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Wavelet Restoration of Medical Pulse-Echo
Ultrasound Images in an EM Framework
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Abstract—The clinical utility of pulse-echo ultrasound
images is severely limited by inherent poor resolution that
impacts negatively on their diagnostic potential. Research
into the enhancement of image quality has mostly been
concentrated in the areas of blind image restoration and
speckle removal, with little regard for accurate modeling
of the underlying tissue reflectivity that is imaged. The
acoustic response of soft biological tissues has statistics that
differ substantially from the natural images considered in
mainstream image processing: although, on a macroscopic
scale, the overall tissue echogenicity does behave some-
what like a natural image and varies piecewise-smoothly,
on a microscopic scale, the tissue reflectivity exhibits a
pseudo-random texture (manifested in the amplitude im-
age as speckle) due to the dense concentrations of small,
weakly scattering particles. Recognizing that this pseudo-
random texture is diagnostically important for tissue identi-
fication, we propose modeling tissue reflectivity as the prod-
uct of a piecewise-smooth echogenicity map and a field of
uncorrelated, identically distributed random variables. We
demonstrate how this model of tissue reflectivity can be
exploited in an expectation-maximization (EM) algorithm
that simultaneously solves the image restoration problem
and the speckle removal problem by iteratively alternating
between Wiener filtering (to solve for the tissue reflectivity)
and wavelet-based denoising (to solve for the echogenicity
map). Our simulation and in vitro results indicate that our
EM algorithm is capable of producing restored images that
have better image quality and greater fidelity to the true
tissue reflectivity than other restoration techniques based
on simpler regularizing constraints.

I. Introduction

The application of pulse-echo ultrasound to anatomical
imaging, in particular to the imaging of soft biological

tissues, is now well established in medical diagnostics, but
despite the advantages pulse-echo ultrasound enjoys over
other imaging modalities in terms of equipment cost and
patient safety, its clinical utility is limited by poor image
resolution due to the finite-temporal bandwidth and the
non-negligible dimensions of the pulse-echo acoustic beam
relative to the size of the scatterers. There is therefore sig-
nificant scope for the development of computational algo-
rithms to improve the resolution of pulse-echo ultrasound
images, a problem we refer to as image restoration.

This problem is nontrivial because the blurring effect
of the imaging system causes a loss of information in the
acquired image, which has to be compensated for by the
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incorporation of prior knowledge based on models of the
tissue reflectivity. Successful image restoration requires ac-
curate models of the underlying tissue reflectivity that can
adequately capture significant image features without be-
ing computationally prohibitive. Therefore, in this paper,
we focus on the development of such a model for the tis-
sue reflectivity, and we show how it can be exploited in an
expectation-maximization (EM) algorithm to yield a com-
putationally efficient iterative restoration method based
on Wiener filtering and wavelet denoising. Our algorithm
implicitly assumes the blurring operator to be known a
priori, and in our experiments, we approximated the blur-
ring operator by point-spread functions simulated in Field
II [1]. In practice, dispersive attenuation and phase aber-
rations can cause the blurring operator to deviate from
what is theoretically predicted; however, these deviations
can be accommodated to some degree by estimating the
blurring operator directly from the acquired image with
blind deconvolution methods (e.g., [2]–[5]), and there ex-
ist also a number of ways to correct for phase aberrations
(e.g., [6]–[8]).

Wavelet transforms have been very successful in the
processing of so-called natural images, i.e., images that
are piecewise-smooth, because they provide a linear ba-
sis in which natural images are sparsely represented and
in which their statistical dependencies are substantially
simplified. This sparsification and simplification of statis-
tical dependencies has led to the development of computa-
tionally efficient wavelet-based algorithms for image com-
pression and analysis (see, for example, [9], [10]). Many
of the algorithms for image restoration in the mainstream
image processing literature, however, cannot be directly
applied to pulse-echo ultrasound images because of funda-
mental differences in image statistics. The typical reflec-
tivities of soft biological tissues that are imaged by pulse-
echo ultrasound do not exhibit piecewise-smoothness in
the same way as the natural images considered in main-
stream image processing: although, on a macroscopic level,
the echogenicities of soft tissues appear piecewise-smooth
and resemble natural images, on a microscopic level, the
reflectivities exhibit a pseudo-random behavior that man-
ifests itself as the characteristic speckle pattern seen in
ultrasound images.

Speckle obscures significant image features and de-
grades the resolvability of structures. To address this prob-
lem, several methods for the removal of speckle have been
published in the technical literature (for some of the most
recent, see [11]–[15]). However, despite its negative effect
on image quality, speckle also contains useful textural in-
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formation that can assist in the identification of tissue
type. Hence, we believe that restoration methods for pulse-
echo ultrasound aimed at improving image quality for di-
agnostic purposes are required, not only to enhance image
resolution, but also to preserve the textural information
inherently present in speckle. Nevertheless, we recognize
that speckle removal is useful for tasks that examine gross
image features, such as segmentation.

We approach the two-fold problem of enhancing re-
solvability and preserving textural information by mod-
eling tissue reflectivity as the product of a piecewise-
smooth component and a random component to account
for the macroscopic variations in echogenicity and the mi-
croscopic pseudo-random detail, respectively (see Fig. 1).
Splitting the tissue reflectivity in this way into two dis-
tinct components allows us to model their different behav-
iors separately. Furthermore, we observe that, because the
echogenicity component is piecewise-smooth, we can ex-
ploit wavelet-domain models for natural images to describe
it. We shall show that, by applying EM, we are able to de-
velop an iterative restoration algorithm that successively
alternates between Wiener filtering to estimate the tissue
reflectivity and wavelet-domain denoising to estimate the
echogenicity. We point out that, because it also produces
an estimate of the echogenicity (which, by definition, is
free of speckle), our algorithm effectively solves both the
image restoration problem and the speckle removal prob-
lem simultaneously.

The idea of modeling the echogenicity and the pseudo-
random texture separately is not new and was proposed
by Husby et al. [16] who modeled the echogenicity as a
Markov random field (MRF) in the image domain and as-
sumed Gaussian statistics for the pseudo-random texture.
We have also assumed Gaussian statistics for the pseudo-
random texture but have chosen to model the echogenicity
in the wavelet domain rather than in the image domain.
Another major difference between their approach and ours
is that they estimated the echogenicity using Markov chain
Monte Carlo (MCMC) methods, whereas our wavelet-
domain formulation allows us to estimate the echogenic-
ity with simple, nonlinear shrinkage rules that are com-
putationally much less intensive. There are also some mi-
nor differences: they assumed the blurring operator to be
shift-invariant and performed their calculations on real-
valued, radio-frequency (RF) quantities, whereas we have
allowed for a more realistic shift-variant blurring opera-
tor and operate on complex-valued in-phase/quadrature
data that retain the same phase information but can be
sampled at lower rates (this, in turn, further reduces the
computational load).

We acknowledge the work of Figueiredo and Nowak [17],
who developed an iterative algorithm based on EM for the
restoration of blurred natural images that also alternate
between Wiener filtering and wavelet-domain denoising.
Their work, in turn, may be viewed as an extension of
Neelamani et al.’s [18], [19] Fourier-wavelet regularized de-
convolution (ForWaRD) method that applies an underreg-
ularized Wiener filter to the blurred image and follows this

up with wavelet denoising. We emphasize, however, that,
although there is a procedural similarity between our al-
gorithm and these others, our algorithm differs from these
others conceptually and was developed for tissue reflectiv-
ities with image statistics that are significantly different
from those of natural images.

In the sections that follow, we first present a model
for weak, linear scattering and describe a method for ap-
proximating the global shift-variant blurring operator by a
collection of locally shift-invariant blurring operators. We
then present our model of tissue reflectivity and show how
EM can be applied to this model to develop an iterative
image restoration algorithm. Finally, we present simula-
tion and in vitro results to compare the performance of
our algorithm with the performance of more traditional
approaches. Mathematical symbols that occur frequently
throughout the paper are defined in Table I.

II. Background

The linear model for pulse-echo ultrasound imaging,
based on the assumption of weak scattering and applica-
tion of the first Born approximation, states that the RF
image may be modeled as the result of applying a linear
blurring operator to a three-dimensional tissue reflectiv-
ity. This three-dimensional model may be reduced to two
dimensions if we assume that the acoustic properties of
the interrogated tissue are approximately uniform over the
support of the blurring kernel in the direction perpendicu-
lar to the scanning plane. To allow for sampling at a lower
rate, the RF image may be demodulated to baseband, and
because demodulation is a linear operation, an analogous
linear model also holds at baseband.

In practice, processing of the ultrasound image is car-
ried out on digitized data, and so we formulate an equiv-
alent discrete model using matrix-vector notation. We de-
fine y to be an N × 1 vector of lexicographically arranged
samples of the demodulated RF image, x to be a similar
N ×1 vector of complex-valued tissue reflectivity samples,
H to be the complex-valued N ×N blurring matrix, and n
to be an N ×1 noise vector that accounts for measurement
error. The discrete approximation to the linear blurring
model is then given by:

y = Hx + n. (1)

In this context, the problem of image restoration is to
estimate x given knowledge of y, H, and the statistics
of n. We allow n to be complex-valued and we assume
that it is white, has zero mean, and obeys a multivariate
complex Gaussian distribution as defined in [20]. Defining
its covariance matrix E(nnH) = 2σ2

nIN , and with a slight
abuse of notation, we may write the probability density
function of n as:

p (n | σn) =
1

(2πσ2
n)N

exp
(

−‖n‖2

2σ2
n

)
, (2)
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Fig. 1. Simple illustration of our model of tissue reflectivity for a hypothetical anechoic cyst. The echogenicity map is smooth, except for the
discontinuity at the boundary of the cyst. Multiplying this echogenicity map by a field of random, uncorrelated, and identically distributed
random variables yields a plausible reflectivity function that exhibits piecewise-smoothness on a macroscopic scale and a random texture
on a microscopic scale. Interrogation by the linear blurring operator and adding white Gaussian noise yields a typical speckled image.

TABLE I
List of Symbols.

1

Symbol Description Mathematical definition

(a)n nth element of a
(A)mn Element of A in the mth row and nth column

AT Non-conjugate transpose of A
AH Conjugate (Hermitian) transpose of A
|A| Determinant of A

Tr(A) Trace of A
∑N

n=1(A)nn

‖a‖ l2-norm of a
√

aHa

‖A‖F Frobenius norm of A
∑N

m=1

∑N

n=1 |(A)mn|2

E(a) Expected value of a
∫

a p(a) da

E[φ(a)] Expected value of φ(a)
∫

φ (a)p(a) da

Var(a) Covariance matrix of a
∫

(a − µ)(a − µ)Hp(a)da, µ = E(a)

1In this table, a ∈ CN , A ∈ CN×N , φ : CN → R and p(a) is the probability density function of a.

where σn is necessarily real valued. The real and imaginary
parts of each element of n are uncorrelated and have a
variance of σ2

n each.
In practice, the matrix H is too large to be explic-

itly computed, and multiplications by H and HH are per-
formed indirectly. In typical applications in which the blur-
ring operator is shift-invariant and can be characterized by
a single point-spread function, a product of the form Hx
is just a discrete convolution of x with the point-spread
function and can be efficiently computed by multiplying
together the discrete Fourier transform (DFT) coefficients
of x and the DFT coefficients of the point-spread func-
tion and taking the inverse DFT of the product. Likewise,
a product of the form HHx is a discrete convolution of x

with the complex conjugate of the spatially reversed point-
spread function and can be computed by a similar multi-
plication in the DFT domain with the DFT coefficients of
the point-spread function replaced by their complex con-
jugates.

Unfortunately, in pulse-echo ultrasound imaging, the
width of the acoustic beam interrogating the subject is
nonuniform and varies with axial distance, giving rise to a
blurring operator that is shift-variant. Michailovich and
Adam [2] proposed handling this shift-variant blurring
operator with Nagy and O’Leary’s [21], [22] method of
partitioning image space into a number of regions within
which the blurring operator is assumed to be locally shift-
invariant. By defining a point-spread function within each
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of these approximately shift-invariant regions, we can ap-
proximate the global blurring operator by convolving each
region with its point-spread function, weighting the re-
sults, and summing them. Mathematically, we may write:

H ≈
∑

n

DnHn, (3)

where Hn is the shift-invariant blurring operator corre-
sponding to the nth region and {Dn} are diagonal weight-
ing matrices with non-negative elements (we require {Dn}
to satisfy

∑
n Dn = IN where IN is the N × N identity

matrix). For multiplication by HH, we similarly have:

HH ≈
∑

n

HH
n Dn, (4)

which is equivalent to weighting each shift-invariant re-
gion, convolving each weighted region with the complex
conjugate of its spatially reversed point-spread function
and summing the results.

This approximation for the blurring matrix H is equiv-
alent to approximating the blurring kernel by interpolat-
ing between its known values at particular locations in
image space. The choice of the weighting matrices {Dn}
determines the type of interpolation used. In [21], [22],
piecewise-constant and piecewise-linear interpolation were
suggested, and in our experiments, we have chosen to use
piecewise-linear interpolation.

III. Maximum A Posteriori Estimation

The problem of image restoration is ill-posed because
blurring constitutes a loss of information that is irre-
versible, and so exact recovery of the tissue reflectivity
x is, in practice, impossible. This is reflected by the fact
that the blurring matrix H is often singular and cannot
be inverted, but even in those cases that it is not singular,
it is nevertheless highly ill-conditioned, and multiplying y
by H−1 would amplify the noise term n and render the
solution physically infeasible (and hence worthless).

The traditional way of coping with the ill-conditioned
nature of H is to impose a regularizing constraint that
enforces feasibility by constraining our estimate of x to
belong to a predefined functional subspace. This usually
leads to the optimization of a cost function that trades
off fidelity to the observed image y against the regular-
izing constraint on x. In a Bayesian setting, this corre-
sponds exactly with maximum a posteriori (MAP) esti-
mation: if we treat x and y as random vectors to which
probability density functions are assigned, then MAP es-
timation seeks that realization of x which maximizes its
posterior probability p (x | y, σn). Bayes’s rule states that
p (x | y, σn) ∝ p (y | x, σn) p (x | σn), and because x and
σn are independent, p (x | σn) = p (x). Taking logarithms,
our MAP estimate x̂ may be written as:

x̂ = arg max
x

[ln p (y | x, σn) + ln p (x)] , (5)

where the log-likelihood ln p(y | x, σn) enforces fidelity to
y, and the log-prior ln p(x) is the regularizing constraint
that reflects our prior belief about x. We may substitute
n = y−Hx into the probability density function in (2) to
give the likelihood distribution:

p(y | x, σn) = − 1
(2πσ2

n)N
exp

(
− 1

2σ2
n

‖y − Hx‖2
)

,
(6)

and, taking logarithms and discarding constants, we may
write our MAP estimate as:

x̂ = arg min
x

[
1

2σ2
n

‖y − Hx‖2 − ln p(x)
]

. (7)

A. l2-Norm Regularization

One of the more common methods of regularization
is to constrain the weighted l2-norm of x, a technique
known as Tikhonov regularization [23]. Constraining the
weighted l2-norm of x is equivalent to modeling x as
a Gaussian random vector with zero mean and covari-
ance matrix E(xxH) = 2Cx. We may then write p(x) ∝
exp(− 1

2x
HC−1

x x) and:

x̂ = arg min
x

(
1

2σ2
n

‖y − Hx‖2 +
1
2
xHC−1

x x
)

=
(
HHH + σ2

nC−1
x

)−1
HHy.

(8)

The closed-form expression on the rightmost side of
(8) is the well-known Wiener filter, and its application to
pulse-echo ultrasound images was proposed by Taxt and
Strand [4] and Taxt [5] and by Michailovich and Adam
[2]. The special case Cx = σ2

xIN , where σx is real-valued,
is referred to as zero-order Tikhonov regularization.

The ForWaRD method, which was briefly mentioned
in Section I, is a nonlinear, wavelet-based extension of
zero-order Tikhonov regularization: it applies an under-
regularized Wiener filter (formed by replacing σ2

n with ασ2
n

where α ∈ (0, 1] is an under-regularization parameter) to
y and then follows this up with wavelet shrinkage to re-
move the noise amplified by the under-regularization. The
ForWaRD method has been successful in the restoration
of natural images, and its application to pulse-echo ultra-
sound images was proposed by Wan et al. in [3].

B. l1-Norm Regularization

Michailovich and Adam [2] proposed modeling the ele-
ments of x as independent and identically distributed ran-
dom variables obeying a Laplacian distribution instead of
a Gaussian distribution on the grounds that the heavier
tails of the Laplacian distribution permit better recovery
of the stronger reflectors at structural boundaries. Their
definition of the Laplacian distribution in [2] was for a real-
valued random variable, but here we define an equivalent
distribution for a complex-valued random variable.

Defining xi = (x)i, we define the real and imaginary
parts of each xi to be uncorrelated and to have a variance
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of σ2
x each. The variance of each xi is then 2σ2

x, and we
assign the following probability density function to each xi:

p(xi) ∝ exp

(
−

√
3

σx
|xi|
)

. (9)

This probability density function is circularly symmet-
ric in the complex plane, which keeps the phase of each xi

uniformly distributed between 0 and 2π.
Assuming the components of x to be independent and

identically distributed, the probability density function in
(9) gives rise to a regularizing constraint on the l1-norm
instead of the l2-norm, and our MAP estimation becomes:

x̂ = argmin
x

(
1

2σ2
n

‖y − Hx‖2 +
√

3
σx

N∑
i=1

|xi|
)

.
(10)

IV. Expectation-Maximization

A. An Alternative Model for Tissue Reflectivity

So far, we have not addressed the problem of esti-
mating the parameters (in particular, the covariance ma-
trix of x) in the regularizing constraints of (8) and (10).
The reflectivities of biological tissues typically exhibit non-
stationary statistics, and so assuming a constant variance
over the entire image is unlikely to yield optimal results.
We previously stated that the echogenicities of soft tissues
vary macroscopically in a piecewise-smooth way, but their
reflectivities behave in a pseudo-random way on a micro-
scopic level. This leads us to suggest that there is very little
correlation between different samples of the tissue reflec-
tivity and that the variance of each sample is determined
by the macroscopic piecewise-smooth echogenicity.

A simple way to express this behavior is to model the
tissue reflectivity as a field of uncorrelated and identically
distributed random variables weighted by an echogenicity
map (see Fig. 1). Let S be an N × N diagonal matrix
of real-valued, non-negative samples of the echogenicity,
and let w be an N × 1 vector of uncorrelated random
variables of unit variance. We propose writing the tissue
reflectivity as:

x = S w, (11)

and we model w as a complex-valued, zero-mean Gaussian
vector with covariance matrix E(wwH) = 2IN (this is con-
sistent with the model in [16]). Because the echogenicity
is piecewise-smooth and, therefore, likely to be well spar-
sified in the wavelet domain, we propose a wavelet-domain
prior for the diagonal elements of S.

With this simple model for x, we may write:

p(x | S) ∝ 1
|S2| exp

(
−1

2
xHS−2x

)
. (12)

At this point, we make the following two important ob-
servations:

• If S were known exactly, then x would just be a
complex-valued Gaussian random vector with covari-
ance matrix E(xxH) = 2S2, and an estimate of x could
be calculated from y by applying the Wiener filter as
given in (8).

• Conversely, if x were known exactly, then we could
estimate S by treating w as multiplicative noise and
applying a suitable wavelet-domain denoising proce-
dure to get rid of it.

These observations suggest that we can form an iter-
ative image restoration algorithm by alternating between
Wiener filtering to estimate x and wavelet-domain denois-
ing to estimate S to get successively better estimates of
both. This approach forms the basic structure of our image
restoration method, and to derive exact update rules for x
and S, we phrase our problem in terms of MAP estimation
with hidden parameters and invoke the EM algorithm.

B. The EM Algorithm

The EM algorithm is an iterative procedure for MAP es-
timation in problems in which the joint likelihood of some
observed data and a set of unobservable (or hidden pa-
rameters) is specified but not the marginal likelihood of
the observed data. It provides an alternative to explicit
marginalization of the joint likelihood that is often not
analytically tractable. Each iteration of EM yields an esti-
mate of the parameter of interest, which increases its pos-
terior and convergence to a local maximum of the posterior
distribution is guaranteed.

We present, without proof, the mechanics of the EM
algorithm for MAP estimation as described in [24]. Let Θ
be the parameter of interest, let U be the observed data
from which we wish to estimate Θ, let J be the nuisance
parameter, and let Θ̂k be the estimate of Θ at the kth
iteration. At the kth iteration, we execute:

• The E-step: We calculate the expected joint log-
likelihood of U and J given Θ:

Q(Θ | Θ̂k) = E
[
ln p(U,J | Θ) | U, Θ̂k

]
=
∫

p
(
J | U, Θ̂k

)
ln p(U,J | Θ) dJ. (13)

• The M-step: We calculate the next estimate of Θ:

Θ̂k+1 = arg max
Θ

[
Q
(
Θ | Θ̂k

)
+ ln p(Θ)

]
.

(14)

For our image restoration problem, we have U = y;
because we are able to specify a prior explicitly (in the
wavelet domain) for S, and because the log-prior ln p(Θ)
appears explicitly in the M-step, it makes sense to assign
Θ = S, which leaves J = x.

So far, we have implicitly assumed the variance 2σ2
n

of the additive noise term in (1) to be known a priori.
Although robust estimators exist for determining the ad-
ditive noise variance at the start of the algorithm, we can
also update our estimate of the additive noise variance in
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each iteration of the algorithm by including σn as a pa-
rameter of interest to be estimated. We introduce a flat
prior for σn that corresponds to solving for its maximum
likelihood (ML) estimate.

C. E-Step: Wiener Filtering

We define Ŝk and σ̂n,k to be the estimates of S and
σn, respectively, at the kth iteration. Substituting U = y,
J = x, and Θ = {S, σn} into (13), we obtain:

Q
(
S, σn | Ŝk, σ̂n,k

)
=∫

p
(
x | y, Ŝk, σ̂n,k

)
ln p(y,x | S, σn) dx. (15)

To obtain a closed-form expression for this integral, we
first turn our attention to finding an expression for the nui-
sance posterior p

(
x | y, Ŝk, σ̂n,k

)
. Applying Bayes’s rule

and recognizing that p
(
y | x, Ŝk, σ̂n,k

)
= p (y | x, σ̂n,k),

and p
(
x | Ŝk, σ̂n,k

)
= p

(
x | Ŝk

)
, we have:

p
(
x | y, Ŝk, σ̂n,k

)
=

p
(
y | x, Ŝk, σ̂n,k

)
p
(
x | Ŝk, σ̂n,k

)
p
(
y | Ŝk, σ̂n,k

)
=

p (y | x, σ̂n,k) p
(
x | Ŝk

)
p
(
y | Ŝk, σ̂n,k

) .
(16)

The denominator in the rightmost term of (16) does not
depend on x and may be regarded as just a normalization
constant. Substituting (6) and (12) into the numerator and
simplifying, we obtain:

p
(
x | y, Ŝk, σ̂n,k

)
∝ exp

·
{
− 1

2σ̂2
n,k

[
xH
(
HHH + σ̂2

n,kŜ−2
k

)
x−2 Re

(
xHHHy

)]}
,

(17)

which is a multivariate complex Gaussian distribution with
covariance matrix Ck and mean mk given by:

Ck = Var
(
x | y, Ŝk, σ̂n,k

)
= 2σ̂2

n,k

(
HHH + σ̂2

n,kŜ−2
k

)−1
, (18)

mk = E
(
x | y, Ŝk, σ̂n,k

)
=
(
2σ̂2

n,k

)−1
CkHHy

=
(
HHH + σ̂2

n,kŜ−2
k

)−1
HHy. (19)

The mean mk is the minimum mean squared error
(MMSE) estimate of x given Ŝk and, therefore, represents
our best estimate of x at the kth iteration. Comparing
the rightmost expression in (19) with (8) shows that cal-
culation of mk is just the same as Wiener filtering with
Cx = Ŝ2

k.

Returning now to the calculation of the integral in (15),
we note that p (y,x | S, σn) = p (y | x, σn) p (x | S) ⇒
ln p (y,x | S, σn) = ln p (y | x, σn) + ln p (x | S), and we
may write:

Q = Q1 + Q2, (20)

Q1 =
∫

p
(
x | y, Ŝk, σ̂n,k

)
ln p(x | S) dx, (21)

Q2 =
∫

p
(
x | y, Ŝk, σ̂n,k

)
ln p(y | x, σn)dx. (22)

To expand Q1, we substitute (12) into (21) and discard
constants to yield:

Q̃1 = −2 ln |S| − 1
2

∫
xHS−2x p

(
x | y, Ŝk, σ̂n,k

)
dx.

(23)

Recognizing that the integral on the right-hand side is
just the conditional expectation E

(
xHS−2x | y, Ŝk, σ̂n,k

)
,

we follow a similar calculation in [20] and simplify as fol-
lows:

E
(
xHS−2x | y, Ŝk, σ̂n,k

)
= E

[
Tr
(
S−2xxH) | y, Ŝk, σ̂n,k

]
= Tr

[
S−2E

(
xxH | y, Ŝk, σ̂n,k

)]
= Tr

[
S−2 (Ck + mkmH

k

)]
= Tr

(
S−2Ck

)
+ mH

k S−2mk, (24)

and substituting this expression back into (23), we obtain:

Q̃1 = −2 ln |S| − 1
2
[
Tr
(
S−2Ck

)
+ ‖S−1mk‖2] .

(25)

To expand Q2, we substitute (6) into (22) and discard
constants to yield:

Q̃2 = −2N lnσn − 1
2σ2

n

∫
‖y − Hx‖2p

(
x | y, Ŝk, σ̂n,k

)
dx.

(26)

As before, we recognize that the integral on the right-
hand side is just the conditional expectation:

E
(
‖y − Hx‖2 | y, Ŝk, σ̂n,k

)
= yHy−2Re

[
yHH E

(
x | y, Ŝk, σ̂n,k

)]
+ E

(
xHHHHx | y, Ŝk, σ̂n,k

)
, (27)

and, evaluating each of these expectations, we obtain:

Q̃2 = −2N lnσn − 1
2σ2

n

[
yHy − 2Re

(
yHHmk

)
+ mH

k HHHmk + Tr
(
HHH Ck

) ]
= −2N lnσn − 1

2σ2
n

[
‖y − Hmk‖2 + Tr

(
HHH Ck

) ]
.

(28)
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We conclude our discussion on the E-step with the im-
portant observation that, because our joint log-likelihood
Q is the sum of a function purely of S and a function
purely of σn, and because S is independent of σn, we can
split our M-step into two separate optimization problems:

Ŝk+1 = arg max
S

[
Q̃1 + ln p(S)

]
= arg max

S

{
−2 ln |S| − 1

2

[
Tr
(
S−2Ck

)
+ ‖S−1mk‖2

]
+ ln p(S)

}
, (29)

σ̂n,k+1 = arg max
σn

Q̃2

= arg max
σn

{
−2N lnσn − 1

2σ2
n

[
‖y − Hmk‖2

+ Tr
(
HHH Ck

) ]}
, (30)

and we discuss each optimization problem individually in
each of the next two sections.

D. M-Step: Logarithmic Denoising

Before we launch into the derivation of the update rule
for Ŝ in the M-step, we detour briefly to discuss the prob-
lem of estimating S given x by treating w in (11) as
multiplicative noise to be removed. We define xi = (x)i,
si = (S)i, and wi = (w)i, and we rewrite (11) component-
wise as xi = siwi (recall that xi and wi are complex-valued
and si is real valued and non-negative). To turn {wi} into
additive noise, we take the logarithms of the moduli of
both sides; defining x̃i = ln |xi|, s̃i = ln si and w̃i = ln |wi|,
we obtain:

x̃i = s̃i + w̃i, i = 1, . . . , N. (31)

The logarithmic noise term {w̃i} has probability density
function, mean, and variance given by:

p(w̃i) = exp
[
2w̃i − 1

2
exp(2w̃i)

]
,

E(w̃i) =
1
2
(ln 2 − γ) ≈ 0.0580,

Var(w̃i) =
π2

24
≈ 0.4112,

(32)

where γ is the Euler-Mascheroni constant and has an ap-
proximate value of 0.5772. The derivation of this proba-
bility density function and the calculation of its mean and
variance are detailed in Appendix A.

Because the echogenicity is piecewise-smooth, we ex-
pect the log-echogenicity {s̃i} to also be piecewise-smooth
and to have a sparse representation in the wavelet domain.
We can therefore denoise by applying wavelet shrink-
age: because most of the energy of {s̃i} will be concen-
trated into just a few wavelet coefficients, we can modify

the wavelet coefficients of {x̃i} according to some shrink-
age rule that attenuates the logarithmic noise term {w̃i}.
Most wavelet shrinkage rules are based on the assump-
tion that the wavelet coefficients of the additive noise are
Gaussian, which at first sight seems to be violated by
the non-Gaussianity of the probability density function in
(32). In practice, however, we have found that, because of
the band-limitedness of each wavelet subband, the central
limit theorem keeps the wavelet coefficients of {w̃i} ap-
proximately Gaussian. The additive noise is also usually
assumed to have zero mean, so we need to subtract 1/2
(ln 2 − γ) from {x̃i} before applying wavelet shrinkage.

It is well known that wavelet shrinkage corresponds to
MAP estimation with a wavelet-domain prior, the exact
form of which depends on the specific shrinkage rule used
[25], [26]. Hence, we may regard the logarithmic denoising
of {x̃i} to recover {s̃i} and estimate {si} as being equiva-
lent to the MAP estimation problem:

Ŝ = argmax
S

p (S | x) = argmax
S

p (x | S) p(S)

= argmax
S

[ln p (x | S) + ln p(S)]

= argmax
S

[
−2 ln |S| − 1

2
xHS−2x + ln p(S)

]
= argmax

S

[
−

N∑
i=1

(
2 ln si +

|xi|2
2s2

i

)
+ ln p(S)

]
,
(33)

when the prior p(S) is defined in terms of the wavelet
coefficients of the log-echogenicity {s̃i}.

Returning now to the derivation of the update rule for
Ŝ, if we define σ2

i,k = (Ck)ii and mi,k = (mk)i, we may
rewrite (29) as:

Ŝk+1 =

argmax
S

[
−

N∑
i=1

(
2 ln si +

|mi,k|2 + σ2
i,k

2s2
i

)
+ ln p(S)

]
.
(34)

If we now compare this form of the update rule with
(33), we see that the two expressions are identical simply
by letting x2

i = |mi,k|2 + σ2
i,k. In light of our previous

discussion on logarithmic denoising, we conclude that we
can calculate our next estimate of S simply by applying
wavelet shrinkage to

{
ln
(√

|mi,k|2 + σ2
i,k

)}
.

As an initial estimate, we suggest setting all the diag-
onal elements of S to an estimate of the global blurred
noise-to-signal ratio of the image, calculated as the ratio
of an estimate of the additive noise variance to N−1‖y‖2.
This makes the E-step in the first iteration of the algorithm
identical to zero-order Tikhonov regularization.

E. M-Step: Updating the Additive Noise Variance Estimate

Differentiating the log-likelihood Q̃2 in (28) yields:

dQ̃2

dσn
= −2N

σn
+

1
σ3

n

[
Tr
(
HHH Ck

)
+ ‖y − Hmk‖2] ,

(35)
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Estimate σ̂n
2 with the robust wavelet estimator.

Initialize Ŝ = 2Nσ̂2
n‖y‖−2IN .

While termination condition is not satisfied,

E-step:

Define C = 2σ̂2
n

(
HHH + σ̂2

nŜ−2
)−1

(18)

Calculate m =
(
2σ̂2

n

)−1
CHHy (19)

Calculate σ2
i = (C)ii for i = 1, . . . , N.

M-step:

Calculate x̃i = ln
(√

|mi|2 + σ2
i

)
=

1
2

ln
(
|mi|2 + σ2

i

)
for i = 1, . . . , N.

Estimate {s̃i} by applying wavelet shrinkage to {x̃i +
1
2
(γ − ln 2)}.

Calculate ŝi = exp(s̃i) for i = 1, . . . , N.

Calculate σ̂2
n = (2N)−1 [‖y − Hm‖2 + Tr

(
HHHC

)]
(36).

end

and setting the derivative to zero, we obtain:

σ̂2
n,k+1 =

1
2N

[
Tr
(
HHH Ck

)
+ ‖y − Hmk‖2] .

(36)

The second derivative of the cost function at this value
of σn is given by:

d2Q̃2

dσ2
n

∣∣∣∣∣
σn=σ̂n,k+1

=

−8N2
[
Tr
(
HHH FCk

)
+ ‖y − Hmk‖2

]−1
< 0, (37)

which confirms that a local maximum has been reached.
At the start of the algorithm, we suggest taking the

discrete wavelet transform (DWT) of the noisy image y
and initializing our estimate of σn to the median of the
moduli of the finest-scale coefficients divided by

√
2 ln 2.

This estimator for σn is based on the assumption that the
finest-scale coefficients are dominated by the additive noise
n and is robust to the presence of outliers. We explain the
rationale of this estimator in greater detail in Appendix B.

F. Summary of the Algorithm

We summarize our EM algorithm for image restoration
above (we include references to equations earlier in the
paper and, for notational convenience, we drop the sub-
script k).

Once the algorithm has terminated, we take m as our
Bayesian estimate of the tissue reflectivity and {ŝi} as our
MAP estimate of the echogenicity.

V. Computational Considerations

A. The Conditional Covariance Matrix Ck

In Section II-A, we stated that the size of the blurring
matrix H is typically too large to be explicitly computed,
and we described methods to approximate multiplications
by H and HH based on locally shift-invariant blurring op-
erators. It follows that the direct matrix inversion required
to calculate the conditional covariance matrix Ck is also
practically infeasible, but we note that our algorithm does
not require explicit calculation of Ck; it only requires mul-
tiplication of a vector by Ck and extraction of the diagonal
elements of Ck.

The first occurrence of Ck in our algorithm is in the ex-
pression for mk in (19). We recognize that calculating mk

is the same as solving the symmetric, positive-definite sys-
tem

(
HHH + σ̂2

n,kŜ−2
k

)
mk = HHy, which we can do iter-

atively using a gradient-based method such as the conju-
gate gradients algorithm [27], [28]; this requires only mul-
tiplication by

(
HHH + σ̂2

n,kŜ−2
k

)
, which is feasible. In our

experiments, we used the conjugate gradients algorithm
with diagonal preconditioning, i.e., at each iteration of the
algorithm, we preconditioned the residual by dividing each
of its components by the corresponding diagonal element
in
(
HHH + σ̂2

n,kŜ−2
k

)
. The diagonal elements of σ̂2

n,kŜ−2
k

are trivial to calculate (as Ŝk is diagonal), and we approx-
imated each diagonal element of HHH by the energy of
the point-spread function of the region within which the
corresponding image sample lies.

To decide when to terminate the conjugate gradients
algorithm, we used the following termination rule adopted
from [27]:
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n,kŜ−2

k

)
mk − HHy

∥∥∥
≤ τ

(∥∥∥HHH + σ̂2
n,kŜ−2

k

∥∥∥
F

‖mk‖ + ‖HHy‖
)

, (38)

where τ > 0 is a stopping tolerance. We make the following
important remarks:

• The Frobenius norm
∥∥∥HHH + σ̂2

n,kŜ−2
k

∥∥∥
F

can be ex-

pressed as

√
Tr
[(

HHH + σ̂2
n,kŜ−2

k

)2
]
. Calculating it

exactly is difficult, so instead we used the following
unbiased stochastic estimator taken from [29], [30]: we
generated a random N × 1 vector u whose elements
may be either 1 or −1 with equal probability, and we
made the approximation:

Tr
[(

HHH + σ̂2
n,kŜ−2

k

)2
]

= E
{
uT
(
HHH + σ̂2

n,kŜ−2
k

)2
u
}

≈ uT
(
HHH + σ̂2

n,kŜ−2
k

)2
u. (39)

• Selection of an appropriate stopping tolerance τ turns
out to be quite crucial. A value of τ that is too small
increases the computation time of each E-step and can,
as we discovered from in vitro experiments, exacerbate
the effect of errors in our approximation of the blur-
ring operator. Conversely, selecting a value of τ that is
too large results in underfiltered images being passed
to the logarithmic denoising stage and introduces arti-
facts into the end result. In our experiments, we chose
appropriate values of τ by trial-and-error.

The second occurrence of Ck is in (34) in which its diag-
onal elements

{
σ2

i,k

}
are needed to update the echogenic-

ity estimate. Because we are unable, in practice, to ex-
plicitly specify Ck, we cannot access its diagonal elements{
σ2

i,k

}
directly. We recognize, however, that each σ2

i,k is

just the variance of (x)i given y, Ŝk, and σ̂n,k. We can as-

sume local ergodicity and estimate
{
σ2

i,k

}
by computing

sample variances over local neighborhoods in some esti-
mate of x. As mk is our best estimate of x given y, Ŝk, and
σ̂n,k, we expect a good estimate of

{
σ2

i,k

}
to be obtained

by multiplying each component of mk by its complex con-
jugate and convolving the resulting image with a suitably
scaled rectangular kernel.

The third occurrence of Ck is in the update rule (36) for
σ̂n,k, in the term Tr

(
HHH Ck

)
. We can use an approxi-

mation similar to (39) and write:

Tr
(
HHH Ck

)
= E

[
uTHHH Cku

]
≈ uTHHH Cku

= 2σ̂2
n,ku

THHH
(
HHH + σ̂2

n,kŜ−2
k

)−1
u.

(40)

Multiplication by
(
HHH + σ̂2

n,kŜ−2
k

)−1
has to be done

via the conjugate gradients algorithm, so this step can be
quite time consuming.

B. Choice of Wavelet Transform and Shrinkage Rule

In our treatment of the logarithmic denoising portion
of the M-step, we did not specify the form of the log prior
ln p(S) in (33) and (34) beyond stating that it is to be spec-
ified in terms of the wavelet coefficients of the echogenicity
image. Therefore, we are free to use any wavelet transform
and any shrinkage rule we choose.

We recommend using the dual-tree complex wavelet
transform (DTCWT) [31]–[33] over the conventional DWT
because it has better properties than the DWT for im-
age processing that comes with only a small computa-
tional penalty and modest redundancy. For a real-valued
signal, the conventional DWT uses a single dyadic fil-
ter tree to generate real-valued coefficients, whereas the
DTCWT uses a pair of dyadic filter trees to generate the
real and imaginary parts of complex-valued coefficients.
For an n-dimensional, real-valued signal, the redundancy
of the DTCWT is 2n : 1, i.e., the number of complex-
valued coefficients is 2n−1 times the number of samples in
the signal. An extension of the DTCWT to complex-valued
signals is discussed in [31].

Unlike the DWT, the DTCWT is redundant and, hence,
not orthonormal. However, it is energy preserving and
forms an almost-tight frame, i.e., the total energy of the
DTCWT coefficients is virtually the same as the energy of
the input signal. The DTCWT has the following advan-
tages over the DWT:

• Shift-invariance: The magnitudes of the DTCWT coef-
ficients remain approximately constant despite spatial
shifts in the input signal, unlike the magnitudes of the
DWT coefficients that can fluctuate significantly with
spatial shifts.

• Directional selectivity: In two dimensions or higher,
the DTCWT is able to localize features of opposing
orientations into different subbands, which is not pos-
sible with the DWT because the coefficients of the
DWT are real-valued.

For the logarithmic denoising, we propose using the
bivariate shrinkage rule developed by Sendur and Se-
lesnick [25], [26] which, when used in conjunction with
the DTCWT, gives state-of-the-art denoising performance.
This shrinkage rule attenuates each noisy complex-valued
wavelet coefficient based on its magnitude and the mag-
nitude of its parent (i.e., the noisy coefficient at the same
spatial location in the same subband at the next coarser
level).

VI. Experimental Results

In this section, we present a number of results on syn-
thetic and in vitro images that compare the performance of
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our algorithm with zero-order Tikhonov regularization, l1-
norm (Laplacian) regularization, and ForWaRD. To per-
form the necessary function minimizations, we used the
conjugate gradients algorithm with diagonal precondition-
ing. Expressions for the gradient vector and Hessian ma-
trices used in the conjugate gradients algorithm are listed
in Appendix C.

In each of our experiments, we approximated a linear
shift-variant blurring operator by partitioning image space
axially into a number of regions of equal size and simu-
lating the response to a point scatterer in the center of
each region in Field II [1]. We used the parameters for a
linear 5–10 MHz array with 127 elements (spanning a lat-
eral length of 40 mm), an active aperture of 32 elements,
and a single coincident lateral focus on both transmission
and reception. The lateral focal length varied, depending
on the experiment, but elevational focusing was achieved
with a fixed acoustic lens of focal length of 23 mm. The
point-spread functions were scaled to give the point-spread
function closest to the lateral focus unit energy. We esti-
mated the additive noise variance using the wavelet es-
timator described in Section IV-E. All the methods we
tested require a value for the global image variance σ2

x that
we approximated as the variance of the blurred image less
the estimated noise variance. With ForWaRD, we used an
underregularization parameter of α = 0.2 as prescribed in
[19], and we applied Sendur and Selesnick’s bivariate [25],
[26] shrinkage rule for the subsequent wavelet denoising.
The bivariate shrinkage rule requires the variance of each
wavelet coefficient to be specified, and we approximated
these variances according to [25], [26]. We also used the
bivariate shrinkage rule in the M-step of our proposed al-
gorithm; and we initialized the variances of the wavelet
coefficients from the zero-order Tikhonov-regularized im-
age produced in the first E-step.

A. Simulation Results

We generated artificial tissue reflectivities from natural
images of biological structures by multiplying them with
complex-valued, white Gaussian noise. The logarithm of
each image was histogram equalized and scaled to give a
signal-to-noise ratio in the logarithmic domain of 20 dB.
We used eight point-spread functions and blurred the tis-
sue reflectivities in the manner described in Section III and
we added complex-valued, white Gaussian noise to give the
resulting images a blurred signal-to-noise ratio (BSNR) of
20 dB.

We quantified the performance of each algorithm ac-
cording to its result’s improvement in signal-to-noise ratio
(ISNR) in decibels, calculated as:

ISNR = 20 log10

(
‖y − x‖
‖x̂ − x‖

)
, (41)

where x is the vectorized tissue reflectivity, y is the noise
and blurred image, and x̂ is the vectorized restored image.
We also tested our EM algorithm, omitting the update
rule for σ̂n,k to examine the difference in performance. All

algorithms were run in Matlab 7 (The MathWorks, Inc.,
Natick, MA) on a personal computer with a 3.2 GHz pro-
cessor and 1 GB of memory.

1. Heart Image: Our first set of simulations was con-
ducted on a photograph of a cross section through a hu-
man heart. The results of the various restoration meth-
ods are shown in Fig. 2(a), and a plot of the evolution of
ISNR against execution time for the zero-order Tikhonov,
Laplacian, and EM restorations is shown in Fig. 2(b) (we
have omitted ForWaRD from this plot because its ISNR
can be sensibly computed only at the end, after wavelet
shrinkage). The EM algorithm, with and without updating
σ̂n,k, is seen to outperform every other method by at least
0.63 dB in ISNR, and qualitatively, it is clear that the EM
solutions enjoy significantly better contrast than the other
restored images. Inclusion of the update rule for σ̂n,k ap-
pears to have made very little difference to the ISNR of
the EM solution, although it has significantly increased
the computation time of each E-step, as can be seen from
Fig. 2(b).

2. Kidney Image: Our second set of simulations was
conducted on an artist’s illustration of a cross section
through a human kidney. The results of the various
restoration methods are displayed in Fig. 3(a), and we have
a similar plot of the evolution of ISNR against execution
time in Fig. 3(b). These results are consistent with our pre-
vious results, with the EM algorithm outperforming every
other method by at least 0.61 dB and its images exhibiting
better contrast than the other solutions. It is encouraging
to see that the echogenicity estimates from the EM algo-
rithm have good visual quality; they are free of speckle
and have good contrast and well-defined edges.

B. In Vitro Results

We acquired an image of a phantom containing spher-
ical inclusions of different echogenicities embedded in a
background of dense scatterers with the linear array de-
scribed at the start of this section and a Dynamic Imaging
(Livingston, Scotland, UK) Diasus ultrasound machine.
Standard delay-and-sum beamforming was applied and the
beamformed traces were sampled at a rate of 66.6 MHz.
Each sampled trace was then demodulated to baseband,
low-pass filtered, and downsampled by a factor of nine.

As with the simulations, we tested our proposed EM
algorithm (with and without updating σ̂n,k) and com-
pared its performance to zero-order Tikhonov regulariza-
tion, ForWaRD, and Laplacian regularization. Our ap-
proximation of the shift-variant blurring operator with lo-
cally shift-invariant point-spread functions gave rise to ar-
tifacts in the restored images, which we corrected using a
method described in Appendix D. The restored images af-
ter artifact correction are shown in Fig. 4. The first thing to
note is that the effects of restoration are most pronounced
at the axial extremes of the image in which lateral focusing
is worst. The shapes of the spheres at the top and at the
bottom of the image have been successfully corrected and
appear circular in all of the restored images.
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Fig. 2. Simulation results for the heart image. (a) B-scan images of the true echogenicity, the true reflectivity, the corrupted reflectivity, and
the results of the various restoration schemes. The grey-scale levels represent logarithmically compressed amplitudes and span a dynamic
range of 40 dB. The lateral focus is approximately at the center of the image. The echogenicity image was obtained with permission from
www.umdnj.edu/pathnweb/syspath/syslab 2/Slides 14/Slide 14 A/slide 14 a.htm. (b) Evolution of ISNR versus program execution time for
the various restoration methods, excluding ForWaRD. The execution times are for a personal computer running Matlab 7 with a 3.2 GHz
processor and 1 GB of memory.
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Fig. 3. Simulation results for the kidney image. (a) B-scan images of the true echogenicity, the true reflectivity, the corrupted reflectivity, and
the results of the various restoration schemes. The grey-scale levels represent logarithmically compressed amplitudes and span a dynamic
range of 40 dB. The lateral focus is approximately in the center of the image. The echogenicity image was obtained with permission
from www.med-ars.it/galleries/kydney 10.htm. (b) Evolution of ISNR versus program execution time for the various restoration methods,
excluding ForWaRD. The execution times are for a personal computer running Matlab 7 with a 3.2 GHz processor and 1 GB of memory.
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Fig. 4. In vitro results for an image of a phantom containing spherical inclusions. The lateral focus is 26 mm below the top of the image.
The grey-scale levels represent logarithmically compressed amplitudes and span a dynamic range of 40 dB.

To quantify the relative merits of the various restora-
tion schemes, we calculated the contrasts between different
pairs of adjacent regions in each image. These contrasts (in
decibels) are listed in Table II. To calculate each contrast,
we computed the energy of the pixels in a rectangular area
in each of two adjacent regions and took the ratio of the
energies. We note that, for a given pair of adjacent regions,
the contrasts of the EM solutions are at least comparable
to and often significantly stronger than the contrasts of the
other restored images. Once again, we find it encouraging
that the echogenicity estimates from the EM algorithm are
free of speckle and have good contrast and well-defined
boundaries.

VII. Conclusions

In this paper, we have addressed the problem of im-
age restoration in the context of pulse-echo ultrasound
with the implicit assumption that the blurring operator
is known a priori. The performance of an image restora-
tion algorithm is highly dependent on the appropriateness
of the underlying image model it assumes. The reflectivi-
ties of soft tissues imaged by pulse-echo ultrasound have

substantially different statistics to the piecewise-smooth
natural images considered in mainstream image process-
ing, and models for such natural images cannot be applied
directly to pulse-echo ultrasound. We observed that, al-
though the echogenicities of soft tissues vary macroscopi-
cally in a piecewise-smooth way, the reflectivities exhibit
a pseudo-random texture on a microscopic scale due to
the presence of small, weakly scattering particles. There-
fore, we proposed modeling reflectivity as the product of
a piecewise-smooth echogenicity map and a field of uncor-
related and identically distributed random variables.

The explicit separation of the reflectivity into an
echogenicity component and a random component allows
the echogenicity to be modeled as a natural image that
can be sparsely represented in the wavelet domain. By
assigning a Gaussian distribution to the random compo-
nent and applying the EM algorithm, we were able to de-
rive a restoration algorithm that consists of alternating
between Wiener filtering to estimate the reflectivity and
wavelet-based denoising to estimate the echogenicity. An
alternative way of viewing this algorithm is to consider it
as a Wiener filter with the signal variances updated occa-
sionally by wavelet-based denoising. Because this restora-
tion algorithm also yields an estimate of the echogenicity
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TABLE II
Local Contrasts in the Original and Restored Images of the Phantom Containing Spherical Inclusions.

1

EM solution EM solution
Original Tikhonov ForWaRD Laplacian (without σ̂n (with σ̂n

image solution solution solution updates) updates)
B:A 6.81 9.42 9.28 14.01 15.69 21.14
C:B 5.83 5.94 5.79 6.49 6.32 6.57
E:D 2.49 2.75 2.87 2.69 2.89 2.93
F:E −5.28 −5.23 −5.73 −5.26 −5.60 −5.71
H:G 6.94 6.72 7.07 6.94 8.77 9.56
I:H 6.52 6.42 6.45 6.73 7.00 7.18
K:J 1.00 1.33 1.41 1.57 1.71 1.65
L:K −3.85 −4.21 −4.37 −4.79 −5.58 −5.44

1The image on the left labels 12 regions in the phantom and the table on the right contains contrast values
(in decibels) between selected pairs of adjacent 6.25 × 6.25 mm regions. All contrast values were calculated
from the restored images after artifact correction.

(which is free of speckle), it effectively solves both the im-
age restoration problem and the speckle removal problem
simultaneously.

In the derivation of our image restoration algorithm,
we also incorporated a rule in the M-step for updating the
variance of the additive white Gaussian noise term that ac-
counts for measurement error. We tested our restoration
algorithm with and without this extra update rule on im-
ages generated in simulation and acquired in vitro, and we
compared the results from our algorithm with restorations
based on l1- and l2-norm regularization and ForWaRD.
The simulation results indicated that our algorithm is ca-
pable of producing restored images with greater fidelity to
the true tissue reflectivity (as measured by ISNR), and vi-
sually we observed our algorithm’s results to have better
local contrast. The improvement in local contrast can also
be seen in the in vitro results in which the restored im-
ages from our algorithm exhibited comparable, and often
significantly better, local contrast than the other restored
images. Inclusion of the update rule for the variance of
the additive noise appears to have made little difference
to image quality, but it significantly increases computa-
tion time. Therefore, we recommend omitting this update
rule unless the initial estimate of this variance is known to
be unreliable.

We conclude that our image restoration algorithm for
pulse-echo ultrasound is competitive with the current
state-of-the-art and can produce results that have supe-
rior image quality in terms of local contrast and fidelity
to the true tissue reflectivity. When the rule for updating
the additive noise variance is omitted, the M-step consists
only of wavelet shrinkage (which is computationally very
efficient), and the computational cost of our algorithm as a
whole is dominated by the E-step, which involves the same
gradient-based optimizations as l1- and l2-norm regular-
ization. Hence, the benefits introduced by our algorithm
come with only a small computational penalty.

We also have included in this paper closed-form ex-
pressions for the statistics of the logarithm of a Rayleigh-
distributed random variable [(32) and Appendix A] and
a robust wavelet-based estimator for the variance of

complex-valued additive white Gaussian noise in a real-
istic signal (Section IV-E and Appendix B). We have been
unable to find these expressions in the technical literature,
so we have presented them here for the sake of complete-
ness.

Appendix A

Derivation of the Statistics of Logarithmic

Noise

In this appendix, we derive the probability density func-
tion and the statistics quoted in (32) for the logarithmic
noise term {w̃i} in (31). We first state the following two
useful equations: ∫ ∞

0
e−u lnu du = −γ, (42)∫ ∞

0
e−u(lnu)2 du = γ2 +

π2

6
, (43)

where γ is the Euler-Mascheroni constant. Expressions
(42) and (43) are, respectively, special cases of (4.331-1)
and (4.335-1) in [34].

Proposition 1: Given a complex-valued Gaussian ran-
dom variable Z with mean E(Z) = 0 and variance
E(|Z|2) = 2, and defining W̃ = ln |Z|, the prob-
ability density function of W̃ is given by p

W̃
(w̃) =

exp
[
2w̃ − 1

2 exp(2w̃)
]
.

Proof: Define W = |Z|. Marginalizing the probability
density function of Z over arg(Z) (see, for example, [35]),
it can be shown that W is distributed according to the
Rayleigh distribution:

pW (w) =

{
0 if w < 0,

w exp
(
−w2

2

)
if w ≥ 0.

Now define W̃ = lnW . The probability density function
of W̃ therefore is:



564 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 3, march 2007

p
W̃

(w̃) = pW (w)
dw

dw̃

∣∣∣∣
w=ew̃

= exp(2w̃) exp

(
−e2w̃

2

)

= exp
[
2w̃ − 1

2
exp(2w̃)

]
.

Proposition 2: Given a complex-valued Gaussian ran-
dom variable Z with mean E(Z) = 0 and variance
E
(
|Z|2

)
= 2, and defining W̃ = ln |Z|, the mean of W̃

is given by E(W̃ ) = 1
2 (ln 2 − γ).

Proof: The mean of W̃ is just the expected value of
lnW :

E(W̃ ) =
∫ ∞

0
(lnw)w exp

(
−w2

2

)
dw

=
∫ ∞

0
(ln

√
2u)e−udu

=
1
2

∫ ∞

0
(ln 2 + lnu)e−udu

=
ln 2
2

∫ ∞

0
e−udu +

1
2

∫ ∞

0
e−u lnu du.

The first integral evaluates to 1 and, from (42), the sec-
ond integral evaluates to −γ. Hence, E(W̃ ) = 1

2 (ln 2 − γ).

Proposition 3: Given a complex-valued Gaussian ran-
dom variable Z with mean E(Z) = 0 and variance
E
(
|Z|2

)
= 2, and defining W̃ = ln |Z|, the variance of

W̃ is given by Var (W̃ ) = π2

24 .

Proof: The second moment of W̃ is given by:

E
(
W̃ 2

)
=
∫ ∞

0
(lnw)2w exp

(
−w2

2

)
dw

=
∫ ∞

0
(ln

√
2u)2e−udu

=
1
4

∫ ∞

0
(ln 2 + lnu)2e−udu

=
1
4

[
(ln 2)2

∫ ∞

0
e−udu + 2 ln 2

∫ ∞

0
e−u lnu du

+
∫ ∞

0
e−u(lnu)2du

]
.

As before, the first integral evaluates to 1, and, from
(42) and (43), the second and third integrals evalu-
ate to −γ and γ2 + π2

6 respectively. So E
(
W̃ 2

)
=

1
4

[
(ln 2)2 − 2γ ln 2 + γ2 + π2

6

]
, and:

Var
(
W̃ 2

)
= E

(
W̃ 2

)
−
[
E
(
W̃
)]2

=
1
4

[
(ln 2)2 − 2γ ln 2 + γ2 +

π2

6

]
− 1

4
[
(ln 2)2 − 2γ ln 2 + γ2] =

π2

24
.

Appendix B

Derivation of the Robust Noise Variance

Estimator

In this appendix, we derive the robust estimator for the
variance of complex-valued, additive white Gaussian noise
(AWGN) introduced in Section IV-E. Our derivation is
analogous to the derivation of a similar robust estimator
for the variance of real-valued AWGN presented in [9].

Proposition 4: Given a complex-valued Gaussian ran-
dom variable Z with mean E(Z) = 0 and variance
E
(
|Z|2

)
= 2σ2

n, and defining W = |Z|, the median of
W is σn

√
2 ln 2.

Proof: The calculation is fairly straightforward. As in
Appendix A, if we marginalize the probability density
function of Z over arg(Z), we find that W is distributed
according to the Rayleigh distribution:

pW (w) =

{
0 if w < 0,
w
σ2

n
exp

(
− w2

2σ2
n

)
if w ≥ 0.

The median wm of W satisfies:∫ wm

−∞
pW (w)dw =

1
2

⇒
∫ wm

0

w

σ2
n

exp
(

− w2

2σ2
n

)
dw =

1
2

⇒ wm = σn

√
2 ln 2.

Given a realistic (i.e., band-limited) signal contami-
nated by complex-valued, additive, white Gaussian noise,
we expect its finest-scale DWT coefficients to be domi-
nated by the noise, and because the DWT is orthonormal,
the finest-scale coefficients are also likely to be distributed
as complex-valued Gaussian random variables with the
same variance as the noise. The sample median of the
moduli of these coefficients generally is immune to any
potential outliers and is approximately equal to the popu-
lation median σn

√
2 ln 2, so a robust estimate of σn is this

sample median divided by
√

2 ln 2.

Appendix C

Gradient and Hessian of a Real-Valued

Function of a Complex-Valued Vector

The form of the conjugate gradients algorithm which we
used to perform function minimization requires knowledge
of the gradient vector and the Hessian matrix of the cost
function to be minimized. The cost functions in (8) and
(10) are real-valued functions of complex-valued vectors,
and in this appendix, we explain briefly how their gradient
vectors and Hessian matrices were calculated. More de-
tailed discussions of gradient vectors for real-valued func-
tions of complex-valued vectors can be found in [20], [36],
and [37].
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A real-valued function of a complex-valued vector may
be regarded as a function of the vector and its complex
conjugate. Adopting the definition in [36], we define the
partial derivative operators ∂

∂x and ∂
∂x∗ with respect to a

complex-valued vector x ∈ C
N to be:

∂

∂x
≡
[

∂

∂x1
· · · ∂

∂xN

]T

=
1
2

[
∂

∂Re(x1)
−j

∂

∂Im(x1)
· · · ∂f

∂Re(xN )
−j

∂

∂Im(xN )

]T

,

∂

∂x∗ ≡
[

∂

∂x∗
1

· · · ∂

∂x∗
N

]T

=
1
2

[
∂

∂Re(x1)
+j

∂

∂Im(x1)
· · · ∂f

∂Re(xN )
+j

∂

∂Im(xN )

]T

,

where xi = (x)i and x∗ is the complex conjugate of x.
Although, strictly speaking, x and x∗ are not independent
of each other, for the purposes of these partial derivative
operators, we may treat them as independent variables.

The gradient ∇φ of a function φ : x ∈ CN → R is then
defined to be:

∇φ ≡ 2
∂φ

∂x∗ ,

and is normal to the surface of the cost function [36]. We
similarly define the Hessian matrix Hφ of φ to be:

Hφ ≡ ∂

∂x
[∇φ]T = 2

∂

∂x

[(
∂φ

∂x∗

)T
]

.

The cost functions we encounter in (8) and (10) are of
the form:

φ(x) =
1

2σ2
n

‖y − Hx‖2 + r(x)

=
1

2σ2
n

(
yHy−yHHx−xHHHy+xHHHHx

)
+r(x),

where r(x) is the regularizing constraint on x. Differenti-
ating gives the gradient vector and the Hessian matrix as:

∇φ = σ−2
n

(
HHHx − HHy

)
+ ∇r,

Hφ = σ−2
n HHHx + Hr.

In the case of l2-norm regularization (8), r(x) =
1
2x

HC−1
2 x and ∇r = C−1

x x and Hr = C−1
x .

In the case of l1-norm regularization (10), r(x) =√
3σ−1

x

∑N
i=1 |xi| =

√
3σ−1

x

∑N
i=1

√
xix∗

i , and the gradient
vector and Hessian matrix of r(x) are given component-
wise by:

[∇r]i = 2 ×
√

3
σx

× ∂

∂x∗
i

(√
xix∗

i

)
=

√
3

σx
· xi

|xi|
,

[Hr]ik =

⎧⎨⎩0 if i �= k,
√

3
σx

× ∂
∂xi

(
xi√
xix∗

i

)
=

√
3

2σx
· 1

|xi| if i = k.

Appendix D

Correction of Artifacts in the In Vitro Results

In our in vitro experiments, we found that the restored
images of the phantom with spherical inclusions exhibited
artifacts in the form of lateral lines at equally spaced axial
intervals (see Fig. 5). The regular axial spacing of these
lines and the fact that they appeared in all of the restored
images suggest that they are caused by the nonexact na-
ture of our approximation to the blurring operator.

To correct these artifacts, we first observed that the
background material in the phantom is supposed to be
uniformly echogenic and, in the absence of time-gain com-
pensation, it should appear as pure speckle with the same
echogenicity at all axial depths. Based on this observation,
we performed the following steps to remove the lateral ar-
tifacts from each restored image:

1. We applied each restoration algorithm to an image
consisting only of the background material. The out-
put of this step is an image that exhibits the same lat-
eral artifacts but is otherwise just pure speckle with
smooth axial variations in background intensity due
to time-gain compensation in the original background
image.

2. We averaged the envelopes of the axial traces in the
image from the first step to yield a correction curve.
This correction curve follows approximately the profile
of the smooth axial variations in background intensity,
except for sharply defined peaks at the locations of the
artifacts. We applied a low-pass filter to the correction
curve to smooth out irregularities.

3. We divided each axial trace in the restored image of
the phantom by this correction curve to equalize the
background intensity and, hence, cancel out the lateral
artifacts.

Our artifact correction scheme is illustrated in Fig. 5.
In addition to correcting the lateral artifacts introduced
by restoration, this technique also has the useful side ef-
fect of cancelling out the smooth axial variations in back-
ground intensities due to time-gain compensation to more
accurately reflect the uniform background echogenicity of
the phantom (in the artifact-corrected restored images in
Fig. 4, the background intensities appear uniform across
all axial depths).

Acknowledgments

James Ng is funded by an External Research Stu-
dentship from Trinity College, Cambridge, and an LB
Wood Travelling Scholarship.



566 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 3, march 2007

Fig. 5. Correction of artifacts introduced by errors in the approximation to the blurring operator and exacerbated by image restoration.
Applying the restoration filter to a reference image of uniformly echogenic speckle produces an image that exhibits artifacts from the blurring
operator approximation. Envelope detection of this filtered reference image followed by averaging across its axial traces yields a correction
curve. Dividing each axial trace in the restored image of the phantom by the correction curve removes the artifacts. Each image in this
illustration has been logarithmically compressed and scaled to a dynamic range of 40 dB.
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