizontal, placed in the centre of a
128× 128 subimage. Figure 4 shows that the phase response
of the centre coefficient at the 4th finest scale level taken
from subband 1 (oriented such that the stripe direction is
parallel to the edge direction) shifts by almost π radians over
a displacement of 12 pixels (note that 12 pixels is equivalent
to 12/24 = 3/4 samples at the 4th finest scale level). Hence,
over one sample at the 4th finest scale level, the phase will
shift by 4π/3 radians. Therefore, the rate of phase change with
respect to a rotating step edge will be approximately equal to
4π
3 cosα.

After a dot product of the two P-matrices in the Fourier
domain is carried out, the result is then subjected to zero
padding, followed by an inverse Fourier transform. One then
arrives at a response curve as a function of orientation, sampled
at 7.5k◦, for k = 0, . . . , 47. The P-matrix represents an
approximately rotation invariant feature under the operation of
correlation. The polar matching process transforms rotations
in the original object into shifts in the feature space.

To enrich the descriptor, further scale levels, sampling circles,
and colour channels may be considered by appending coeffi-
cients as extra columns of the P-matrix. For the experiments
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Fig. 4. A step edge orientated at 15◦ to the horizontal, and placed in the
centre of a 128× 128 subimage is decomposed by the DTWCT. The phase
angle of the centre DTCWT coefficient from subband 1 at the 4th finest scale
level is plotted with respect to vertical displacement. Note how the phase
completes approximately 3/4 of a cycle over the sampling period of 24 = 16
pixels.

carried out in this paper, two sampling rings and centre point
from the third finest level are used, together with one ring and
centre point at the fourth finest, and just the centre point at
the fifth finest level. For simplicity, colour information was
converted into monochrome values prior to any processing.
This results in 13 columns of 12 coefficients from the third
finest level, 7 columns from the fourth, and one column from
the fifth. Hence the number of columns L = 21. Figure 5
illustrates the sampling locations used.

Consider the column-wise Fourier transform of a template
P-matrix taken about some centre point. As stated above, in
practice the 12 elements in each column are extended by a
factor of 4 to generate K = 48 rows. Denote the (k, `)th
element of the resulting matrix by hk,`. Likewise, let fk,`(x)
be the elements in the column-wise Fourier transform of a test
image P-matrix taken about the point x. The polar matching
operation between the two can be expressed as

g(x; θ) = <

{
1
K

K−1∑
k=0

exp
(

2πiθk
K

) L−1∑
`=0

χ` [k]hk,`fk,`(x)

}
.

The element-by-element products between the columns of the
two matrices are carried out in the second summation. Before
the products are taken, the elements are multiplied by the
indicator function χ : Z 7→ {0, 1} which, for each column `,
takes zeros over an appropriate part of the Fourier domain
and ones elsewhere; it can be seen as an ideal bandpass filter.
The inverse Fourier transform is then carried out in the outer
summation over k.

Since the column 1 coefficients vary as a lowpass function,

χ1 [k] =

{
1 if 0 ≤ k ≤ 5, and 42 ≤ k ≤ 47
0 if 6 ≤ k ≤ 41

Likewise, the centre points from any other scale level will be
multiplied by χ1. For columns 2 to 7, since the rate of phase
change is approximately 4π

3 cosα, it follows that, for K = 48:

χ2 [k] = χ7 [k] = χ1 [(k + 1) mod 48]
χ3 [k] = χ6 [k] = χ1 [(k + 3) mod 48]
χ4 [k] = χ5 [k] = χ1 [(k + 4) mod 48] .

The inner rings at other levels will similarly be multiplied by
χ2, . . . , χ7. Since the outer ring at the third finest level (see

32 64 96 128

32

64

96

128
1 2 3 4

1

2

3

4

2 4 6 8

2

4

6

8

4 8 12 16

4

8

12

16

Fig. 5. Multiple scale level sampling locations of the DTCWT coefficients
for the polar matching method. A 128 × 128 subimage is extracted from
the centre of the image (top most) and decomposed into 3 levels of detail.
Top left: original subimage; top right: 5th finest level; bottom left: 4th finest
level; bottom right: 3rd finest level. For illustrative purposes, only the absolute
values of the DTCWT coefficients in subband 1 are shown. In practice, the
real and imaginary parts are used from all subbands. The original image is
‘201.jpg’ from Caltech’s ‘PP Toys 03’ full resolution dataset [8].

Figure 5) has twice the radius of the inner ring, the rate of
phase change will double. If the outer rings are assembled into
columns 16 to 21, then

χ16 [k] = χ21 [k] = χ1 [(k + 2) mod 48]
χ17 [k] = χ20 [k] = χ1 [(k + 6) mod 48]
χ18 [k] = χ19 [k] = χ1 [(k + 6) mod 48] .

Generally,

χ` [k] = χ1

[(
k + round

(
max

{
4ρπ
3

cosα`, 6
}))

mod 48
]
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where α` is the subband orientation with respect to the radial
direction of the filters. Note that the maximum allowable shift
of the function χ1 is k+ 6 (any further shifts would make the
high pass functions χ18 and χ19 become low pass functions).
The radius of the sampling circle ρ is measured in samples of
the respective coefficient space. In our experiments, the fourth
finest level has a ring of unit radius, and the third finest level
has an inner ring of radius 1 and outer ring of radius 2.

The fast Fourier transform can be used to speed up the
polar matching computation. This only needs to be done once,
rather than on every column. Alternatively, if there exists prior
information about the orientation of the target, the Fourier
transform need only be computed for a subset of θ. For example,
when tracking objects using video it is reasonable to assume
that the target orientation rate of change is bounded. Finally,
the real component < is taken in order to return the purely real
correlation intensity. For simplicity, and to aid the development
of the shift and scale tolerant polar matcher in the next section,
this is first rewritten as

g(x; θ) = <

{
K−1∑
k=0

L−1∑
`=0

wk,`(θ)hk,`fk,`(x)

}
,

where
wk,`(θ) =

1
K

exp
(

2πiθk
K

)
χ` [k] .

Now put j = k+K`, and n = KL. Define the column vector
h = (hj)n−1

0 ∈ Cn as

h , [h0,0, . . . , hK−1,0, h0,1, . . . , hK−1,1, . . . hK−1,L−1]
T
.

That is, h concatenates the columns of the matrix (hk,`).
Likewise, form w and f . We then have

g(x; θ) = <

{
n−1∑
j=0

wj(θ)hjfj

}
,

which is now just a weighted inner product, namely
<

{
hHWθf(x)

}
, where the superscript H denotes complex

conjugate transpose. For each θ the matrix Wθ = Diag(w(θ))
is diagonal. This summation only takes place over n/4 = 252
non-zeros because of the Fourier domain zero padding.

To summarise, the polar matching operation between the
template Fourier P-vector h and test image Fourier P-vector f
about the point x is

g(x; θ) ,
(
f(x) ? h

)
(θ) , <

{
hHWθf(x)

}
.

Since both h and Wθ are independent of the test image, the
product hHWθ can be precomputed and stored.

In the following, the polar matching approach is strengthened
so that a P-matrix constructed from a centre point location
(x + δx, y + δy) and scale s + δs will still obtain a large
correlation score when matched with the same image centred
on (x, y) at scale s.

Several benefits of shift and scale tolerant polar matching can
be readily realised. One such application is keypoint matching.

In a similar way to SIFT [6], DTCWT keypoints can be
established in scale and space [2]. Contrary to SIFT, the
polar keypoint matching method does not choose a dominant
orientation for each keypoint but rather makes use of correlation

scores at all rotations. Since keypoints will not necessarily be
centred on exactly the same object components from one image
to the next, robustness to small displacement errors can be the
key to the success of the method.

A second application is to use polar matching in a template
matching approach for object detection in video [7]. Assuming
that we have access to one or more examples of the target
or object of interest, we can use polar matching to search an
unknown test image by extracting polar matrices from some
neighbourhood or window in the test image and correlating
each one with the template stored in a database. Hence, a
correlation surface can be obtained. For each θ, the steepness
of the correlation surface about the maximum in R2 can be
controlled to some extent by the template size and the choice
of wavelet decomposition levels used. However, the size of
the template relative to image size will be determined by
the application, data, and object of interest. In practice, the
correlation surface is computed over a discretised set of points.
A full, exhaustive computation would involve forming test
P-matrices at every pixel, or perhaps sub-pixel, in the search
region. If such an approach proves intractable then it becomes
necessary to calculate the correlation surface over a sparser
set of locations. On the other hand, a sparser search carries
with it the risk of missing the correlation peak altogether. In
this setting, robustness to shifts allows the P-matrices to be
sampled more sparsely. Scale tolerance adds robustness to
changes in distance between sensor and target. In the same
context, particle filtering has also been used with polar matching
[7]. Here, polar matching scores are computed at each particle
location to form the observational model. With added shift
tolerance the location of the particles becomes less critical and
can either add robustness to the observational model or allow
fewer particles to be used.

III. SHIFT TOLERANCE

In this section we present an extension to the original polar
matching method to incorporate an allowance for larger local
spatial displacement errors. In doing so, it will be seen that
the steepness of the correlation surface about the maximum is
mitigated. As above, let h and f be the Fourier transforms of
the polar matching features of the template sub-image and test
image, respectively. As such, they can be considered mappings
from the original pixel coordinates to the n dimensional
complex hypersphere Sn = {x ∈ Cn : ‖x‖ = 1}. That is

h, f : R2 7→ Sn.

Polar matching, denoted by ?, is the symmetric bilinear operator

? : Sn × Sn 7→ [−1, 1]m ⊂ Rm,

from the complex n-sphere to the real m-cube, where m is the
number of bins for θ. Recall that it is defined as the weighted
inner product:

(f ? h) (θ) , <
{
hHWθf

}
, <

{
fHWθh

}
.

Now define ∆h = h(·+∆x)−h . Then, for small ∆x, assume
that a small change in h is linear with respect to small spatial
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Fig. 6. The shift tolerance problem, simplified in 2-D space. Find the shift
distance ∆x along the surface of the hypersphere Sn, such that the unit vector
h is rotated into Wθf .

shifts. That is

∆h = J∆x, J =
[
∂h
∂x

,
∂h
∂y

]
∈ Cn×2.

This is equivalent to a first order Taylor series expansion of
h(·+ ∆x). Then

f ? h(·+ ∆x) = f ? (h + ∆h)
= f ? (h + J∆x)
= < fHWθ (h + J∆x) .

As Figure 6 illustrates, the problem that shift tolerant polar
matching addresses is to find the maximum shifted polar
matching correlation score with respect to an unknown small
shift ∆x. Since h and f are both normalised to unit length,
the aim is to get as close to Wθf by moving a distance of ∆x,
from h, along the surface of the hypersphere in a direction
orthogonal to the radial vector h. That is

xθ = argmax
∆x

<
{
fHWθ

h + J∆x
‖h + J∆x‖

}
, JHh = 0 . (1)

Ideally, we want xθ such that

h + Jxθ = Wθf , JHh = 0. (2)

However, because Sn is an n) dimensional space and xθ has
only 2 dimensions, this is an overdetermined set of equations.
Instead, the solution, in the least squares sense, is

xθ = <
{(

JHJ
)−1}<{

JHWθf
}

= <
{(

JHJ
)−1}

(J ? f)T (θ). (3)

Note that, since ‖h‖ = 1 and hHJ = 0, the denominator of
(1) is

‖h + J∆x‖ =
√

1 + xH
θ <{JHJ}xθ .

Hence, substituting xθ from (3) into the right hand side of (1)
gives shift tolerant polar matching:

g+(x; θ) ,
(h ? f) + (J ? f)A (J ? f)T√

1 + (J ? f)A (J ? f)T
, (4)

where A = <
{(

JHJ
)−1}

. The term JHJ is a 2 × 2 matrix
and is independent of the test image. Under the reasonable
assumption that ∂h/∂x and ∂h/∂y are linearly independent,
JHJ is a positive definite matrix and is therefore invertible.
All other terms involve polar matching operations on the test
image with the template and two spatial derivatives of the
template. Therefore, the template h, Jacobian J, and matrix
A should be pre-computed and stored in memory.

Compared with the original polar matching method, which
just requires computation of h ? f , this shift tolerant version
also requires J ? f = [∂h/∂x, ∂h/∂y] ? f . This comprises
two weighted inner products, each of similar complexity to
h ? f . Alternatively, using the inverse fast Fourier transform
to compute the polar matching operations, we now require
three FFTs (rather than one) per test location x. Since an
upsampling of 4 is used, these are 48-point FFTs. Once J?f has
been computed, there is a minor additional cost: for each θ =
0, . . . , 47 and x, of 6 multiplications and 2 adds to compute the
quadratic form (J ? f)A (J ? f)T , one add for the numerator,
one add and a square root for the denominator, and a division.

However, the overall computation of both the original and
tolerant method is dominated by calculating the features f at
each point x. This overhead involves a DTCWT to decompose
the test image. More crucially, at each x it also requires several
bandpass interpolations to generate the coefficients around the
sampling circles. As we will illustrate with some experiments
in Section V, this is a worthwhile cost in order to reduce the
sensitivity to displacement error.

IV. SCALE TOLERANCE

Shift tolerant matching can be extended quite naturally to
shift and scale tolerant matching. We introduce a dilation
variable ψ, such that

h(x;ψ) , h(ψx).

Now
h : R3 7→ Cn.

Define ∆h , h(x + ∆x;ψ + δψ)− h(x;ψ). Then, for small
∆x and δψ, assume

∆h = J
[

∆x
δψ

]
, J =

[
∂h
∂x

,
∂h
∂y
,
∂h
∂ψ

]
∈ Cn×3.

I.e. this is a first order Taylor series expansion of the shifted
and dilated template h(x + ∆x;ψ + δψ). Similar to the shift
tolerant case, we want

h + J
[

xθ

ψθ

]
= Wθf , JHh = 0.

The solution, in the least squares sense, is[
xθ

ψθ

]
= <

{(
JHJ

)−1}<{
JHWθf

}
= <

{(
JHJ

)−1}
(J ? f)T (θ).

The shift and scale tolerant polar matching takes a similar form
to (4). The only difference is that ∂h/∂ψ has been appended
as an extra column to J.
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TABLE I
ENERGY IMPROVEMENT RATIOS

method/experiment mean std
Mg+

0,1(x; 0) 3.02 0.53
Mg+

θ,1
(x; θ) 2.39 0.53

Mg++
0,1 (x; 0) 4.62 1.91

Mg++
0,ψ

(x; 0) 2.30 0.77

V. EXPERIMENTS

Caltech’s ‘PP Toys 03’ full resolution dataset [8] was
used to investigate the effectiveness of the shift and scale
tolerant methods. The 73 image dataset mostly comprises
various toys against a grassy or stony background. To simplify
reproducibility of results, no attempt was made to find suitable
template centre points. Instead, templates of size 128 × 128
pixels were simply taken from the centre of each image. For
simplicity, prior to any further processing, the RGB values
were converted to intensity via 0.3R+ 0.6G+ 0.1B. Figure 5
illustrates the 3 levels of DTCWT sampling used.

Correlation surfaces were obtained by performing polar
matching between the template and test image regions centred
about the template. I.e. we compute g(x; θ) = h(x) ? h(0)
about a local neighbourhood of x = 0. As discussed earlier,
the polar matching output g(x, y; θ) is a function of space
(x, y) and orientation θ. Denote the shift tolerant matcher
output as g+, and the shift and scale tolerant output as g++.
For each template, the test images are shifted, rotated, and
dilated versions of the template. Rotations were performed
on the test images to show that the rotational invariance
property of polar matching is not diminished by the tolerant
methods. For each rotation Θ = 0, 7.5◦, . . . , 90◦ and dilation
Ψ = 1, 1.05, . . . , 1.5, and for each of the 73 test images, we
obtain a correlation output gΘ,Ψ(x, y; θ). The shift tolerant
matcher was applied to the shifted and rotated test images
to give the correlation surfaces g+

Θ,1(x, y; θ). The shift and
scale tolerant matcher was applied to the shifted and dilated
test images to give g++

0,Ψ(x, y; θ). A sum over all values of
the correlation surfaces that are above 90% of the theoretical
maximum of 1 is computed for the original and tolerant
matchers. A ratio of the tolerant matcher score over the original
score is then computed for comparison. That is, for the shift
tolerant matcher, the ratio

Mg+
θ,1(x; θ) ,

∑
g+>0.9 g

+
θ,1(x; θ)∑

g>0.9 gθ,1(x; θ)
,

gives a measure of the energy of the region within 0.9 of the
height of the maximum. The mean and standard deviation of
M, taken over all experiments are given in Table I.

The behaviour with respect to non-targets was also inves-
tigated. Ten random points were taken from each of the 73
images at a minimum distance of 64 pixels from the centre.
Each of these points was correlated with each of the 73
templates. The histograms of the resulting 53290 correlation
scores are shown in Figure 8. By inspection, a small proportion
of the image pairs in this experiment resemble scaled, rotated,
and shifted versions of each other. Hence, the histogram
overestimates the number of false positives. As might be
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(d) g0,ψ(0, 0; 0)

Fig. 7. Mean correlation values. With respect to x: (a) unrotated and undilated;
(b) mean over rotations; and (c) mean over dilations. (d) Mean correlation
values with respect to dilation. The original polar matching is plotted with a
dotted red line, the shift tolerant method with a blue dashed line with crosses,
and the shift and scale tolerant method with a crossed green solid line. The
error bars denote variance over all experiments.
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expected, the discriminative ability tends to diminish as more
tolerance is added.

VI. CONCLUSION

Figure 7 and Table I show that the shift and scale tolerant
methods behave as intended. Interestingly, Subplot (a) of Figure
7 shows that the shift-scale invariant methods are a little more
tolerant to shifts than the shift invariant methods. This may
be due to the fact that, for some image templates, a small
perturbation in scale (1 + δ)x approximates a spatial shift.
The results show that the test image needs to be scaled by a
factor of more than 1.35 before the shift and scale tolerant
correlation score falls below 70% of the maximum. If, however,
the distance between sensor and known object is available then
scale tolerance is less important. In this case, shift-rotational
invariance and shift tolerance is still important and the shift
tolerant polar matcher may be more appropriate.

In practice the Jacobian J is approximated by a finite
difference. For example, the partial derivative with respect
to x is estimated by

∂h
∂x

≈ 1
ε

(
h(x+ ε, y)− h(x, y)

)
.

The value ε = 1/10 of a pixel was used in all experiments
performed in this paper. It is conceivable that the finite
difference increment ε could be optimised. Furthermore, the
finite difference approximation could potentially be replaced
with a more sophisticated discrete derivative.

It is also important to note that the shift and scale tolerant
approach implied by (1) could be applied to any other
correlation operation that can be expressed as a weighted inner
product of the form fHWh. A simple example would be the
classic matched filter with W = I, where h and f are simply
intensity values of two images.

Investigations of shift and shift-scale tolerant matching to
specific applications like keypoint matching and target detection
and particle filter tracking in video should make for interesting
further work.
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