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Abstract—In diagnostic ultrasound imaging the speed of sound is assumed to be 1540 m/s in soft tissues. When the
actual speed is different, the mismatch can lead to distortions in the acquired images and so reduce their clinical
value. Therefore, the estimation of the true speed has been pursued not only because it enables image correction
but also as a way of tissue characterisation. In this article, we present a novel way to measure the average speed of
sound concurrently with performing image enhancement by deconvolution. This simultaneous capability, based on
a single acquisition of ultrasound data, has not been reported in previous publications. Our algorithm works by
conducting non-blind deconvolution of the reflection data with point-spread functions based on different speeds
of sound. Using a search strategy, we select the speed that produces the best-possible restoration. The deconvolu-
tion operates on the beamformed uncompressed radio-frequency data, without any need to modify the hardware of
the ultrasound machine. A conventional handling of the transducer array is all that is required in the data acqui-
sition part of our proposed method: the data can be collected freehand, unlike most other estimation methods. We
have tested our algorithm with simulations, in vitro phantoms with known and unknown speeds and in vivo scans.
The estimation error was found to be 10.19 ± 8.90 m/s (mean ± standard deviation) for in vitro in-house phantoms
whose speeds were also measured independently. In addition to the speed estimation, our method has also proved to
be capable of simultaneously producing a better restoration of ultrasound images than deconvolution by an
assumed speed of 1540 m/s, when this assumption is incorrect. (E-mail: hs338@cam.ac.uk) � 2010 World Feder-
ation for Ultrasound in Medicine & Biology.
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INTRODUCTION AND LITERATURE

Conventional ultrasound imaging assumes the speed of

sound is 1540 m/s in soft tissue for the design of the beam-

forming delay pattern. This potentially leads to degradation

of B-mode images and data restored by non-blind deconvo-

lution when the actual speed of sound is different. The

effects of errors in the sound speed, such as degraded spatial

resolution, have been widely reported and some of the

consequences have been quantified (Anderson et al. 2000).

Research on the speed of sound in the medical ultra-

sound community has mainly focused on two aspects: esti-

mation (in the context of tissue characterisation) and

correction (in the context of image perception). In most

previous publications, both topics have been dealt with
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separately. In this article, we propose a method of

measuring an average speed of sound in broadly homoge-

neous tissue with simultaneous image correction if the esti-

mated speed is different from 1540 m/s. We present this

algorithm in a framework of ultrasound data deconvolution

(Ng et al. 2006, 2007; Shin et al. 2009), which is the process

of reducing image blurring and noise using prior

knowledge of the blurring function and noise distribution.

Therefore, our approach to speed correction in the

restored ultrasound data is different from the techniques

employed previously in original B-mode images.

Initially, the speed of medical ultrasound was esti-

mated using transmission methods, which measured the

time taken while a pulse propagated between a transmitter

and a receiver. Clinical applications were limited to the

breast (Hayashi et al. 1988). Robinson et al. (1991) carried

out an extensive review of pulse-echo sound-speed esti-

mation techniques. Nine methods in three categories

were examined in detail. Despite using pulse-echo
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techniques, most of the reviewed methods were designed

to employ multiple apertures of ultrasound transducers:

one for transmission and the rest for reception and the

use of paired transducer apertures increased the system

complexity. A precise geometric relation needs to be

established between transducers and scanned regions-

of-interest (Robinson et al. 1991) and this is vulnerable

to estimation errors. In some methods (Robinson et al.

1991), a pair of transducer elements in a single linear array

can replace a pair of transducer apertures, which,

however, may suffer a low signal-to-noise ratio. Several

methods reviewed by Robinson et al. (1991) were also

limited to tissues, which have recognisable features to

have a geometric relation well-defined. However, there

were a couple of methods that worked using a single trans-

ducer aperture. The transaxial compression technique

(Ophir and Yazdi 1990; Robinson et al. 1991) is among

them but it involves a precise movement of a transducer

that compresses the tissue surface plus the acquisition of

multiple scans after compression. A least-squares linear

fit is made between known tissue-compression depths

and arrival times of echoes and the slope of this linear

fit is an estimate of the sound speed. In another technique

called the dynamic focus method (Hayashi et al. 1988), the

speed of sound in the ultrasonic beamformer is varied by

operators until the clearest image is obtained, which is not

systematic and effectively requires multiple scans.

Anderson and Trahey (1998) estimated the average

speed of sound in a homogeneous medium based on the

quadratic best-fit of the one-way geometric delay pattern

acquired on individual elements of a transducer array.

Their method is closely related to those used in exploration

seismology and only requires a single scan of a medium

with a single transducer array. Its accuracy and precision

are cited in later sections for comparison purposes with

our approach. They also showed that phase errors associ-

ated with wrong average sound speed are as much as

two times bigger in dynamic-receive focus than fixed-

receive focus systems. Sound-speed estimation is therefore

potentially more valuable to dynamic-receive focus

machines. Later, such a time-delay pattern was also

exploited by Pereira et al. (2002) with application to

bovine livers but an additional hydrophone was required

as a receiver. Recently, an image registration technique

was explored to estimate the speed of sound (Krücker

et al. 2004). A single transducer array was used but

multiple scans were necessary following beam steering.

Most of the methods reviewed by Robinson et al.

(1991) produce the average speed of sound in the scanned

tissues. Only a handful of them were capable of local speed

estimation and the demonstration of a mapping capability

was very rare. Kondo et al. (1990) reported mapping of in
vivo local sound-speed estimation. But, they conceded that

an exact measurement of local sound speed was difficult.
There is not much literature that describes a percep-

tual improvement in images associated with estimating

the speed of sound. Jellins and Kossoff (1973) demon-

strated an enhanced resolution in B-mode images by

electronically matching the average sound speed in

breasts to that in surrounding coupling water. It was

observed that the compensation of linear displacement

alone led to an improvement without correcting errors

associated with refraction angles along the boundary

between water and breast. Napolitano et al. (2006)

showed B-mode images of in vitro and in vivo scans

after estimation and subsequent correction of the speed.

Although they proposed an automated algorithm (unlike

the operator-dependent method by Hayashi et al. 1988)

by analysing the spatial frequency information in

a B-mode image, the estimation was carried out by

acquiring many images with various trial sound speeds.

This was achieved by adjusting the beamformer time

delays in the ultrasound machine.

Incorrect assumptions about the ultrasound speed in

inhomogeneous overlying tissue lead to degraded medical

ultrasound images. This problem is often caused by the

skin/fat/muscle structure. There are a number of studies

in the literature that address it through the correction of

phase aberration (Anderson and Trahey 1998). Numerous

methods have been proposed (Flax and O’Donnell 1988;

Nock et al. 1989; Ng et al. 1994, 1997). They differ

from one another in how they estimate the aberration

profile across the transducer elements but most of them

share the idea of changing the time delays in individual

elements according to the estimated aberration profile.

During the profile estimation process, many techniques

require multiple acquisitions of the radio-frequency (RF)

signal. Most of all, previous work on phase aberration

has focused on the reduction of perceived image degrada-

tion. In addition to aberration attributed to local inhomo-

geneity, Anderson and Trahey (1998) reported that

a part of the phase aberration phenomenon can be caused

by a discrepancy in the assumed and the true average

speed in tissue. Therefore, sound speed estimation can

contribute to a part of aberration correction.

In the category of medical ultrasound image restora-

tion, uncertainty in the speed of sound especially for in
vivo applications may be addressed through blind decon-

volution (Abeyratne et al. 1995; Adam and Michailovich

2002; Michailovich and Adam 2004; Taxt 2001; Taxt and

Strand 2001; Wan et al. 2003), in which a point-spread

function (PSF) based on an actual speed of sound is esti-

mated directly from the RF ultrasound data to be restored.

However, blind approaches are not used to estimate the

speed of sound because it is not easily parameterised. In

contrast, non-blind deconvolution can make such an esti-

mation possible due to the parameterisation of the sound

speed in the PSF.
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Our research group has recently studied the effects of

uncertainty in the PSF on non-blind deconvolution (Shin

et al. 2009). The parameters of an ultrasound imaging

PSF have been systematically investigated. In total, six

parameters were examined: uncertainty in the ultrasound

machine was analysed by varying the axial depth of lateral

focus and the radius of elevational focus alongside the

height and width of the transducer elements. Sensitivity

to tissue influence was investigated by varying the speed

of sound and frequency-dependent attenuation. When

the restoration results were judged visually, we discovered

that the two most critical parameters for two-dimensional

(2-D) deconvolution are the lateral focus and the speed of

sound. As far as human perception is concerned, we

concluded that it is possible to restore in vivo RF ultra-

sound data using an assumed PSF when its error is not

significant. However, when the deconvolution results

were quantified, we also proved that there are always

differences between restored images from various PSFs,

which human perception may be insensitive to, but which

are identifiable through other metrics such as improve-

ment in the signal-to-noise ratio (ISNR) or correlation.

In this article, we will exploit such differences to estimate

a PSF parameter which is the speed of sound in this case.

The rest of the article is organised into the following

sections. The proposed estimation method for the speed of

sound is explained in the Methods section. The applica-

tions of the technique to simulations, in vitro and in vivo
measurements are featured in the Results section. Discus-

sions follow on our proposed approach and conclusions

are drawn. In Appendix 1, our deconvolution algorithm

is introduced.
METHODS

In this section, we describe the methodologies we

have employed to estimate the speed of sound. We start

with deconvolution and PSF and then discuss a correlation

metric capable of choosing the correct speed among

numerous deconvolution outputs. Finally, we explain

a search strategy to increase the efficiency with which

we can select the correct speed.
Deconvolution
The article is mainly concerned with the estimation

of the sound speed in medical ultrasound applications.

But, the deconvolution of RF ultrasound image data is

a pivotal part of our estimation process and is also an

important outcome.

When using transducer array probes, the lateral focus

is created by a delay profile across the active aperture. But

each calculated depth for lateral focus is only valid when

the sound speed is known and constant. Such an ideal
scenario does not usually occur in real clinical scans,

resulting in less than optimal spatial resolution.

Such symptoms have been previously exploited in

the estimation of the sound speed (Hayashi et al. 1988;

Napolitano et al. 2006), where the delay profiles were

repeatedly adjusted until the clearest images were

achieved. By using non-blind deconvolution, these symp-

toms can be explored but with simpler data acquisition.

Instead of adjusting the delay pattern for multiple image

acquisitions, the non-blind deconvolution enables the

use of a single ultrasound scan composed of all beam-

formed RF data lines. The necessary change is carried

out off-line only in the sound speed of a PSF. The compar-

ison of numerous PSFs is conducted through the deconvo-

lution to figure out which PSF best suits the ultrasound

data of interest and, hence, produces the clearest restored

image. The sound speed used for the best PSF is our esti-

mation of the speed. The metric to determine such best

PSF is explained in the Correlation metrics subsection.

Due to its significance in our speed estimation tech-

nique, in Appendix 1 we briefly recapitulate the key

components of our deconvolution algorithm.

Estimation of the PSF
The main difference between non-blind and blind

deconvolution algorithms is whether they need an explicit

PSF from the start. In a non-blind algorithm, the explicit

PSF can usually be parameterised. This is what makes

the estimation of the sound speed feasible through

deconvolution.

To estimate the PSF for our non-blind algorithm, we

use the Field II simulation program (Jensen 1996). This is

an efficient and convenient tool for the type of linear

modelling we are engaged in. We calculate the PSF ac-

cording to what would happen in a largely homogeneous

medium: the delay profiles for the transmit and the receive

apertures are determined assuming the speed of sound is

1540 m/s, which is normal practice in most diagnostic

ultrasound imaging machines. The actual speed of sound

in the hypothetical medium can be varied to have any

speed. Therefore, when the speed of sound in the simu-

lated medium is made equal or very close to the actual

speed in the acquired ultrasound data, the deconvolution

will produce the best-possible restoration; as we showed

in a previous publication (Shin et al. 2009), a less good

PSF produces a less good deconvolution.

Correlation metrics
The overall strategy of our speed estimation method

is to run multiple deconvolutions using PSFs with

different speeds and to pick the speed which produces

the best restoration. Therefore, a metric capable of deter-

mining the best outcome is as crucial as the non-blind

deconvolution algorithm itself. In a previous article
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(Shin et al. 2009), we showed that the deconvolution

result could be quantified and demonstrated that the

mean correlation length of the restored image is signifi-

cantly smaller than that of the original ultrasound image,

for example, 0.32 and 0.61 mm, respectively (Shin

et al. 2009). To this effect, the one-dimensional (1-D)

autocorrelation was evaluated along the lateral direction

of the images and the half-energy width of the peak was

measured.

This correlation length worked well for separating

the original ultrasound image from its deconvolved image.

However, we found that such a correlation length was not

sensitive enough to distinguish deconvolution results with

close PSFs from one another (see Fig. 1). A possible

explanation for this failure is that most restorations result

in physically smaller speckle (see deconvolution images

reported by Shin et al. [2009]). The correlation-length

approach depends on only a few lags relating to neigh-

bouring pixels and so does not take into account the rest

of the longer lags. Therefore, once the speckle (repre-

sented by smaller lags in the correlation) was reduced to

similar sizes, restorations with similar PSFs may not be

easily discriminated through such a correlation metric.

In addressing this challenge, we subsequently discov-

ered that accounting for all the lags in the correlation could

be more relevant than the correlation-length metric. The

same autocorrelation ðRx̂i
½l Þ� is calculated along the lateral

line ðx̂iÞ at each i-th axial depth of deconvolution image

ðx̂Þ as the case for the correlation-length metric and then

a summation ð
P

l jRx̂i
½l jÞ� is made of the magnitude of all

the l coefficients of the correlation. To produce a single-

valued representation, another summation ð
P

i

P
l jRx̂i
½l jÞ�
Fig. 1. Plot of correlation metrics vs. various speeds of sound in
a simulated phantom for exemplar iteration of deconvolution.
The summation-based correlation is normalised by its minimum
for display purposes and its scale is shown on the left. The
correlation length for the fourth iteration is shown for
comparison and its scale is displayed on the right. The spacing
between data points is 12.5 m/s and the reference speed (D 5 0)

is 1540 m/s.
was taken of this value for all axial depths. During the course

of this article, the correlation metric is evaluated according

to this summation-based strategy.

Figure 1 shows a graph of the aforementioned

summation-based correlation metric for various speeds

of sound in a simulated phantom. The simulation process

is explained later in the Simulations subsection within the

Results section. The values of the correlation are normal-

ised for display because the metric itself does not directly

indicate a meaningful physical quantity but the relative

differences are most important. The same convention is

followed throughout this article. To produce the data in

Figure 1, the PSFs for 49 different speeds were evaluated

and the deconvolution algorithm was run for each of

them. The speeds of sound in the plot cover the range

from –300 to 1300 m/s (the reference and correct speed

being 1540 m/s) in 12.5 m/s steps denoted by discrete

marks. The curves in the graph indicate the correlation

metric after different numbers of iterations in the deconvo-

lution algorithm. Increasing the number of iterations is

observed to lower the correlation, which indicates an

improved restoration. The result illustrates that the corre-

lation metric returns the minimum value when the blurred

ultrasound image is deconvolved with the PSF with the

correct speed of sound and demonstrates the possibility

of finding such a correct value.

Iterative method using non-blind deconvolution
Perhaps, locating the correct speed of sound may be

achieved by resorting to a ‘‘brute-force’’ approach demon-

strated in the Correlation metrics subsection and Figure 1.

A method reported by Napolitano et al. (2006) effectively

adopts such a strategy. Their core algorithm to determine

the correct speed is different from ours but they essentially

repeat their algorithm for as many different trial speeds as

possible. Although such an approach may be effective, it

is not necessarily efficient. Even though the expected

range of speeds is widely known for particular types of

tissue, the speed in an abnormal tissue may be outside

this range. A brute-force approach can also be computa-

tionally expensive depending on the resolution between

adjacent trial speeds.

The presence of a well-defined distinct minimum in

Figure 1 enables us to adopt an optimisation procedure

to find the correct speed of sound. We implemented

a gradient-descent based approach to track down the

optimum speed. As demonstrated in the figure, the local

minimum coincides with the global minimum, therefore,

we use Newton’s method for the optimisation (Press

et al. 1992). First, we start with three initial guesses: three

different PSFs defined by three different speeds of sound.

The flow diagram in Figure 2 illustrates the search

process. A single iteration of our deconvolution algorithm

(Ng et al. 2007) is carried out with these three PSFs. The



Fig. 2. Flow diagram illustrating the iterative nature of the opti-
misation searching for the correct speed of sound under an
expectation-maximisation (EM) deconvolution framework.
The E-step stands for expectation step and M-step for
maximisation step. The EM structure is explained in Appendix 1.

Fig. 3. Exemplar plot showing iterative optimisation process
for a simulated phantom and illustrating the eventual conver-
gence. For illustration purposes, a fixed number of 15 iterations
were run for this exercise and the last estimated speed was
10.58 m/s away from the exact speed of 1540 m/s. The topmost
circular mark indicates the zeroth iteration corresponding to one

of the initial guesses.
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correlation metrics of the three deconvolutions are calcu-

lated and a 1-D quadratic equation is formulated based on

the three pairs of sound speeds and corresponding correla-

tion metrics: f(c) 5 A c2 1 B c 1 C, where c is the speed of

sound, f(c) the correlation metric, and A, B, C coefficients.

Then, the next search speed is determined from the first

and second derivatives of f(c).

ci11 5 ci2a
f 0ðciÞ
f 00ðciÞ

(1)

Here, ci11 is the new estimate, ci the speed having the

lowest correlation among three guesses at the i-th iteration

of deconvolution and a the step size (0 , a # 1). Among

the three guesses at each iteration, we discard the speed

with the highest correlation value, and then move on to

the next iteration step of the deconvolution algorithm

with three speeds: two being retained from the previous

iteration step and the third being the new estimate

(ci11). This procedure is repeated for a fixed number of

iterations or until a termination criterion is met. One essen-

tial aspect is that the deconvolution stage of the newly-

found speed should be updated to the same level as the

other two speeds. As shown in Figure 1, the value of the

correlation metric is dependent on the number of itera-

tions. And thus, unless the deconvolution status is equal

for all three estimates of the speed, the quadratic equation

will not represent the true trend of the optimisation

process. This update routine makes the algorithm slower

in each successive iteration. An example of computational

cost can be found in the Discussions section.

Figure 3 shows an exemplar outcome of the optimi-

sation scheme adopted in our algorithm. The data shown
in the figure are obtained from the same simulation used

in Figure 1. Each circular mark denotes the sound speed

and the corresponding correlation metric of the estimation

at each deconvolution stage. Rapid convergence on the

optimal speed is observed. Table 1 is a numerical counter-

part of Figure 3. The standard deviation in the table is

taken for the three speed guesses at each deconvolution

stage and is shown to drop quickly as the optimisation

process converges. This illustrates that the standard devi-

ation can be used as a termination criterion of the algo-

rithm. For example, if the standard deviation of 0.10%

based on the estimated speed is deemed sufficiently small,

this particular exercise could have been terminated as

early as the ninth iteration.
RESULTS

In this section, we present the results of our speed-

estimation algorithm applied to simulations, in vitro and

in vivo measurements. All the results in this section are

obtained from RF 2-D ultrasound image data.
Simulations
First, we applied our sound-speed estimation tech-

nique to a 2-D simulated phantom. The way the simulation

was conducted is explained in this subsection.

A 2-D imaginary phantom was created with five

circles whose geometry is shown in Figure 4. This five-

circle configuration corresponds to an echogenicity map

characterised by macroscopically smooth features. The

reflectivity within each scatterer type is then randomised



Table 1. Iteration statistics of the algorithm, equivalent to
the data in Figure 3.

Iteration
Speed

estimate (m/s)
Standard

deviation (m/s)
Standard

deviation (%)

0 1275.000 25.000 1.377
1 1155.370 63.102 3.722
2 160.740 94.630 5.912
3 233.890 94.630 6.283
4 237.159 55.602 3.700
5 12.800 22.187 1.438
6 12.339 21.051 1.365
7 23.372 3.438 0.224
8 20.209 1.620 0.105
9 10.527 1.311 0.085
10 10.445 0.403 0.026
11 10.956 0.274 0.018
12 10.663 0.110 0.007
13 10.539 0.051 0.003
14 10.511 0.014 0.001
15 10.579 0.027 0.002

The second column shows the difference of the new estimate from the
reference speed of 1540 m/s. The standard deviation is taken for three
speeds used at each iteration of the optimisation process. Two of the three
speeds are not shown in the table. The zeroth iteration corresponds to the
initial guesses.
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by incorporating a Gaussian distribution which represents

microscopic fluctuations. A reference image for the reflec-

tivity function is displayed in Figure 4a. The bright circles

are 10 times stronger than the background scatterers, the

dark ones are 10 times weaker, and the medium one is

three times stronger.

We blur the reflectivity function by calculating

a forward convolution of the RF image data in Figure 4a

with the PSF evaluated by Field II. The speed of sound

was chosen as 1540 m/s. After blurring, zero-mean white

Gaussian noise is added to the simulated ultrasound image,

which is illustrated in Figure 4b. The signal-to-noise ratio

after the addition of the noise is 40 dB. The ultrasound data

was demodulated to baseband, envelope detected and
Fig. 4. Images for the simulation: (a) reflectivity function, (b) bl
40 dB and (c) deconvolution by the optimum speed (D 5

compressed imag
logarithmically compressed into 60 dB dynamic range.

When interpreting the image in Figure 4b, it is useful to

note that the axial depth of the lateral focus corresponds

to the designed centre of the middle circle. More serious

blurring is easily spotted for scatterers away from the axial

depth of the lateral focus. One can also notice the presence

of coarse speckle in Figure 4b.

The blurred and noisy image in Figure 4b is restored

using the algorithm by Ng et al. (2006, 2007), whose core

structure is outlined in Appendix 1. At any given iteration

of deconvolution, we have three PSFs with different

speeds of sound and the deconvolution algorithm is run

concurrently for these three estimations as described in

the Methods section. Graphs showing correlation metrics

and the convergence pattern have already been introduced

in Figures 1 and 3.

An example result of the deconvolution is shown

in Figure 4c. The restored image is the outcome of our

speed estimation process. The estimated sound speed

is 10.53 m/s away from the correct speed of 1540 m/s,

when the optimisation process is terminated at the ninth

iteration of deconvolution (see Table 1, using the standard

deviation of 0.10% and lower). A high degree of restora-

tion is observed. The once blurred circles appear once

again circular with sharp boundaries. Furthermore, the

speckle size is significantly reduced, but the speckle

is retained, which is important because this textural infor-

mation can be usefully interpreted in clinical applications.

One may ask why the deconvolved result does not

look perceptually the same as the designed reflectivity

function despite the use of almost the same PSF for both

forward and backward operations in the simulation. This

is because of the presence of the additive Gaussian noise

and because of the blurring which involves some loss of

high frequency information and consequently causes the

deblurring problem to be ill-posed.
urred image with additive white Gaussian noise of SNR 5
10.53 m/s). The dynamic range of the logarithmically
es is 60 dB.



Fig. 5. Exemplar plot showing iterative optimisation process for
an in vitro phantom with a known sound speed of 1545 m/s. The
topmost circular mark indicates the zeroth iteration correspond-
ing to one of the initial guesses. The smooth curve was obtained
by running the deconvolution algorithm with PSFs having 49

different speeds at the 10th iteration.
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In vitro measurements on a phantom with a known speed
of sound

After verifying the operation of our sound-speed esti-

mation technique in the simulation, we proceeded to

apply the estimation algorithm to in vitro data sets.

First, we applied our speed-of-sound estimation method

to an in vitro phantom with a known speed of sound.

The phantom has several spheres with back-scattering

strengths different from the background. It was manufac-

tured by the Ultrasound Research Group at the University

of Wisconsin-Madison. The sound speed of the phantom

is around 1545 m/s, which is based on the speed measure-

ments of its components conducted by the manufacturer.

Due to some level of diffusion between adjacent

components, there could be uncertainty of approximately

65 m/s in its average speed of sound. In addition, no

information is available on the temperature dependence

of its sound speed. Therefore, some error in our estimation

method could be caused by these uncertainties. Nonethe-

less, we treat the speed of 1545 m/s as the ground truth for

this phantom.

Throughout this article, the following ultrasound

system was used to acquire the RF data for in vitro and

in vivo measurements. The system consisted of a General

Electric probe RSP6-12 (GE Healthcare, Chalfont St

Giles, Buck, UK) and a Diasus ultrasound machine from

Dynamic Imaging Ltd. (Dynamic Imaging used to be

based near Edinburgh in Scotland, but they are no longer

in business), which was synchronised with a Gage Com-

puscope CS14200 digitiser (Gage Applied Technologies,

Lockport, IL, USA). The digitisation process was linked

to the locally-developed Stradwin software, which is

a user-friendly cross-platform tool for medical ultrasound

acquisition and visualisation, based on Stradx system

(Prager et al. 1999).

The GE probe is composed of a linear transducer

array with 192 piezoelectric elements. The pitch between

the centres of adjacent elements is 0.197 mm. Its centre

frequency was measured to be 8 MHz. The estimated

radius of the elevational focus is 9.6 mm. As the Diasus

system has 128 A-line capability, the middle 128 elements

of the GE probe were connected to the Diasus system. The

beamforming of the Diasus machine operates an active

aperture of 32 elements with fixed-depth transmit and

receive foci. It uses time-gain compensation and logarith-

mic compression for display on its built-in monitor.

However, uncompressed RF data after beamforming are

digitised at the sampling rate of 66.67 MHz with a resolu-

tion of 14 bits.

Figure 5 shows a result of the algorithm applied to the

known-speed phantom. The speed estimation of the last

(15th) iteration is 11.50 m/s away from the speed of

1545 m/s. The smooth dashed curve in the graph is obtained

by running the deconvolution algorithm concurrently for
49 different speeds of sound as shown in Figure 1. This

process of parallel running is not required for our speed

optimisation procedure but is shown additionally to

demonstrate that our optimisation step does converge to

the minimum for an in vitro measurement as well. We

have also conducted estimations for further data sets having

different lateral focus settings. The overall estimation

error for this phantom turned out to be –6.82 6 4.82 m/s

(or –0.44 6 0.31%) in a notation of ‘‘mean 6 standard

deviation’’.

In vitro measurements on phantoms with unknown
speeds of sound

Now we turn our attention to in vitro phantoms with

speeds of sound that are not known a priori. We locally

produced ultrasound tissue-mimicking phantoms by mix-

ing agar powder, scatterers and water (Burlew et al. 1980).

The speed of sound is not known for these in-house phan-

toms a priori and, hence, we measured it independently of

our deconvolution-based estimation method. We applied

a time-of-flight method by measuring the time for sound

to travel between known positions. Wires were put inside

phantoms to determine travelling distances. The time-of-

flight method was chosen over other existing techniques

because the same ultrasound data can be used for it and

our deconvolution-based method.

For the time-of-flight technique, we chose an A-line

with the least blurring of the target wires. Then, its enve-

lope was detected with the Hilbert transform and the

peaks from the wires were selected as known reference

locations. The distance (10 mm) between wires was

taken from their geometric design but was not actually

measured. The travelling time was then worked out



Fig. 7. The error associated with the sound-speed estimation for
in vitro in-house phantoms using deconvolution. The reference
speeds were those measured by the time-of-flight method. The
four different levels of grey at each lateral focal depth indicate
different wire alignments: parallel or perpendicular (and mixture
of the two) to the B-mode image. The delay profile for the lateral

focus was set assuming a sound speed of 1540 m/s.
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from the number of samples between wire peaks and the

sampling rate of 66.67 MHz. Hence, the speed of sound

between the wires is easily estimated.

We have repeated the same set of exercises for the in-

house phantoms as for the simulation and the known-speed

phantom: finding the correct average speed via the

deconvolution-based optimisation and running multi-

speed deconvolution for comparison purpose. Figure 6

shows an exemplar result obtained from an in vitro
in-house phantom measurement. One interesting aspect

of the optimisation curve is that there is a peculiar over-

shoot in the fourth iteration. That is because the pairs of

speed guesses and corresponding correlation metrics at

this iteration do not conform to our quadratic assumption

but rather to a linear formulation having a very small

f00(ci) in eqn (1). However, the algorithm is robust enough

to correct such odd behaviour. In the figure, we also show

an independent measurement of the sound speed by the

time-of-flight method (the vertical dotted line). The speed

estimations for this example are 1455.89 m/s by the decon-

volution and 1460.46 m/s by the time-of-flight method.

More RF ultrasound data sets were acquired for in
vitro in-house phantoms with various lateral focal depths

and different wire alignments. The graphic information is

shown in Figure 7 illustrating the estimation errors of our

algorithm when the time-of-flight estimations are taken as

the ground truth. The overall estimation error is 10.01 6

0.60 % (10.19 6 8.90 m/s). Anderson and Trahey (1998)

quoted errors of –0.05 % (–0.67 m/s) 6 0.44% and

–0.18 % (–2.77 m/s) 6 0.52% for phantoms composed
Fig. 6. Exemplar plot showing the iterative optimisation process
for an in vitro in-house phantom with an unknown speed of
sound. Integers next to circles indicate the iteration numbers
and the zeroth iteration corresponds to one of the initial guesses.
The correlation metric obtained at the 10th iteration of deconvo-
lution with 49 PSFs is also shown in the smooth dashed curve.
The speed was also independently measured by the time-
of-flight method denoted by the vertical dotted line, in which

the y-axis value is irrelevant.
of sponge and agar-graphite, respectively (see Table 1 in

their publication).

Previously (Shin et al. 2009), we analysed the sensi-

tivity of the ultrasound deconvolution to the parameters of

the PSF. The speed of sound is one of the parameters

investigated in the study. It was discovered that restored

images by two different PSFs would be judged differently

in human perception when their parameters were signifi-

cantly different. The finding served as one of the motiva-

tions in this article: we may be able to produce a restored

image better than that deconvolved by the PSF having the

assumed speed of 1540 m/s, when the original ultrasound

image was acquired from tissue having sound speed far

away from 1540 m/s. So far, we have demonstrated that

our algorithm is capable of estimating the speed of sound

in tissue-mimicking materials. Now, in Figure 8, we

provide the evidence of a further enhanced image by resto-

ration with an optimum speed of sound. The image (a) is

the original ultrasound image acquired by an ultrasound

system whose beamforming delay is set to the sound

speed of 1540 m/s. The image (b) is the restoration by

an optimum speed of sound (1455.89 m/s) estimated

by our algorithm. The image (c) is the restored image by

the PSF having the speed of 1540 m/s. It is clear that the

deconvolution result via 1540 m/s has smaller speckle

sizes and smaller footprint of a wire at the centre than

those of the original image. However, it is observed that

the deconvolution image by an optimum speed of sound

has the best quality: the wire at the centre is restored to

its original circular shape and speckle in the surrounding

area is clearly smaller than that from both the original

ultrasound image and the deconvolution by a nominal



Fig. 8. Ultrasound images of an in vitro in-house phantom: (a)
original ultrasound image, (b) deconvolution by an optimum
speed of 1455.89 m/s and (c) deconvolution by a nominal speed
of 1540 m/s. The size of the images is 14.6 mm 3 25.0 mm,
when the speed of sound is assumed to be 1540 m/s for compar-
ison purposes. The ultrasound data set is the same as that used in
Figure 6. The dynamic range of the logarithmically compressed
images is 60 dB. The wire is in the centre of each image. Note its

size changes at each image.

Fig. 9. Exemplar plot showing the iterative optimisation process
for an in vivo scan of a human testicle. The topmost circular mark
indicates the zeroth iteration corresponding to one of the initial
guesses. The correlation metric obtained at the 10th iteration of
deconvolution with 49 PSFs is also shown in the smooth dashed

curve.
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speed of 1540 m/s. It is also noted that the presence of the

wire in the image is not likely to influence the sound speed

estimated in the phantom due to its small size.

In vivo measurements
We have also run our algorithm on two in vivo ultra-

sound data sets taken freehand from human subjects. The

experimental protocol was reviewed by a local ethics
committee and informed consent of the subjects was ob-

tained. The first example is a testicle. The result showing

the convergence of the algorithm is displayed in Figure 9.

Our optimisation algorithm converges to the minimum

and the estimated speed of sound is 1521.37 m/s. The

ultrasound images are illustrated in Figure 10. Unlike

the stark perceptual difference noticed in the in vitro
phantom of Figure 8, the two restoration images from

Figure 10b (using 1521.37 m/s) and Figure 10c (using

1540 m/s) appear very similar. However, it is clear that

both deconvolution solutions are enhanced greatly from

the original ultrasound B-scan in Figure 10a. The speckle

size is reduced and the image resolution is finer through

the deblurring effect of the deconvolution.

The minimal perceptual dissimilarity may be attrib-

uted to the fact that the difference of the speeds used for

both deconvolutions is not very large. For example, the

speed difference in the in vitro case in Figure 8 is 84.11

m/s. In contrast, the difference for this in vivo example

is 18.63 m/s. Such perceptual insensitivity in Figure 10

due to a small speed difference was also one of the find-

ings in our previous publication (Shin et al. 2009).

The second example is a forearm. Figures 11 and 12

illustrate the convergence of the estimation algorithm

and the ultrasound images, respectively. The estimated

sound speed is 1571.74 m/s, which is in the expected

range for muscle: 1542�1626 m/s (see Table 1-1 in

Angelsen 2000). Compared with the original B-scan in

Figure 12a, the lateral (horizontal) correlation and the

speckle size in the areas of diffuse scattering are both

reduced in deconvolution images in Figure 12b and c.

There is, however, axial (vertical) ghosting in regions of



Fig. 10. Ultrasound images of an in vivo human testicle: (a) orig-
inal ultrasound image, (b) deconvolution by an optimum speed
of 1521.37 m/s and (c) deconvolution by a nominal speed of
1540 m/s. The size of the images is 14.6 mm 3 25.0 mm,
when the speed of sound is assumed to be 1540 m/s for compar-
ison purposes. The ultrasound data set is the same as that used in
Figure 9. The dynamic range of the logarithmically compressed

images is 60 dB.

Fig. 11. Exemplar plot showing the iterative optimisation
process for an in vivo scan of a human forearm. The topmost
circular mark indicates the zeroth iteration corresponding to
one of the initial guesses. The correlation metric obtained at
the 10th iteration of deconvolution with 49 PSFs is also shown

in the smooth dashed curve.
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specular reflection that degrades the clarity of the image.

This artefact is attributed to an approximation in this

and many other deconvolution algorithms, in which the

ultrasound image formation is modelled as a result of

weak diffuse scattering (Abeyratne et al. 1995; Adam

and Michailovich 2002; Husby et al. 2001; Jensen 1992;

Michailovich and Adam 2004; Taxt 2001; Taxt and

Strand 2001; Wan et al. 2003).
This ghosting effect is often worse when the decon-

volution algorithm runs for more iterations. Therefore,

when specular reflection is present, a less degraded resto-

ration image can be obtained by using fewer iterations.

Images (b) and (c) in Figure 12 were produced using

two iterations while the estimated speed for image (b)

was obtained by allowing the algorithm to run to conver-

gence. The previous restored images in Figures 8b and

10b do not contain significant specular reflections, so in

these cases the deconvolution algorithm was run to

convergence. For comparison purposes, the correspond-

ing images in Figures 8c and 10c were produced with

the same numbers of iterations as in Figures 8b and 10b,

respectively.
DISCUSSION

Although our proposed technique for medical ultra-

sound speed estimation has several advantages over other

methods reported in previous publications, there are still

limitations and room for further improvement in the

approach. Perhaps, the greatest shortcoming of all is its

inability to handle inhomogeneous tissues. Currently,

our algorithm is not equipped to directly deal with the

correction of phase aberration, which is often created by

irregular layers through which ultrasound travels. There

is a potential risk of estimating the speed incorrectly espe-

cially in vivo, where the received RF signals usually have

to pass through the human skin interface whose speed may

be different from the rest of the tissue. Because the PSF we

use in this article assumes homogeneity, our correlation



Fig. 12. Ultrasound images of an in vivo human forearm: (a)
original ultrasound image, (b) deconvolution by an optimum
speed of 1571.74 m/s and (c) deconvolution by a nominal speed
of 1540 m/s. The size of the images is 14.6 mm 3 25.0 mm,
when the speed of sound is assumed to be 1540 m/s for compar-
ison purposes. The ultrasound data set is the same as that used in
Figure 11. The dynamic range of the logarithmically compressed

images is 60 dB.
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metric is likely to select a weighted mean value among

different speeds of sound.

The fact that the deconvolved image (for example

in Fig. 10) is significantly improved from the original

B-mode image may suggest that the PSF used for the

restoration is close to the exact but unknown PSF inherent

in the acquired ultrasound data. This is because, in our
previous findings (Shin et al. 2009), we showed that the

image restoration could turn out degraded if the assumed

PSF is far away from the true one.

In tissue with non-uniform sound speed, the algo-

rithm may produce a result that is other than a weighted

mean of the constituent speeds. When correlation metrics

are plotted at different speeds, there may be several local

minima, or a plateau of minima rather than a dominant

minimum. In these scenarios, our particular use of an

optimisation-based solution may have adverse implica-

tions because it pursues a local minimum that is usually

the nearest to the set of initial guesses. To reduce this

risk, the algorithm may be run again with a completely

different set of initial speeds. Alternatively, a parallel

run of deconvolution with a small number of PSFs based

on different sound speeds may be used to indicate such

undesirable behaviour.

Another potential obstacle to clinical application

could be the computational expense compared with other

published methods of speed estimation. In our previous

publication (Shin et al. 2009), we reported maximum

computing costs of 160 s for a PSF and 50 s for deconvo-

lution based on two iterations. The figures were measured

for an image size of 256 3 128 using Matlab on a 32 bit

Windows XP platform at 2.40 GHz clock speed. Based on

these values, our proposed method may take approxi-

mately 160 ðn21Þ 1 25 ð2 n 1
Pn

i51iÞ s for n iterations

when three PSFs for the first iteration are precomputed.

For an early termination (n 5 9) in Figure 4c, which is

based on the image size of 256 3 128, it takes about

2855 (5 1280 1 1575) s including both parts of PSFs

and deconvolution. If we use precomputed PSFs based

on ‘‘rounded’’ speeds of sound, it could take less than

27 min.

To estimate the speed of sound accurately and reli-

ably, the other parameters required to build a PSF must

be correct as well. For the list of parameters, see the penul-

timate paragraph of the Introduction and Literature

section. We showed that those parameters could be as-

signed to certain families according to their characteristics

(Shin et al. 2009). For example, the speed of sound ex-

hibited a similar pattern of behaviour as the lateral focus

did for 2-D images, and the elevational focus was in the

same group as the element height. Therefore, the accuracy

of the sound-speed estimation is most likely to be affected

by that of the lateral focus. In our framework, what matters

for the lateral focus is not how the focus is realised through

soft tissues but the intended delay profile applied to the

imaging machine, which is not disturbed by the tissue.

Because we know the delay profiles that were used, it is

unlikely that our estimation of the sound speed is suscep-

tible to uncertainty in the lateral focus.

In future work, the development of a technique de-

signed for multilayered or heterogeneous soft tissue
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would undoubtedly increase further the clinical value of

our deconvolution-based estimation method. The core

challenge would be the creation of a PSF model that

reflects the inhomogeneous nature of soft tissue encoun-

tered clinically. In doing so, we will start with a simplest

possible case and gradually consider more complex cases.

The axial speed variation might be addressed by imple-

menting layered media while the lateral variation of speed

might be characterised by using a subset of the A-lines or

by simple translation of the probe.
CONCLUSIONS

We have constructed an iterative algorithm using

non-blind ultrasound data deconvolution capable of esti-

mating the average speed of ultrasound in homogeneous

tissues. The use of deconvolution enables our technique

to have simple data acquisition requirements compared

to other reported methods. No special equipment is

required for the speed estimation process and the data

can be collected freehand through traditional use of a single

transducer array in the ultrasound imaging system.

Our estimation approach has been validated in

simulations, in vitro phantoms with various speeds of

sound, and in vivo scans. Its estimation error for in vitro
in-house phantoms, for example, was measured to be

10.19 6 8.90 m/s (10.01 6 0.60%) in mean 6 standard

deviation, based on the speeds measured independently by

the time-of-flight method.

In addition to the speed estimation itself, our method

has also proved to be capable of simultaneously producing

a better restoration of the ultrasound image data than

deconvolution by an assumed speed of 1540 m/s, when

this assumption is incorrect.
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APPENDIX 1
Fig. 13. Diagram showing the key aspects of our deconvolution
algorithm. The upper half shows the ultrasound image model
ðy 5 H x 1 nÞ with our interpretation of the structure of the
ultrasound reflectivity function (x 5 Sw). The lower part is the
algorithmic flow chart of the deconvolution itself. Notation:
echogenicity (S), random component (w), reflectivity function
(x), linear blurring operator or PSF (H), white Gaussian noise
(n), and RF ultrasound data (y). The capital letter E in EM and
E-step stands for expectation, and M in EM and M-step for

maximisation (Ng et al. 2007).
DECONVOLUTION ALGORITHM

Because of its importance in our approach, we briefly introduce the
key components of our deconvolution algorithm for the benefit of readers
who may not be familiar with it. Here, we present the algorithm with the
minimum use of mathematics, and introduce simple numeric examples to
help understanding of the basics. As a graphical guide, the core structure
is illustrated in Figure 13. Complete details can be found in previous
publications (Ng et al. 2006, 2007).

In our ultrasound image formation model, the wave propagation is
assumed linear. Although nonlinearity is present in in vivo scans of clin-
ical applications, our approach is still applicable to ultrasound images
when dominated by linearity. In medical ultrasound imaging, linearity
is generally preserved in pulse propagation and reflection, with higher
order harmonic imaging as exceptions (Taxt 2001). Without loss of
generality, the ultrasound image formation can be mathematically
modelled as follows with a variable x as the reflectivity function, which
is our goal to compute, and y as the measured ultrasound signal, which is
blurred and noisy in nature.

y 5 H x 1 n (2)

Potential measurement errors are taken into account as additive
white Gaussian noise (n). H is a block diagonal matrix along the lateral
dimension that represents the blurring of the reflectivity function during
the imaging process. Each block matrix maps from the axial depth
dimension to the time domain at a given lateral position. Here, two–
dimensional data (y, x, n) are rearranged into one-dimensional equiva-
lents by lexicographic ordering and, thus, the sizes of the vectors and
the matrix are: N 3 1 for x, n, and y, and N 3 N for H. Here, N is
the total image size.

Our goal in deconvolution is to estimate the reflectivity function x
from blurred and noisy RF ultrasound data y. Perhaps, we can imagine
a simple numerical example of eqn (2) to help understanding:�
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�
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0:1

���
. Here, we aim to determine

x

�
21
2

�
, when we have ultrasound data y

�
22:1
20:9

�
. It is clear that the

characteristics of x and y are very different, as is usual in an ultrasound
imaging situation. We can also see that individual elements of y are influ-
enced by all elements in x instead of corresponding to single elements of
x. This combined influence or interference is known as ‘‘convolution’’ in
mathematics; and, hence, reversing the process to get x from y is ‘‘decon-
volution’’. The easiest attempt at deconvolution may be a simple inver-
sion: x 5 H21(y – n). Unfortunately, there are two obstacles for this:

the PSF H

�
6 2
3 1

�
in this example is not invertible, and in general it

is not possible to know the noise n

�
20:1
0:1

�
exactly. However in non-

blind deconvolution the PSF is known a priori (as in the scenarios dis-
cussed in this article). Therefore, instead of finding the exact x, we aim
to evaluate an estimate x̂ after imposing extra restrictions or including
prior information about x, which may be seen as reducing the number
of potential candidates for x̂. Since the exact n cannot be determined,
we also assume prior information about it. This technique for including
prior knowledge is known as the Bayesian approach in statistics.

There are many ways of assigning priors on x and n but the
most popular choice is to assume that both x and n follow Gaussian
distributions, which is valid practice in many circumstances. Then, a solu-
tion to the deconvolution problem of estimating x̂ becomes the well-
known Wiener filter. With a further assumption, the Wiener filter is
simplified to give zero-order Tikhonov regularisation.

x̂ 5
h
HHH 1

�
s2

x=s2
n

�21
IN

i21

HHy (3)

Here, s2
n is the variance of n, s2

x the variance of x, and IN the iden-
tity matrix with size N. Further, the ratio (s2

x /s2
n) is collectively known as

the signal-to-noise ratio (SNR). The superscript H denotes the Hermitian
transpose. We now return to the numerical example. In measurements,
we can only estimate an approximate SNR. Therefore, although the exact
SNR of this simulation is 23.98 dB, we assume here its estimate was
found to be 25 dB. Then, readers can easily calculate an estimate

x̂

�
20:51
0:51

�
according to eqn (3). The estimate is closer to the true reflec-

tivity function x

�
21
2

�
than the observed ultrasound data y

�
22:1
20:9

�
:

see the ratio of elements, for example, x1/x2 5 – 0.5, x̂1=x̂2 5 21,
and y1/y2 5 2.33. This example illustrates that an initially unfeasible de-
convolution problem can be made solvable through regularisation and its
solution x̂ is an improvement on the original ultrasound data y.

This numerical example is an extreme case to illustrate the
ill-posed nature of the deconvolution process with a non-invertible
PSF. However, in reality, the situation is usually more promising.
Let’s briefly introduce another numerical example with a better PSF:
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���
, which has the same x as the previous

example and noise with the same statistical properties. An interesting
aspect of this example is that there is destructive interference occurred
in part of the ultrasound data (y1), whose non-zero status is merely a result
of the noise. If a SNR of 25 dB is applied again, one can easily evaluate

an estimate. x̂

�
20:9
1:9

�
Now the solution is very close to the reflectivity

function x

�
21
2

�
. See also the ratio of elements: x1/x2 5 –0.5,

x̂1=x̂2 5 20:474, and y1/y2 5 0.020. Therefore, through deconvolution,
it is demonstrated that the original status of the reflectivity function can
be restored to a considerable extent, even if there is destructive interfer-
ence and, hence, effectively no signal is received after beamforming from
a part of the ultrasound image.

Instead of using a Gaussian prior for the entire tissue (x), we model
the tissue reflectivity as the product of microscopically randomised fluc-
tuations (w) and a macroscopically smooth tissue-type image called the
echogenicity map (S) which shares the characteristics of natural images
(Ng et al. 2007).
x 5 S w (4)

See Figure 13 for the formation of x in this regard. This formula
enables us to control speckle statistics more effectively than the Wiener
filter. Here, w is a N 3 1 complex vector, and S is a N 3 N diagonal
matrix with real non-negative values.

If a zero-mean Gaussian prior is assigned to w, then x is also
observed to be a zero-mean Gaussian when S is known. This implies
two key procedures in our algorithm. First, when S is known, then x
can be found by using the Wiener filter [eqn (3)]. Second, with x found
from the first step, if logarithmic operator is applied to eqn (4), then w can
be treated as additive noise. So, S can be determined through a denoising
process. Using an expectation-maximisation (EM, see Therrien 1992,
p. 285) framework, we can construct an iterative deconvolution strategy
alternating between the Wiener filter for x (expectation step) and the
denoising for S (maximisation step).

For denoising, we adopted a wavelet-based algorithm to separate x
into its S and w components. We therefore represent the reflectivity func-
tion x using the dual-tree complex wavelet transform DT-CWT
(Kingsbury 1999, 2001), which has been shown to be particularly
effective in denoising applications (Sendur and Selesnick 2002).
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