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Restoration of Ultrasound Images in an EM FrameworkJ. K. H. Ng, R. W. Prager, N. G. Kingsbury, G. M. Treece and A. H. GeeDepartment of Engineering, University of Cambridge,Trumpington Street, Cambridge CB2 1PZ, UK.ABSTRACTThe quality of medical ultrasound images is limited by inherent poor resolution due to the �nite temporalbandwidth of the acoustic pulse and the non-negligible width of the system point-spread function. One of themajor di�culties in designing a practical and e�ective restoration algorithm is to develop a model for the tissuere�ectivity that can adequately capture signi�cant image features without being computationally prohibitive.The re�ectivities of biological tissues do not exhibit the piecewise smooth characteristics of natural imagesconsidered in the standard image processing literature; while the macroscopic variations in echogenicity areindeed piecewise smooth, the presence of sub-wavelength scatterers adds a pseudo-random component at themicroscopic level. This observation leads us to propose modelling the tissue re�ectivity as the product of apiecewise smooth echogenicity map and a unit-variance random �eld. The chief advantage of such an explicitrepresentation is that it allows us to exploit representations for piecewise smooth functions (such as wavelet bases)in modelling variations in echogenicity without neglecting the microscopic pseudo-random detail. As an exampleof how this multiplicative model may be exploited, we propose an expectation-maximisation (EM) restorationalgorithm that alternates between inverse �ltering (to estimate the tissue re�ectivity) and logarithmic waveletdenoising (to estimate the echogenicity map). We provide simulation and in vitro results to demonstrate thatour proposed algorithm yields solutions that enjoy higher resolution, better contrast and greater �delity to thetissue re�ectivity compared with the current state-of-the-art in ultrasound image restoration.1. INTRODUCTIONThe use of ultrasound in the non-invasive imaging of soft tissue is now well established in medical diagnostics. Instandard clinical practice, ultrasound images are acquired with a transceiving probe which is placed in contactwith the subject to transmit radio-frequency (RF) pressure pulses into the soft tissue and to record echoesbackscattered by acoustic inhomogeneities. Since the backscattered signal strength is strongly correlated withstructural features, an image of the anatomy can be constructed by lining the RF echoes up in image space anddisplaying their amplitudes as grey-scale levels. Because these amplitude images usually have very large dynamicrange, it is common to display them logarithmically compressed as so-called B-scan images.Despite the popularity of ultrasound imaging as a diagnostic tool, the diagnostic utility of ultrasound images islimited by inherent blurring due to the �nite temporal bandwidth of the transceiving probe and the non-negligiblewidth of the pulse-echo acoustic beam. There is thus signi�cant scope for the development of image restorationmethods to improve diagnostic quality by correcting this blurring. Essentially, the RF image recorded by thetransceiving probe is a blurred map of the tissue re�ectivity and, in this context, image restoration is identicalto the inverse problem of recovering the true tissue re�ectivity given the RF image. Typical tissue re�ectivitiesare characterised on a macroscopic scale by piecewise smooth variations in echogenicity, but the presence ofsub-wavelength scatterers adds a pseudo-random component on a microscopic scale. The incoherent interferencebetween pressure waves scattered by a large number of these sub-wavelength scatterers within the volume ofthe acoustic pulse (i.e. the resolution cell) gives rise to a granular texture known as speckle. Although speckleobscures signi�cant image features and degrades the resolvability of structures, it also contains important texturalinformation which is useful to clinicians for tissue identi�cation. Hence, restoration methods for ultrasoundEmail: jkhn2/rwp/ngk/gmt11/ahg@eng.cam.ac.ukCopyright 2006 Society of Photo-Optical Instrumentation EngineersThis paper will be published in Proc. SPIE Medical Imaging 2006 and is made available as an electronic preprint with permission of SPIE. One print or electroniccopy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of anymaterial in this paper for a fee or for commercial purposes, or modi�cation of the content of the paper are prohibited.



images are required not only to enhance the resolvability of macroscopic structural features but also to preservethe textural information present in speckle.Because blurring constitutes a loss of information, exact recovery of the tissue re�ectivity from the RF image isimpossible, but with the imposition of appropriate regularising constraints, a physically feasible approximation tothe tissue re�ectivity can be constructed. In a Bayesian context, these regularising constraints correspond to priorprobability density functions on the tissue re�ectivity and re�ect our prior belief in what the tissue re�ectivityshould be. One of the major di�culties in designing an e�ective and e�cient restoration algorithm is to obtain amodel for tissue re�ectivity which can adequately capture both macroscopic structural features and microscopicpseudo-random detail. The simplest and commonest model for tissue re�ectivity is to assume Gaussian statisticswhich leads to the well-known Wiener �lter .1–3 Michailovich and Adam1 proposed a Laplacian probabilitydensity function in place of the Gaussian on the grounds that its heavier tails admit better recovery of strongerre�ections at structural boundaries.Mainstream research in image processing has produced a variety of models for describing so-called naturalimages (such as photographs) which are predominantly piecewise smooth functions with localised discontinuities.4Models based on wavelets have been particularly successful as the wavelet transform provides a domain in whichnatural images can be sparsely represented and the statistics of natural images are substantially simpli�ed (this, inturn, leads to simple but e�ective processing rules in the wavelet domain). Unfortunately, such models for naturalimages cannot adequately account for the texturally important pseudo-random behaviour that is characteristicof the acoustic response of soft tissue and so are not, by themselves, good models for tissue re�ectivities.We observe, however, that while tissue re�ectivities are not strictly piecewise smooth, their echogenicities arepiecewise smooth and would be well described by mainstream models of natural images. This observation leadsus to suggest modelling the echogenicity and the pseudo-random component separately, the former as a piecewisesmooth function and the latter as a �eld of independent and identically distributed random variables. In thisway, we are able to assign separate priors to the echogenicity and the pseudo-random component and solve foran estimate of the tissue re�ectivity in which structural features are enhanced and textural detail preserved.The idea of modelling the echogenicity and pseudo-random component separately is not new, but was previouslyproposed by Husby et al.5 who assumed Gaussian statistics for the pseudo-random component. We make thesame assumption of Gaussianity, but our work di�ers from Husby et al.'s in our approach to the rest of theproblem: they chose to model the echogenicity in the image domain and solved for it with Markov chain MonteCarlo (MCMC) methods, whereas we have opted to model the echogenicity in the wavelet domain and to solve forthe complete tissue re�ectivity using expectation-maximisation (EM). As we shall show, this approach reduces toalternating between Wiener �ltering and wavelet-based denoising which we believe it to be more computationallye�cient than MCMC.Our hybrid Wiener/denoising scheme was inspired by the work of Figueiredo and Nowak6 who also used EMto develop a similar algorithm for the deconvolution of natural images. Their work, in turn, is an extension ofNeelamani et al.'s7, 8 Fourier-wavelet regularised deconvolution (ForWaRD) procedure which applies an under-regularised Wiener-style �lter to the blurred image followed by wavelet-based denoising (the application ofForWaRD to ultrasound image restoration was proposed by Wan et al.8). We emphasise that, although thesetechniques share a procedural similarity with our proposed algorithm, they were designed for natural imagesand, unlike our algorithm, they do not assume any pseudo-random behaviour on a microscopic level.In the sections that follow, we shall �rst introduce a linear description for the blurring operator and our modelfor the tissue re�ectivity. We shall then present the EM algorithm as a framework for statistical inference inproblems with unobservable hidden parameters and show that, for our problem, the EM algorithm reduces toalternating between Wiener �ltering (to update the re�ectivity estimate) and wavelet-based denoising (to updatethe echogenicity estimate). We shall present simulation and in vitro results to compare the performance of ouralgorithm with the current state-of-the-art in ultrasound image restoration.2. IMAGE MODELLINGSince we deal entirely with digitised quantities, we adopt matrix-vector notation for our mathematical descriptionof the blurring operator. Let x be an N × 1 vector representing the sampled tissue re�ectivity, let y be an N × 1



vector representing the sampled RF image and let n be an N × 1 noise vector to account for measurement error.If we assume linear blurring, then we may write
y = Hx + n (1)where H is the N × N blurring matrix. It is usual to assume n to be normally distributed with zero mean andcovariance matrix Cn. In this context, the problem of restoration is to estimate x given y, H and Cn.The conventional way to cast the problem into a Bayesian framework is to treat y and x as random vectorsand to solve for the maximum a posteriori (MAP) estimate of x given y, i.e. we seek the realisation x̂ of xwhich maximises its posterior probability p (x | y ). Bayes's rule states that p (x | y ) ∝ p (y | x) p (x ); takinglogarithms, the MAP estimation may be written as

x̂ = arg max
x

[ln p (y | x) + ln p (x) ] (2)where the log-likelihood ln p (y | x) enforces �delity to the observed data and the log-prior ln p (x ) is a regu-larising constraint that re�ects our prior belief. In our case, where we have assumed additive Gaussian noise,
p (y|x) ∝ exp

[
−1

2
(y − Hx)T C−1

n (y − Hx)

]
. (3)If we model x as a zero-mean Gaussian random vector with covariance matrix Cx,

x̂ = arg min
x

[
1

2
(y − Hx)

T
C−1

n (y − Hx) +
1

2
xTC−1

x x

] (4)to which the closed-form solution is the Wiener �lter,
x̂ =

(
HTC−1

n H + C−1
x

)
−1

HTC−1
n y. (5)The special case Cx = σ2
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. (7)3. IMAGE RESTORATIONInstead of following the conventional approach of assigning a single prior to x, we propose modelling x as aproduct of its echogenicity and a random component. In matrix-vector notation, we write
x = Sw (8)where S is an N ×N diagonal matrix of non-negative echogenicity values and w is an N × 1 random vector. Wepropose treating the elements of w as independent and identically distributed Gaussian random variables withzero mean and unit variance, which is consistent with the models of Michailovich and Adam1 and Husby et al.5in which the tissue re�ectivity in a uniformly echogenic region is considered to behave as white noise. Under thisGaussian assumption, we may write
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. (9)At this point, we note the following two important observations:



• If S were known exactly, then x is just a Gaussian random vector with covariance matrix S2 and can beestimated from the RF image y by applying a Wiener �lter as given in (5).
• Conversely, if x were known exactly, then we can estimate S by treating w as multiplicative noise andapplying a suitable denoising procedure to get rid of it.These observations suggest an iterative restoration procedure in which we alternate between estimating x andestimating S to get successively better estimates of both. This approach forms the basic structure of ourrestoration algorithm; to derive the exact update rules for x and S, we turn to the EM algorithm which is ideallysuited to problems where there are unobservable hidden parameters.3.1. Expectation-MaximisationThe EM algorithm is an iterative framework for maximum likelihood (ML) or MAP estimation in problemswhere there is an unobservable hidden parameter in which we are not interested (we shall refer to this hiddenparameter as a nuisance variable). Each iteration of the EM algorithm yields an estimate which increasesthe likelihood/posterior distribution of the parameter of interest and convergence to a local maximum of thelikelihood/posterior distribution is guaranteed.We present, without proof, the mechanics of the EM algorithm for MAP estimation as described by Dellaert.9Let Θ be the parameter we wish to estimate, let U be the observed data from which we wish to estimate Θ andlet J be the nuisance variable. At the kth iteration, we execute:
• The E-step: Calculate the expected joint log-likelihood of U and J given Θ,

Q
(
Θ | Θ̂k

)
= E [ ln p (U,J | Θ ) | U, Θ̂k

]
=

∫
p
(
J | U, Θ̂k

)
ln p (U,J | Θ ) dJ. (10)

• The M-step: Calculate the MAP estimate of Θ,
Θ̂k+1 = arg max
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]
. (11)For our image restoration problem, we assign S to be the parameter for which we wish to �nd the MAP estimateand x to be the nuisance variable. Given that we are ultimately interested in estimating x and not S, thisallocation of parameters may seem counter-intuitive, but as we shall demonstrate, it leads to a very elegantalternation between Wiener �ltering and logarithmic denoising.3.2. The E-step: Wiener FilteringSubstituting U = y, J = x and Θ = S into (10), we obtain
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) . (13)The denominator in the rightmost term of (13) does not depend on x and may be regarded as just a normalisationconstant. Substituting (3) and (9) into the numerator and simplifying, we obtain
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which is a Gaussian distribution with mean mk and covariance matrix Cx given by
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n y. (15)We note that the mean mk is, by de�nition, the minimum mean squared error (MMSE) estimate of x given theechogenicity estimate Ŝk and is therefore the best estimate of the tissue re�ectivity at the kth iteration. Wealso point out that, comparing the expression for mk in (15) to the expression for the Wiener �lter in (5), thecalculation of mk is the same as applying a Wiener �lter derived from Ŝk to the RF image y.Returning now to the calculation of the integral in (12), we note that p (y,x | S ) = p (y | x ) p (x | S ) ⇒
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). Substituting (9) into (12) and discarding constants, we are left with
Q
(

S | Ŝk
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)
= − ln |S| − 1

2

[Tr (S−2Ck

)
+ mT

k S−2mk

]
. (17)3.3. The M-step: Logarithmic DenoisingBefore we launch into the derivation of the update rule for Ŝ in the M-step, we detour brie�y to discuss theproblem of estimating S given x by treating w in (8) as multiplicative noise to be removed. We de�ne xi = [x]i,

si = [S]ii and wi = [w]i and we rewrite (8) component-wise as xi = siwi. To turn {wi} into additive noise, wetake the logarithms of the moduli of both sides; de�ning x̃i = ln |xi|, s̃i = ln |si| and w̃i = ln |wi|, we obtain
x̃i = s̃i + w̃i, i = 1, . . . , N. (18)The logarithmic noise term {w̃i} has probability density function, mean and variance given by
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(19)where γ is the Euler-Mascheroni constant and has an approximate value of 0.5772. The derivation of thisprobability density function and the calculation of its mean and variance are detailed in Appendix A.Since the echogenicity is piecewise smooth, we expect the log-echogenicity {s̃i} to also be piecewise smooth andto have a sparse representation in the wavelet domain. We can therefore denoise by applying wavelet shrinkage:since most of the energy of {s̃i} will be concentrated into just a few wavelet coe�cients, we can modify thewavelet coe�cients of {x̃i} according to some shrinkage rule that attenuates the logarithmic noise term {w̃i}.Most wavelet shrinkage rules are based on the assumption that the wavelet coe�cients of the additive noise areGaussian, which at �rst sight seems to be violated by the non-Gaussianity of the probability density functionin (19). In practice, however, we have found that, because of the band-limiting of each wavelet sub-band, thecentral limit theorem keeps the wavelet coe�cients of {w̃i} approximately Gaussian. The additive noise is alsousually assumed to have zero mean, so we need to add 1

2
(γ + ln 2) to {x̃i} before applying wavelet shrinkage.It is well known that wavelet shrinkage corresponds to MAP estimation with a wavelet-domain prior, the exactform of which depends on the speci�c shrinkage rule used.11 Hence, we may regard the logarithmic denoisingof {x̃i} to recover {s̃i} (from which we estimate {si}) as being equivalent to the MAP estimation problem
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when the prior p (S) is de�ned in terms of the wavelet coe�cients of the log-echogenicity {s̃i}.Returning now to the derivation of the update rule for Ŝ, we substitute Θ = S and (17) into (11),
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)}.3.4. Summary of the AlgorithmWe summarise our algorithm for ultrasound image restoration as follows (for notational convenience, we havedropped the subscript k):Initialise Ŝ.While termination condition is not satisfiedE-step:Calculate m =
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Once the algorithm has terminated, we take m as our Bayesian estimate of the tissue re�ectivity. We also getthe MAP estimate {ŝi} of the echogenicity, which is essentially a despeckled copy of the envelope-detected RFimage. We note that the echogenicity image, although devoid of any textural information, can be useful forexamining and segmenting gross anatomical features.3.5. Computational IssuesSo far, we have not discussed the implementation of the blurring matrix H . Because of the typically large size of
N , it is usually not feasible to compute H explicitly and multiplication by H or HT is performed indirectly. Inproblems where the blurring operator is shift-invariant and can be characterised by a single impulse response orpoint-spread function (PSF), the blurring matrix H is block-circulant with circulant blocks (BCCB). The product
Hx is then just the same as the convolution of the image represented by x with the PSF and can be e�cientlycomputed by multiplying the discrete Fourier transform (DFT) coe�cients of x with the DFT coe�cients of thePSF and taking the inverse DFT of the product. The matrix HT denotes convolution with a spatially reversed



copy of the PSF which corresponds to multiplication by the complex conjugate of the DFT coe�cients of thePSF in the DFT domain.Unfortunately, the width of the acoustic beam in ultrasound imaging is not spatially uniform but varies with axialdistance, giving rise to a shift-variant blurring operator and a blurring matrix H that is not BCCB. To handlea shift-variant blurring operator, Nagy and O'Leary12, 13 suggested partitioning image space into a number ofsmaller non-overlapping regions within which the blurring operator is considered to be shift-invariant. Each ofthese regions can be characterised by its own PSF, and the blurring operator can be approximated by convolvingeach region with its PSF, weighting the results and summing them. Mathematically, we write H ≈ ∑n DnHnwhere Hn is the BCCB matrix corresponding to the nth region and Dn is a non-negative diagonal weightingmatrix that satis�es∑n Dn = IN . Correspondingly, we have HT ≈
∑

n HT
n Dn which is equivalent to weightingeach region, convolving each weighted region with a spatially reversed copy of its PSF and summing the results.Since H and HT can neither be computed explicitly nor computed indirectly via the DFT, we are forced to solvethe linear system for the conditional mean mk in (15) iteratively. We chose to use the method of preconditionedconjugate gradients which solves any symmetric, positive de�nite linear system by minimising an equivalentmultidimensional quadratic function (for a more in-depth discussion of conjugate gradients for solving linearsystems, see sections 2.7 and 10.6 of Ref. 14). We also note that we cannot explicitly compute the conditionalcovariance matrix Ck in (15) and consequently, the diagonal elements {σ2
k,i} of Ck are inaccessible to us. Toovercome this problem, we recognise that each σ2

k,i is just the variance of xi given y and Ŝk, and since mk is ourbest estimate of x given y and Ŝk, we assume local ergodicity and estimate each σ2
k,i by computing the samplevariance over a local neighbourhood in the image mk.4. EXPERIMENTAL RESULTSTo assess the e�ectiveness of our proposed restoration algorithm, we tested it on simulated and in vitro datasetsand compared its performance to zero-order Tikhonov regularisation, Laplacian regularisation and ForWaRD(the latter two are generally considered to be state-of-the-art for ultrasound image restoration).We assumed the additive noise n in (1) to be white with variance σ2

n (i.e. Cn = σ2
nIN ) and we estimated σ2

n byapplying the wavelet-based median absolute deviation estimator described in section 7.3 of Ref. 15. We scaledthe blurring matrix H to satisfy ‖Ho‖2
= N , where o is an N × 1 vector of ones and, whenever an estimate ofthe global image variance σ2

x was required, we took σ2
x ≈ N−1 ‖y‖2 − σ2

n.For wavelet-based processing, we used Kingsbury's dual-tree complex wavelet transform (DTCWT)16, 17 which,unlike the conventional discrete wavelet transform, is shift-invariant and directionally selective with minimalredundancy and only slightly heavier computational requirements. To denoise, we used Lendur and Selesnick'sbivariate shrinkage rule11, 18 which, when used in conjunction with the DTCWT, gives state-of-the-art denoising.To compute the zero-order Tikhonov and ForWaRD solutions, we substituted Cx = σ2
xIN into (5) and solvedthe resulting linear system with the method of preconditioned conjugate gradients as described in Section 3.5.In the case of ForWaRD, we replaced σ2

x with ασ2
x, where α ∈ [0, 1] is an under-regularisation parameter andwe selected α = 0.2 as recommended in Ref. 7. This Wiener-style inverse �ltering was followed by bivariateshrinkage in the DTCWT domain to remove additive noise ampli�ed by the under-regularisation.To compute the Laplacian-regularised solution, we removed the singularity of the modulus operator at the originby replacing it with its convex smooth approximation, |x| ≈

√
x2 + ε, where 0 < ε � 1, as recommendedby Michailovich and Adam.1 We minimised the cost function in (7) with the Polak-Ribiere variant of thepreconditioned conjugate gradients algorithm as described in Section 10.6 of Ref. 14 and Chapter 5 of Ref. 19.For the EM algorithm, we initialised Ŝ0 to σ2

xIN , making the E-step in the �rst iteration identical to zero-order Tikhonov regularisation. In each E-step, we used the conjugate gradients algorithm to perform the Wiener�ltering, terminating when ∥∥Ckmk − HTC−1
n y

∥∥ < 0.01
∥∥HTC−1

n y
∥∥; this is equivalent to allowing a relative errorof 1% in our calculation of the conditional mean mk. The conditional mean mk from the current iteration wasthen used to initialise the conjugate gradients algorithm in the next E-step. In each M-step, we used bivariatewavelet shrinkage in the DTCWT domain to update the echogenicity estimate.



4.1. Simulation Results IOur �rst set of results was produced in simulation. We created a tissue re�ectivity by multiplying a drawing of across-section of a human kidney by an array of independent realisations of a zero-mean, unit-variance Gaussiandistribution. We partitioned image space axially into 12 non-overlapping regions and calculated a PSF foreach region by simulating the response to appropriately positioned point scatterers in Field II20 (we used theparameters for the transceiving probe described in Section 4.3). We applied a shift-variant blur (in the mannerdescribed in Section 3.5) to this tissue re�ectivity and added white Gaussian noise to give the resulting image ablurred signal-to-noise ratio of 20dB.In Figure 1, we display B-scan images of the original drawing of the kidney's cross-section, the tissue re�ectivity(original and corrupted) and the various restoration results. To quantify the quality of each restoration, wecalculated the improvement in signal-to-noise ratio (ISNR) in dB according to the formulaISNR = 10 log10

(
‖x̂ − x‖2

‖y − x‖2

)
. (23)Our results in Figure 1 show that the EM algorithm outperforms the other restoration methods in both visualquality and in ISNR; the improvements in contrast and resolution are clearly visible in the EM image.We ran our restoration algorithms in Matlab 7 on a personal computer with a 3.2GHz processor and 1GB ofmemory. In Figure 3(a), we have plotted the evolution of ISNR against program execution time for the zero-order Tikhonov, Laplacian and EM restorations (ForWaRD was omitted because its ISNR can only be sensiblycomputed at termination after wavelet shrinkage). We point out that the EM algorithm converged to its �nalISNR in two iterations, which we �nd very encouraging, and since we have designed the �rst iteration of EM tobe identical to zero-order Tikhonov regularisation, we consider the second iteration to be a small computationalpenalty to pay for signi�cant improvement in image quality.4.2. Simulation Results IIOur second set of results was also produced in simulation. This time, we used a photograph of a cross-sectionof a human heart's left ventricle as our echogenicity image. We created a tissue re�ectivity and blurred it in thesame way as we did for the image of the kidney, but this time, we partitioned image space axially into 11 non-overlapping regions instead of 12. This set of simulation results is displayed in Figure 2 and, as before, we havequanti�ed the quality of each restoration by its ISNR. We see that the EM algorithm has again outperformed theother restoration methods in ISNR and in visual quality: the EM solution has a 0.31dB advantage over the nextbest solution and, visually, the EM image exhibits better contrast, particularly between the dark region in themiddle and the surrounding cardiac tissue. We have also plotted the evolution of ISNR against execution timein Figure 3(b), and we see once again that the EM algorithm achieves most of its ISNR in just two iterations.4.3. In Vitro ResultsWe also applied our restoration algorithm to an in vitro image of a phantom containing spherical regions withechogenicities di�erent to the background. The image was acquired with a 127-element probe with a nominalpassband from 5 to 10MHz and an active (lateral) length of 40mm. The probe was operated with a single lateralfocus on transmission and reception; elevational (out-of-plane) focussing was accomplished with an acoustic lens.The beam-formed RF traces were sampled at 66.6MHz. To approximate the blurring operator, we partitionedimage space axially into 12 non-overlapping regions and calculated the PSF for each region by simulating theresponse to a point scatterer in Field II.We present B-scan images of the phantom before and after restoration in Figure 4. We note, �rst of all, thatall of the restoration methods have successfully corrected the di�raction e�ects at the axial extremes and thatthe circular regions there no longer look distorted. Secondly, we point out that, in this particular experiment,the EM algorithm converged to its �nal solution within one iteration and thus the EM image and the Tikhonovimage are identical. We can see that the quality of this image is better than the ForWaRD and Laplacian images;the circular region in the top-left corner of the ForWaRD image has severe artifacts, while the circular region atthe bottom of the Tikhonov image has been obscured by increased granularity in texture. Finally, we note thatthe EM algorithm has, within one iteration, reconstructed an image of the echogenicity which is free of speckleand in which the boundaries of the circular regions are well de�ned.



5. CONCLUSIONSIn this paper, we addressed the problem of image restoration for improving the diagnostic quality of medicalultrasound images. This is essentially the inverse problem of estimating the re�ectivity of an insoni�ed regionof tissue from echoes backscattered by acoustic inhomogeneities. We highlighted the importance of having amodel of tissue re�ectivity which can adequately capture both macroscopic structural features and the texturalinformation present in speckle. To this end, we proposed modelling tissue re�ectivity as the product of itsechogenicity and a pseudo-random component. As the echogenicity is typically piecewise smooth, it would verylikely lend itself to an e�cient representation in the wavelet domain. We suggested treating the pseudo-randomcomponent as a �eld of independent and identically distributed Gaussian random variables.Casting the restoration problem into a Bayesian framework, we showed that adopting EM to solve for theMAP estimate of the echogenicity led to an elegant iterative algorithm that alternates between Wiener �lteringto estimate the tissue re�ectivity and wavelet-based denoising to estimate the echogenicity. Although we areprimarily interested in the estimate of the complete tissue re�ectivity for medical diagnostics, we note that theestimate of the echogenicity image is essentially a despeckled copy of the envelope-detected scan and can beuseful for examination and segmentation of gross anatomical features.We conducted a number of experiments in simulation and in vitro to compare our EM restoration algorithm tozero-order Tikhonov regularisation, Laplacian regularisation and ForWaRD. Our simulation results show that ouralgorithm produces restorations which have higher ISNR and better visual quality than these other techniques.This �nding is con�rmed by our in vitro results which showed the EM image to have better visual quality than itsLaplacian and ForWaRD counterparts. Our in vitro results also con�rmed the ability of our restoration algorithmto produce a good estimate of the echogenicity in which macroscopic structural features are well de�ned.We conclude that our proposed algorithm is competitive with the current state-of-the-art in ultrasound imagerestoration and can, with minor computational penalty, produce results that have superior image quality interms of resolution, contrast and �delity to the tissue's acoustic response. Our algorithm is not restricted to two-dimensional images, and work is currently underway to apply it to three-dimensional datasets where elevational(out-of-plane) blurring can also be accounted for.Software and data for the simulations and the in vitro experiment described in this paper can be downloadedfrom www-sigproc.eng.cam.ac.uk/~jkhn2/SPIEMedImag/.APPENDIX A. DERIVATION OF THE STATISTICS OF LOGARITHMIC NOISEIn this appendix we derive the probability density function and the statistics quoted in (19) for the logarithmicnoise term {wi} in (18). We �rst state the following three useful results,
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To calculate the variance of W̃ , we �rst derive an expression for its second moment:E(W̃ 2
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Figure 1. Simulated B-scan images of the human kidney before and after restoration. Each B-scan image has physicaldimensions of 70mm (axial) by 40mm (lateral) and, collectively, the images have a dynamic range of 80dB. The lateralfocus is at an axial depth of 42mm from the top of each image. The echogenicity image was taken with permission fromwww.aic.cuhk.edu.hk/web8/Hi%20res/Kidney%20cross%20section.jpg.
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Figure 2. Simulated B-scan images of the human heart's left ventricle before and after restoration. Each B-scan imagehas physical dimensions of 30mm (axial) by 40mm (lateral) and, collectively, the images have a dynamic range of 40dB.The lateral focus is at an axial depth of 11mm from the top of each image. The echogenicity image was taken fromwww.umdnj.edu/pathnweb/syspath/syslab_2/Slides_24/Slide_24_A/slide_24_a.htm.
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(b)Figure 3. Evolution of ISNR versus program execution time for the various restoration methods. (a) Kidney simulation.(b) Heart simulation.
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Figure 4. In vitro B-scans of a phantom before and after restoration. Each B-scan has physical dimensions of 64mm(axial) by 40mm (lateral) and, collectively, the images have a dynamic range of 80dB. The lateral focus is at an axialdepth of 30mm from the top of each image.


