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Numerical experiments with the one dimensional inviscid Burgers equation show that filtering the
solution at each time step in a way similar to CVS (Coherent Vortex Simulation) gives the solution
of the viscous Burgers equation. The CVS filter used here is based on a complex-valued translation-
invariant wavelet representation of the velocity, from which one selects the wavelet coefficients having
modulus larger than a threshold whose value is iteratively estimated. The flow evolution is computed
from either deterministic or random initial conditions, considering both white noise and Brownian
motion.

PACS numbers: 47.27.Eq

I. INTRODUCTION

The fully developed turbulent regime is described by
solutions of the Navier–Stokes equations for two or three-
dimensional incompressible fluids, in the limit where the
kinematic viscosity becomes very small. By analogy, Bur-
gulence is described by the solutions of Burgers equations
for a one–dimensional fluid in the same limit, as first
proposed by Burgers [3] and advocated by von Neumann
[19]. This toy model for turbulence has been extensively
used since then [1, 13, 15, 21, 23]; Frisch and Bec have
proposed to name it: Burgulence [11].

We consider the one-dimensional Burgers equation in
a periodic domain of support x ∈ [−1, 1], which describes
the space–time evolution of the velocity u(x, t) of a one–
dimensional fluid flow :

∂tu+
1

2
∂xu

2 = ν∂xxu , (1)

where ν denotes the kinematic viscosity. The solutions
of (1) can be computed analytically using the Cole-Hopf
transformation [4, 6, 14]. When ν → 0 the solutions
of the viscous Burgers equation approach weak solutions
of the inviscid problem. The uniqueness of these solu-
tions stems from the condition that shocks have negative
jumps, which guarantees energy dissipation. For Burg-
ers equation, this condition is equivalent to an entropy
condition [12, 17, 18, 20].

The wavelet representation has been proposed for
studying turbulence [7], since it preserves both the spa-
tial and spectral structures of the flow by realizing an
optimal compromise in regard of the uncertainty prin-
ciple. We have found that projecting the vorticity field
onto a wavelet basis, and retaining only the strongest
coefficients, extracts the coherent structures out of fully
developed turbulent flows [8, 9]. We have then proposed
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a computational method for solving the Navier-Stokes
equations in wavelet space [8]. We have shown that ex-
tracting the coherent contribution at each time step pre-
serves the nonlinear dynamics, whatever its scale of ac-
tivity, while discarding the incoherent contribution cor-
responding to turbulent dissipation [22]. This is the prin-
ciple of the CVS (Coherent Vortex Simulation) method
we have proposed [8, 10].

The aim of the present paper is to apply the CVS fil-
ter to the inviscid Burgers equation and check if this is
equivalent to solving the viscous Burgers equation. The
outline is the following. First we recall the principle
of CVS filtering and its extension using complex-valued
translation-invariant wavelets. The numerical scheme is
described briefly and the main part presents results of
several numerical experiments, considering either deter-
ministic or random initial conditions. Finally, we draw
conclusions and propose some perspectives.

II. NUMERICAL METHOD

The Burgers equation (1) is discretized on N grid
points using a Fourier spectral collocation method :

∂U

∂t
+

1

3
DN(U2) +

1

3
U ·DN (U) − νD2

N (U) = 0 , (2)

where U approximates (u(x0, t), u(x1, t), ..., u(xN−1, t)),
DN stands for the Fourier collocation differentiation and
· is the pointwise product of two vectors. The dis-
cretization of the nonlinear term in (2) is chosen in or-

der to conserve the kinetic energy E = 1
2

∫ 1

−1
u2(x, t)dx

when ν = 0 [5]. For time integration a fourth-order
Runge-Kutta scheme is used.

At each time step, we will filter the solution using the
CVS method which we now recall briefly. Given orthogo-
nal wavelets (ψji) and the associated scaling function at
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the largest scale ϕ, the velocity can be expanded into :

u(x) = 〈u | ϕ〉ϕ(x) +
J−1∑

j=0

2j∑

i=1

〈u | ψji〉ψji(x) , (3)

where j is the scale index, i is the position index and the

inner product is 〈a | b〉 =
∫ 1

−1
a(x)·b∗(x)dx with b∗ denot-

ing the complex conjugate of b. Since location in orthog-
onal wavelet space is sampled on a dyadic grid, this rep-
resentation breaks the local translation invariance of (1)
which may impair the stability of the numerical scheme.
Therefore we prefer using, instead of real-valued wavelets,
complex valued wavelets [16] which very closely preserve
translation invariance. In this case, (3) still holds as long
as we replace the right hand side by its real part.

The CVS filter then consists in discarding the wavelet
coefficients whose modulus is below a threshold T . In
addition, wavelets coefficients at the finest scale are sys-
tematically filtered out. The resulting velocity uT is a
nonlinear approximation of u.

Because the velocity field decays in time, the threshold
has to be estimated at each time step in a self-consistent
way. To do this, we follow the iterative method intro-
duced in [2], which consists in imposing the ratio be-
tween the standard deviation of the discarded wavelet
coefficients and the threshold itself:

T 2 =
5

NT

J−1∑

j=0

2j∑

i=1

|ũji|
2H(T − |ũji|) , (4)

where H is the Heaviside step function and NT is the
number of wavelet coefficient below the threshold. The
solution of (4) is determined numerically using a fixed
point iterative procedure [2], initialized with T0 = 5E/N ,
where E is the total energy.

III. DETERMINISTIC INITIAL CONDITION

We consider Burgers equation (1) with the determin-
istic initial condition u(t = 0, x) = − sin(πx). We begin
by comparing three computations: a Galerkin-truncated
inviscid case (ν = 0), a viscous case (ν = 10−4), and
an inviscid case with the CVS filter applied at each time
step. The solutions are computed up to time t = 5, using
N = 4096 grid points.

By computing in the Galerkin-truncated inviscid
case (ν = 0), we check that our numerical scheme con-
serves energy (Fig. 1, left) as theoretically predicted. We
observe that the final solution at t = 5 exhibits en-
ergy equipartition (Fig. 1, right) with a Gaussian veloc-
ity PDF, as expected. Notice that the the white line
in Fig. 1 (right) corresponds to the wavelet energy spec-
trum, i.e., the squared modulus of the wavelet coefficients
computed with a complex-valued Morlet wavelet. It bet-
ter exhibits the k0 scaling, characteristic of the energy
equipartition, than the highly oscillatory Fourier energy
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Figure 1: Deterministic initial conditions. Left: Time evolu-
tion of energy. Right: Energy spectrum at t = 5. We com-
pare the Galerkin-truncated inviscid (square), viscous (tri-
angle) and CVS-filtered inviscid (circle) cases. We observe
that for the inviscid case (right) the wavelet spectrum (white
line) better exhibits the energy equipartition than the Fourier
spectrum (black line).

spectrum (black line). This illustrates the fact that the
wavelet energy spectrum is more stable than the Fourier
energy spectrum when we analyze only one realization of
a stochastic process [7] and should rather be used in this
case.

For the viscous and CVS-filtered inviscid cases, the
energy remains basically constant until the shock forms
at t = 1/π, but then decays with a t−2 law. In
Fig. 1 (right) the energy spectra of the viscous and CVS-
filtered inviscid cases exhibit a power law behaviour with
slope −2.
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Figure 2: Deterministic initial conditions. Snapshots of ve-
locity for the viscous (left) and the CVS-Filtered inviscid
(right) cases at t = 0 (dotted line), t = 0.5 (solid line) and
t = 5 (dashed line). The insets show the tip of the shock
at t = 0.5.

Fig. 2 shows the velocity at three time instants for the
viscous and CVS-filtered inviscid cases. The CVS-filtered
inviscid solution yields the same dynamics as the viscous
one and the only difference concerns the small overshoot
we observe at x = 0 after the shock has formed. This
Gibbs phenomenon is stronger but less oscillatory for the
CVS-filtered inviscid case than for the viscous case (see
the insets in Fig. 2).

The time evolution of the percentage of retained
wavelet coefficients is presented in Fig. 3 (left). It shows
that with only relatively few coefficients (about 7%N)
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Figure 3: Deterministic initial conditions. Left: Time evo-
lution of the percentage of wavelet coefficients retained after
filtering. Right: Dyadic tree of the wavelet coefficients which
are retained after filtering at t = 5. The crosses indicate the
7%N retained wavelet coefficients, while the small dots corre-
spond to the 93%N discarded wavelet coefficients. The scale
varies from coarse to fine, up the vertical axis.

we are able to track the nonlinear dynamics of the flow
and this number remains almost constant after the shock
formation. At t = 5, the retained wavelet coefficients are
located around x = 0, the position of the shock, and span
all scales there, as illustrated in Fig. 3 (right). About ten
wavelet coefficients per scale are sufficient to represent
the shock.
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Figure 4: Deterministic initial conditions. Left: Time evo-
lution of the relative mean squared error ǫN at N = 4096.
Right: Relative mean squared error ǫN at t = 5 for different
numerical resolutions, N = 128 to N = 8192. We compare
the viscous (triangle) and CVS-filtered inviscid (circle) cases.

We now show that, when N increases, the filtered so-
lutions converge towards the entropy solution uref which
solves the Burgers equation in the inviscid limit. For
comparison we also consider the viscous solutions with
viscosity depending on N (ν = 0.4096N−1) which are
known to converge to uref everywhere, except at x = 0.
The entropy solution uref is directly calculated using the
method of characteristics.

First, we consider a global error estimate, the relative
mean square error, defined as:

ǫN (t) =
‖u− uref‖

2
2

‖uref‖2
2

. (5)

On Fig. 4 (left) we plot ǫN (t) for N = 4096. The error
for the CVS-filtered inviscid case is larger but saturates

after t ≃ 2. In contrast, the error for the viscous case
keeps increasing because the finite viscosity smooths the
shock away. Considering now t = 5 and varying N , we
find that for both the viscous and CVS-filtered inviscid
cases ǫN decreases as N−1 (Fig. 4, right).
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Figure 5: Deterministic initial conditions. Error on the rela-
tive total variation ǫ

′

N (left), and number of retained wavelet
coefficients (right), as functions of N at t = 5, for the viscous
(triangle) and CVS-filtered inviscid (circle) solutions.

We now study the behaviour of the oscillations in the
neighborhood of the shock when the resolution N is in-
creased. The total variation of a function f on [−1, 1] is
defined by:

‖f‖TV =

∫ 1

−1

|∂xf |dx . (6)

To detect the presence of spurious oscillations, we com-
pute the relative error on the total variation:

ǫ′N(t) =
‖u(x, t)‖TV − ‖uref(x, t)‖TV

‖uref(x, t)‖TV
, (7)

which is plotted as a function of N for t = 5 on
Fig. 5 (left). For the viscous case, ǫ′N is negative and
converges towards zero when N increases. For the CVS-
filtered inviscid case, ǫ′N tends to a finite positive value
close to 0.84. The overshoot that could be seen on Fig. 2
persists but becomes more and more localized around the
singularity when N increases, thus ensuring that mean
square convergence. Let us end this section by a short
discussion on the evolution of the compression rate when
N increases. Fig. 5 (right) shows that the number of re-
tained wavelet coefficients increases roughly logarithmi-
cally as a function of N . As a consequence, notice that
for the filtered solution, the relative mean square error
ǫN(t), if it is considered as a function of the number of
retained coefficients only, converges to zero exponentially
fast. However, to experience this promising rate of con-
vergence in practice, we should compute the evolution
of u using only the wavelet coefficients whose modulus
remains above the threshold.

IV. RANDOM INITIAL CONDITION

In the previous section we have demonstrated that the
CVS-filtered inviscid Burgers equation exhibits an evolu-



4

tion similar to that of the viscous Burgers equation. We
now would like to check if this is still verified in the con-
text of Burgulence for both white noise [1] and Brownian
motion [21].

a. White-noise initial condition We take as initial
velocity one realization of a Gaussian white noise com-
puted at resolution N = 4096, which corresponds to a
random non intermittent initial condition. Since the CVS
filter removes the non intermittent noisy contributions,
if applied to a Gaussian white noise the latter would be
completely filtered out. Therefore we first integrate the
viscous equation with ν = 2 · 10−5 without filtering, and
wait until the flow intermittency has sufficiently devel-
oped before applying the filter. To check the flow in-
termittency we monitor the flatness of velocity gradient
until it reaches the value 20, which happens at t = 0.017
for the realization described here. Then, we reset t = 0
and integrate up to t = 5, both the viscous equation with
ν = 2 · 10−5, and the CVS-filtered inviscid equation.
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Figure 6: White noise initial conditions. Left: time evolu-
tion of energy. The inset shows the t

−2/3 decay in log-log
coordinates. Right: energy spectrum at t = 5. We compare
the viscous (triangle) and CVS-filtered inviscid (circle) simu-
lations. We observe that the wavelet spectrum (white lines)
better exhibits the k

−2 scaling of energy than the Fourier
spectrum (black lines).

In Fig. 6 (left) we show that the energy, for both the
CVS-filtered inviscid solution and the viscous solution,
decays with a t−2/3 law, as found by Burgers [4, 21].
In Fig. 6 (right) we observe at t = 5 that both energy
spectra present the same k−2 scaling. Notice that the two
white lines in Fig. 6 (right) correspond to the wavelet
energy spectrum, which better exhibit the k−2 scaling
of the energy than the highly oscillatory Fourier energy
spectrum (black lines).

Finally, we show on Fig. 7 that the viscous and CVS-
filtered inviscid solutions are almost identical in physical
space, presenting a typical sawtooth profile as first no-
ticed by Burgers [4].

b. Brownian motion initial condition We use the
same resolution N = 4096 as above, only the initial con-
dition changes. Since we have chosen periodic boundary
conditions we approximate the Brownian motion by the
Fourier series:

u(x, 0) =
∑

k

uke
ikx (8)
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Figure 7: White noise initial conditions. Snapshots of velocity
at t = 0.3 (left) and t = 5 (right). Top: viscous equation with
ν = 2 · 10−5 Bottom: CVS-filtered inviscid equation.

where k = −N
2

+ 1,−N
2
, ..., N

2
− 1. We set u0 = 0 and,

for k 6= 0, we take for uk a complex Gaussian random
variable with standard deviation 1/|k|.

The solution for the viscous case is computed with ν =
1.2·10−4. For the CVS-filtered inviscid case, as we did for
the white noise initial condition, we do not filter before
enough intermittency has developed. We thus integrate
the viscous equation with ν = 1.2·10−4 for 0.05 time units
and then switch viscosity off. This procedure provides
the initial velocity which by construction is the same for
both methods (Fig. 8).
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Figure 8: Brownian initial condition. Velocity at t = 0 (left)
and its energy spectrum (right). We observe that the wavelet
spectrum (white line) better exhibits the k

−2 scaling of energy
than the Fourier spectrum (black line).
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Figure 10: Brownian initial conditions. Snapshots of velocity
at t = 0.1 (left) and t = 5 (right). Top: viscous equation with
ν = 1.2 · 10−4. Bottom :CVS-filtered inviscid equation.

The energy decay matches well between the CVS-
filtered inviscid and the viscous solutions (Fig. 9, left).
A k−2 power spectrum is also obtained for both at
t = 5 (Fig. 9, right).

At t = 0.1 numerous small shocks are present on the
viscous solution (Fig. 10, top left). All of them are cor-
rectly reproduced by the CVS-filtered inviscid solution
(Fig. 10, bottom left).

At t = 5 the single remaining shock that is still resolved
in the viscous solution (Fig. 10, top right) is correctly
reproduced on the CVS-filtered inviscid solution (Fig. 10,
bottom right).

V. CONCLUSION

We have shown that CVS-filtering at each time step
the solution of the inviscid Burgers equation gives the
same evolution as the viscous Burgers equation, for both
deterministic and random initial conditions. As our con-
tribution to Euler equations’ 250th anniversary and Eu-

ler’s 300th birthday, we conjecture that CVS-filtering
of the Euler equation may be equivalent to solving the
Navier–Stokes equations in the fully-developed turbu-
lent regime, i.e., when dissipation has become indepen-
dent of viscosity. We predict that the retained wavelet
coefficients would preserve Euler’s nonlinear dynamics,
while discarding the weaker wavelet coefficients would
model turbulent dissipation and give Navier–Stokes so-
lutions. Since in the fully-developed turbulent regime
turbulent dissipation strongly dominates molecular dissi-
pation, there is no reason to model turbulent dissipation
by a Laplacian operator anymore. Indeed, turbulent dis-
sipation is a property of the flow, while molecular dissi-
pation is a property of the fluid and may no more play
a role when turbulence is fully-developed. We think that
in this regime the CVS filter could be a better way to
model dissipation, replacing global by local smoothing
while preserving nonlinear interactions. In this paper we
have chosen the simplest toy model to test this conjec-
ture, although Burgers’ equation, in contrast to Euler’s
equation, is neither chaotic nor producive of randomness.
Therefore we conjecture that the CVS-filter would work
better for Euler/Navier–Stokes than for Burgers since
CVS is based on denoising, which is justified when there
is chaos and randomness.

Acknowledgments: We thank Uriel Frisch, Margarete

Domingues, Claude Bardos, François Dubois and two anonymous

referees for their useful comments. We acknowledge financial sup-

port from the ANR under contract M2TFP (Méthodes Multi-
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