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The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound
imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired
images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation
in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables
the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated
for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound
speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator
has been developed for layered media assuming that, for moderate speed differences, the reflection at the
interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phan-
toms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when
the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-
spread functions having different lower-layer speeds. The best restoration is selected using a correlation
metric. The error level (e.g., a mean error of �9 m/s with a standard deviation of 16 m/s) for in vitro phan-
toms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed
estimation methods where the data acquisition may not be as simple as in our proposed method.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Pulse-echo medical ultrasound imaging usually assumes the
speed of sound is 1540 m/s in soft tissue for the beamforming de-
lay profile and the display of acquired images. The current conven-
tion of using the assumed speed leads to distortions in B-mode
images when the actual speed of sound is different. The effects of
errors in the sound speed, such as degraded spatial resolution, have
been widely reported, and some of the consequences have been
quantified [1]. Therefore, the estimation of the correct acoustic
speed is beneficial in improving the overall image quality and
hence in increasing its diagnostic value. At the same time, the esti-
mated speed of sound itself has its own significance in the context
of tissue characterisation.

The speed of medical ultrasound has been estimated using
transmission methods, which measure the time taken while a
pulse propagated between a transmitter and a receiver. But clinical
applications were limited to the breast [2]. Robinson et al. [3] car-
ried out an extensive review of pulse-echo sound-speed estimation
techniques. Nine methods in three categories were examined in
detail. Most of the reviewed methods produce the average speed
All rights reserved.

: +44 1223 332662.
of sound in the scanned tissues. Only a few were capable of local
speed estimation. Kondo et al. [4] reported the estimation of
in vivo local speed of sound by using a few pairs of crystal elements
in a linear array. But, they stated that an exact measurement of lo-
cal sound speed was difficult. Ophir and Yazdi [5] applied a trans-
axial compression technique to a dual-layered in vitro phantom.
The technique involves a precise movement of a transducer which
compresses the phantom surface. The acquisition of multiple scans
after compression can be carried out by a single transducer, but
this is often accompanied by a second transducer to compensate
for potential movement of the region of interest caused by com-
pression of the phantom surface.

Recently, a detailed local sound-speed estimation of biological
tissue was demonstrated using ultrasound based on a scanning
acoustic microscope (SAM) [6] and computed tomography (CT)
[7–11]. However, the signal carrier frequency of SAM system
reaches as high as 500 MHz, and as in other microscope techniques
non-invasive measurement is not possible. The CT systems have
been demonstrated in a recent pre-clinical trial [11] to be capable
of the detailed estimation of sound speed as well as attenuation.
However, its use of transmission ultrasound is limited to a few
applications such as breast imaging. It is also different from the
pulse-echo approach addressed in this paper and requires higher
system complexity like other CT systems.

http://dx.doi.org/10.1016/j.ultras.2010.02.008
mailto:hs338@cam.ac.uk
http://www.sciencedirect.com/science/journal/0041624X
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Our research group has recently published a novel speed-of-
sound estimation technique by using image deconvolution [12].
The algorithm is based on the assumption that soft tissue is mac-
roscopically homogeneous and its underlying speed of sound is
constant. Our published technique has several advantages over
other methods of medical ultrasound speed estimation [3]. The
data can be collected by a single scan using a single transducer ar-
ray unlike other methods [2,3,13]. No transducer movement is re-
quired, whereas precise movement is a commonplace requirement
in other techniques [3,5]. No special rigs are necessary in holding
the transducer to satisfy a geometric constraint inherent as in
some other methods [3,14]. In other words, conventional use of a
transducer array is sufficient for our algorithm.

The fundamental concept enabling the speed estimation in our
method is image deconvolution [15–17]. The advantage of using
non-blind deconvolution is that we do not need multiple ultra-
sound scans, as some other methods do in order to adjust their
beamforming time delays [2,13]. Necessary variations can be easily
accomplished off-line by adjusting the point-spread function (PSF)
in our deconvolution framework.

However, our original approach was not capable of handling
inhomogeneous tissues. As an idealised scenario of non-uniform
soft tissue, we now consider a layered medium formed of two lay-
ers with different sound speeds, in which we further assume that
the medium boundary is parallel to the surface of a transducer
and the boundary location is known a priori. We demonstrate that
image deconvolution can be used to estimate sound speed in such
an environment.

The rest of the paper is arranged into the following sections:
Section 2 describes the modelling of ultrasound behaviour in
dual-layered media, and explains the development of an ultrasound
simulator applicable to layered media. Section 3 presents the results
of the simulations together with the method of estimating the speed.
Section 4 addresses the speed estimation of in vitro phantoms.
Finally, conclusions are drawn and it is followed by a brief introduc-
tion to our non-blind deconvolution algorithm in Appendix A.
2. Medical ultrasound in dual-layered soft tissue

An acoustic wave, of which an ultrasound wave may be consid-
ered a subset, is reflected and transmitted when it encounters the
boundary between different media. In general, the phenomenon of
transmission is complicated. However, the situation can be eased
when the acoustic wave front and the medium boundary are pla-
nar and the involved media are all considered to be fluids rather
than solids (see p. 124 in [18]).

Here, we define a fluid to be a medium where propagation of a
longitudinal wave is dominant, whereas a solid is a medium in
which longitudinal and transverse waves are free to propagate. In
fluids the path of a refracted wave is easily determined by the
refractive index, but solids are often anisotropic and hence the
direction of a transmitted wave is influenced by local structure.

In soft tissue, transverse waves have a low propagation speed of
around 100 m/s. They are severely attenuated at frequencies over
1 MHz and can therefore be neglected at diagnostic powers (see
p. 1.4 in [19]). Also in their composition, soft tissues are mainly
made of water with a few solid components added. Therefore, in
diagnostic medical ultrasound imaging, soft tissues can usually
be approximated as a fluid.
2.1. Reflection in dual-layered soft tissues

It is widely known that most normally-incident ultrasound en-
ergy is transmitted at the boundary between different types of soft
tissues. A very small fraction of the energy is reflected, of which the
strongest (power reflection coefficient, R � 0.01) occurs along
muscle-fat interface (see p. 1.19 and Table 1-8 in [19]). But for
ultrasound probes consisting of arrays of piezoelectric elements,
oblique incidence does occur regardless of transducer positioning.
For oblique incidence, the coefficient R at the fluid–fluid boundary
is given by (see p. 132 in [18]):

R ¼ q2=q1ð Þc2=c1 � cos h2= cos h1

q2=q1ð Þc2=c1 þ cos h2= cos h1

����
����
2

: ð1Þ

Here, the symbols q, c and h indicate density, sound speed and angle
of wave propagation, respectively. The subscripts 1 and 2 denote
the layers 1 of the incident and 2 of the refracted. Symbols c1, c2,
h1 and h2 are related according to Snell’s law (see Eq. (2) and
Fig. 2). Eq. (1) is valid when the refracted angle h2 is real, otherwise
the coefficient R is unity. The angle h2 becomes complex when the
incident angle h1 is bigger than a critical angle determined by the
ratio of both speeds of sound.

Examples of the coefficient R relevant to one of our ultrasound
probes are shown in Fig. 1. The ultrasound probe has 32 active pie-
zoelectric elements whose geometric centres are laterally spread
from �3.0535 to +3.0535 mm with an interval of 0.197 mm. Speed
differences, c2 � c1, were investigated in the range from �150 to
+150 m/s when c1 = 1540 m/s. The sound speed of most biological
materials except bone falls well within the range: the lower end of
fat being 1440 m/s; the higher end of muscle at 1626 m/s (see Ta-
ble 1-1 in [19]). Note that quoted values are slightly different
depending on the source of information. The density of layer 1
was chosen as 1 g/cm3, which is equivalent to that of water. The
density of layer 2 was varied from 0.9 to 1.1 g/cm3, which covers
most forms of soft tissues: from 0.95 g/cm3 for fat to 1.07 g/cm3

for muscle (see Table 1-1 in [19]). The depths of scatterers in layer
2 are varied from 16.1 to 40.0 mm when the boundary is located at
a depth of 16 mm.

These graphs of Fig. 1 show that the coefficient R is mostly af-
fected by differences in speed and density, and also imply that
the extra effect of oblique incidence is not significant when the
boundary is parallel to the transducer surface. In general the
amount of the reflection is very low. Only the extreme combina-
tions of sound speed and density see the reflection reach 1% of
the incident energy. We are therefore reassured that most of ultra-
sound energy is transmitted and hence the reflection can be
ignored.

This assumption of the reflection being ignored not only simpli-
fies the ultrasound image formation for the bottom layer but also
validates the use of deconvolution in the top layer for imaging con-
ditions in which that assumption is true. Clearly there are oblique
boundaries in ultrasound imaging that cause strong shadows and
other disruptions of conventional beam formation and they would
cause similar difficulties for this algorithm as well. Our deconvolu-
tion algorithm like many other linear deconvolution models as-
sumes the first-order Born approximation, which results in the
sonification of scatterers by waves directly from transducer ele-
ments. Therefore, strong reflections at the boundary could gener-
ate secondary sources which would reduce the accuracy of our
deconvolution in the top-layer part of the media.

2.2. Refraction in dual-layered media

In creating PSFs with dual-layer characteristics, the determina-
tion of the path intersection with the boundary is of paramount
importance. Its location will decide the difference between the re-
fracted path of the ultrasound and the straight path as if there were
only a single homogeneous layer between the scatterer and the
piezoelectric element. This difference in distance and subsequently
in arrival time will generate an overall perception of B-mode image



Fig. 1. Power reflection coefficient R at a boundary depth of 16 mm. Subplot (a) shows R as a function of scatterer depth and of crystal element position, for a speed difference
of �150 m/s with a layer-2 density of 1 g/cm3. Subplot (b) shows R as a function of the speed difference between layers and of layer-2 density, for a crystal element located at
�3.0535 mm and a scatterer depth of 25 mm. Note the coefficient is displayed as a percentage and the z-axis range is different in (a) and (b).
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distortion when soft tissue is composed of layers with different
speeds of sound.

When both media at the boundary are isotropic such as fluid,
the well-known Snell’s law may be applied to establish the rela-
tionship between the speeds in the adjacent media and the angles
of incidence and refraction of plane waves (see p. 131 in [18]):

sin h1

c1
¼ sin h2

c2
: ð2Þ

The geometric relationship is shown in Fig. 2. Each layer is as-
sumed to be macroscopically homogeneous and isotropic, and
hence to have uniform macroscopic properties. But the media
may be considered microscopically inhomogeneous enough to
have back scattering from the ultrasound wave. The position of
the transmit or receive crystal element is denoted by (x0,z0), that
of the scatterer by (xs,zs), and that of the interaction point at the
boundary by (xb,zb). Here, the coordinate system is chosen so that
all three points are in a plane and have the same y-coordinate. We
assume that the surface of the medium boundary is semi-infinite
and parallel to that of the transducer aperture, that is a good sim-
plifying assumption because our deconvolution algorithm, like
others, assumes shift invariance in the lateral dimension of the
probe. Layer 1 has a uniform sound speed of c1 and layer 2 has
c2. The incidence and refraction angles on the boundary are de-
noted by h1 and h2, respectively. Hence, the squared version of
Eq. (2) becomes:

1
c2

1

ðxb � x0Þ2

ðzb � z0Þ2 þ ðxb � x0Þ2
¼ 1

c2
2

ðxs � xbÞ2

ðzs � zbÞ2 þ ðxs � xbÞ2
: ð3Þ
Fig. 2. Schematic diagram showing the geometric relationship between incident
and refracted ultrasound plane waves in a fluid. The position of the transmit or
receive crystal element is denoted by (x0,z0), that of the scatterer by (xs,zs), and that
of the path intersection with the boundary by (xb,zb). All three of these points are
assumed to be in a plane and to have the same y-coordinate.
In our problem formulation, all variables in Eq. (3) apart from
the lateral location on the boundary (xb) are assumed to be known
including the depth of the boundary (zb). A few steps of simple
arithmetic from Eq. (3) leads to the following quartic equation:

p4x4
b þ p3x3

b þ p2x2
b þ p1xb þ p0 ¼ 0; ð4Þ

where coefficients are arranged as follows, when the crystal ele-
ment is placed at the origin of the coordinate system (x0 = 0,z0 = 0):

p4 ¼ 1� d2; d ¼ c1=c2;

p3 ¼ �2xsp4;

p2 ¼ ðzs � zbÞ2 þ x2
s � d2ðz2

b þ x2
s Þ;

p1 ¼ 2xsz2
bd

2; p0 ¼ �d2z2
bx2

s :

The quartic equation can be solved numerically for example via
the Matlab command roots.m, and leads to a single unique solution
of xb through the constraint of it being real and positioned between
the transducer element and the scatterer in question. Once xb is
determined, the calculation of the refracted arrival time is straight-
forward. The concept for the dual-layer situation can be easily ex-
tended to media with more than two layers, but the solution will
involve a system of quartic equations.

Strictly, the relations in Eqs. (2)–(4) are valid for a single fre-
quency. For dispersive media, these need to be evaluated for all fre-
quencies of interest. However, for soft tissue, the degree of
dispersion is so low that it can be neglected (see p. 4.5 in [19]).
Hence, a single calculation is sufficient.

2.3. Dual-layer ultrasound simulator

We have built an in-house ultrasound simulator for dual-lay-
ered media. The code is composed mainly of two steps: first, calcu-
lation of pressure fields in dual-layered media from individual
piezoelectric elements and second, beamforming of these elemen-
tal responses. The first step is based on an approach applied to
homogeneous media by Jensen and Svendsen [20]. They simulated
pulsed pressure fields from arbitrarily shaped ultrasound transduc-
ers. A physical crystal element was mathematically divided into
small rectangles, and a ‘‘spatial impulse response” (SIR) was calcu-
lated for each rectangle and summed over the physical element. A
far-field approximation was also used to speed up the calculation.

The main difference between the Jensen–Svendsen simulator
and our dual-layer implementation lies in formation of the SIR
for the bottom layer. Fig. 3 illustrates the situation, which is an
idealised case of two-dimensional interaction for brevity. Diagram
(a) corresponds to an homogeneous medium studied by Jensen and



Fig. 3. Schematic diagram showing spatial response of a transducer element and a
scatterer. Diagram (a) is what happens in homogeneous media. Diagram (b) is what
may happen in dual-layer media. Symbols tc, t1 and t2 indicate the arrival times
along the paths.
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Svendsen and diagram (b) shows the refraction pattern in the dual-
layer case. The ‘‘sub-crystal” label in the diagram indicates that
each individual crystal element is divided into a collection of smal-
ler areas. The sub-crystal elements must be small enough to make
the far-field approximation valid [20].

The effects of these tc, t1 and t2 are collectively known as the SIR.
The arrival time tc indicates how far the scatterer is located away
from the sub-crystal element. The difference |t2 � t1| determines
the shape of the SIR and eventually the shape of the waveform re-
ceived or transmitted by the physical element composed of sub-
crystals. When a far-field approximation is valid, the arrival times
t1 and t2 are symmetrically separated from the central time tc in
homogeneous media, but they are not in inhomogeneous media.
Therefore, the refracted arrival times t1 and t2 should be evaluated
individually for the bottom layer of dual-layered media using Eq.
(4) where (x0,z0) now corresponds to edges of sub-crystals. It is
also noted that, for the top layer of dual-layered media, our ultra-
sound simulator follows the same approach taken by Jensen and
Svendsen.

Once a SIR for a given scatterer and a given physical element is
determined after summation of SIRs in sub-crystals, the corre-
sponding pressure field at the scatterer position is determined by
convolution of the SIR and the electro-mechanical impulse re-
sponse of the element. For pulse-echo response, convolution is
conducted twice for a pair of transmit and receive elements. Then,
the final part of beamforming to focus the ultrasound is straight-
forward. This dual-layer ultrasound simulator has been used to cal-
culate PSFs throughout this article.
Fig. 4. Behaviour of a dual-speed layered medium with the layer boundary at the cen
ultrasound image in which the speed of the top layer is 1540 m/s and that of the bot
constructed assuming the sound speed of 1540 m/s. The dynamic range of the logarithm
3. Method and simulations

We applied our sound-speed estimation technique to dual-lay-
ered two-dimensional simulated phantoms. The way the simula-
tion was conducted is explained in this section. We start with
examples illustrating how ultrasound images may behave when
there is a layered change in the speed of sound.

3.1. Simulated reflectivity function

A two-dimensional simulated phantom was created with five
circles whose geometry is shown in Fig. 4. This five-circle configu-
ration has macroscopically piecewise-smooth features. The bright
circles have a reflection coefficient ten times larger than the back-
ground. The reflection coefficient in the dark circles is ten times
smaller, and in the medium circle it is three times larger than
the background. The reflectivity of each scatterer is then random-
ised by incorporating a Gaussian distribution which represents
microscopic fluctuations. A reference image for the reflectivity
function is displayed in Fig. 4a.

3.2. Simulated ultrasound image formation

We blur the reflectivity function by calculating a forward con-
volution of the image in Fig. 4a with the PSF evaluated to have a
dual-layered characteristic. The convolution algorithm itself is
essentially the same as that used in the single-layered medium
[12,17].

This dual-layered PSF is designed to have the layer boundary at
the centre of the middle circle. The speed of the top layer in the im-
age (b) is 1540 m/s. The speed of the bottom layer is 1790 m/s. An
excessive difference in speed was chosen to produce a clear dem-
onstration of the dual-layer behaviour. Because the images are
drawn assuming the speed to be 1540 m/s, the bottom layer in
Fig. 4b looks compressed because it takes less time for signals to
arrive due to the faster speed. Later in Fig. 5, it is also demonstrated
that the bottom layer with slower speeds looks expanded because
it takes more time for signals to arrive. It is also noted that there is
no reflection appearing on the medium boundary in the ultrasound
image, because this is not included in our model.

After blurring, zero-mean white Gaussian noise is added to the
simulated ultrasound image. The signal-to-noise ratio after the
addition of the noise is 40 dB. The image is demodulated to base-
band, envelope detected and logarithmically compressed into
60 dB dynamic range. In Fig. 4b, we can easily identify the artefacts
typically associated with ultrasound imaging. The axial depth of
the lateral focus corresponds to the designed centre of the middle
circle. More serious blurring is easily spotted for scatterers away
from the axial depth of the lateral focus. One can also notice the
presence of coarser speckle in Fig. 4b due to the spatial averaging
of the blur function.
tre of the middle circle. (a) the simulated reflectivity function, (b) the simulated
tom layer is 250 m/s faster, and (c) the deconvolved image. B-mode images were

ically compressed images is 60 dB.



Fig. 5. Deconvolution images via various bottom-layer speeds with the layer boundary at the centre of the middle circle. (a) Simulated ultrasound image, in which the speed
of the top layer is 1540 m/s, and that of the bottom layer 150 m/s slower. (b–f) Deconvolution via PSFs with various bottom-layer speeds. The label at each image denotes the
speed of the bottom layer, which is relative to 1540 m/s, while that of the top layer was kept 1540 m/s. These B-mode images were constructed assuming the sound speed of
1540 m/s.
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3.3. Deconvolution via the correct sound speed

The blurred and noisy image in Fig. 4b is restored using the
algorithm in [15,16], whose core structure is briefly outlined in
Appendix A. It is noted that the deconvolution algorithm is identi-
cal to that used in the single-layered homogeneous medium. The
only difference lies in the PSF used in the deconvolution.

An example result of the deconvolution is shown in Fig. 4c. The
restored image proves that the true geometry of the reflectivity
function can be recovered after the deconvolution via the same
PSF which was used to make the corresponding ultrasound image
in Fig. 4b. A high degree of restoration is observed. The circles ap-
pear again circular with sharp boundaries. Furthermore, the
speckle size is significantly reduced and becomes comparably to
that in the input data.

One may ask why the deconvolution result does not look per-
ceptually the same as the designed reflectivity function despite
the use of the same PSF for both forward and backward operations
in the simulation. This is because of the presence of the additive
Gaussian noise, and because of the blurring which involves loss
of high frequency information and consequently causes the deblur-
ring problem to be ill-posed.

3.4. Deconvolution via incorrect sound speeds

In Fig. 4c, we have shown the deconvolution result conducted
with the correct sound speed for the bottom layer. In this subsec-
tion, we will see that deconvolution with an incorrect speed results
in different characteristics to those in the single-layer case re-
ported in [12]. These new features are found to be important in
determining the speed in the dual-layer scenario.

Fig. 5 shows the deconvolution based on PSFs with various bot-
tom-layer speeds. The essence of the reflectivity function for the
simulation is the same as that in Fig. 4a except the image size.
The simulated ultrasound image in Fig. 5a was prepared to have
the top-layer speed of 1540 m/s and that of the bottom layer
150 m/s slower. The rest of the images from Fig. 5b–f illustrate
deconvolution results using PSFs with various bottom-layer
speeds. The bottom-half images are observed in varying degrees
of restoration. The speed of the top layer for these deconvolutions
was maintained at the correct speed of 1540 m/s. Therefore, the
top-half images are properly restored in all the deconvolutions.

It is clear that only the deconvolution with the correct speed in
Fig. 5c can restore the geometry of the bottom layer properly. The
deconvolutions (Fig. 5e and f) using bottom-layer speeds faster
than that in the top-layer return the image with the bottom layer
in varying degrees of axial expansion. This is because the deconvo-
lution process is based on the assumption that the bottom layer of
the blurred ultrasound image in Fig. 5a has already gone through
the compression indicated by the faster bottom-layer speed of its
PSF. Subsequently the deconvolution tries to correct the effect by
elongation, which ends up causing further expansion than the
ultrasound image in Fig. 5a. In contrast, however, the deconvolu-
tions (Fig. 5b and c) that use slower speeds return images with a
bottom layer further shrunk.

It is also noted that the black strip towards the bottom of Fig. 5b
is the result of an extreme compression through deconvolution.
This is because the corresponding information is outside the image
size used in the deconvolution. The consequence of this additional
axial compression or expansion after deconvolution is that the
numbers of horizontal image lines are different, e.g., for given cir-
cles in the bottom layers. This change may lead to a difficulty in
picking up the correct speed in the bottom layer, because so-called
like-for-like comparison is not possible. The phenomenon is ex-
plained in Sections 3.6 and 3.7.

3.5. Uncertainty in PSF parameters

In order to estimate the speed of sound accurately and reliably,
the other parameters required to build a PSF must be correct as
well. Our research group has recently studied the effects of uncer-
tainty in the PSF on non-blind deconvolution [17]. The parameters
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of an ultrasound imaging PSF have been systematically investi-
gated. It was shown that the speed of sound exhibited similar
behaviour as the axial depth of a lateral focus for two-dimensional
images. Therefore, the accuracy of the sound-speed estimation
may be affected by that of the lateral focus. In our speed-estima-
tion framework, what matters for the lateral focus is not how the
focus is realised through soft tissues, but the intended delay profile
applied to the imaging system which is not disturbed by the tissue.
Because we know the delay profiles that were used, it is unlikely
that our estimation of the sound speed is susceptible to uncer-
tainty in the lateral focus.

3.6. Correlation metric

The overall strategy of our speed estimation method is to run
multiple deconvolutions using PSFs with different speeds and to
pick the speed which produces the best restoration. Therefore, a
metric capable of determining the best outcome is as crucial as
the non-blind deconvolution algorithm itself. In our previous pub-
lication [12], we have successfully used the following metric to
determine the sound speed of single-layered homogeneous media.
Here, x̂ denotes the deconvolution image. The autocorrelation
ðRx̂i
½l�Þ is calculated along the lateral line ðx̂iÞ at each i-th axial

depth and then a summation ð
P

ljRx̂i
½l�jÞ is made of the magnitude

of all the l coefficients of the correlation. To produce a single-val-
ued representation, another summation ð

P
i

P
ljRx̂i
½l�jÞ was taken

of this value for all axial depths. For dual-layer situations in this
paper, the correlation metric is restricted to the appropriate layer
where the speed is estimated.

Fig. 6 shows a graph of the aforementioned correlation metric
for various bottom-layer speeds of sound in a simulated dual-lay-
ered phantom. Several B-mode images of this dataset have already
been shown in Fig. 5. Because the sound speed of a bottom layer is
being estimated in this figure, the correlation metric is applied to
the bottom layer of deconvolution images. The behaviour of the
correlation metric applied to the top layer is not shown throughout
this article. Readers can find examples of this in our publication
[12] that addresses the estimation of the sound speed in single-lay-
ered homogeneous media, since the methodology for top layers of
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Fig. 6. Plot of correlation metrics vs. various sound speeds in the bottom layer of a
simulated dual-layered phantom. The correlation metric was applied to the bottom
layer of the deconvolution images, and it is normalised by its minimum for display
purposes. The reference speed (D = 0) is 1540 m/s. The top-half grey vertical line
denotes the speed of the top layer for reader’s information, while the bottom-half
black vertical line denotes the speed of the bottom layer which is being estimated.
The dotted line with a full vertical length indicates the minimum of the correlation
metric curve, which is the estimate of the bottom-layer speed. For vertical lines, the
y-axis values are irrelevant. This convention will be applied to other similar graphs.
dual-layered media is essentially identical to that for homoge-
neous media. The values of the correlation are normalised for dis-
play because the metric itself does not directly indicate a
meaningful physical quantity but the relative differences are the
most important. In this example, however, the graph indicates that
the correlation metric has failed to identify the correct speed of
sound for the bottom layer.

3.7. Interpolation of deconvolution images

In previous sections, we have described changes in the axial
dimensions of bottom layers of deconvolution results and the fail-
ure of the correlation metric. Because the correlation metric was
successfully used for single-layered homogeneous soft tissue [12]
which does not incur the axial scale change, the cause of the failure
is not likely to lie in the correlation metric itself, but perhaps in the
extra change in the axial scale of deconvolution images. Such axial
changes make the comparison of certain features, e.g. circles,
inconsistent among deconvolutions, as they will have different
numbers of horizontal image lines inside them. Therefore, we have
explored image interpolation strategies which make each feature
intersect the same number of image lines regardless of the bot-
tom-layer speed used in the PSFs.

One-dimensional linear interpolation is conducted along each
A-line in the bottom layer. The interpolation ratio at each speed
is determined by the inverse of its speed: a lower speed will have
more interpolated horizontal lines than a higher speed, and hence
the procedure subsequently makes the deconvolution images of
lower speeds expand and those of higher speeds contract. Fig. 7
illustrates a typical example of the correlation metric applied to
interpolated deconvolution images. The original dataset is the
same as that in Fig. 6. The correlation metric is now capable of
detecting the correct speed of the bottom layer.

3.8. Cost of dual-layer PSFs

Each dual-layer PSF appearing in this article takes several hours
to compute in the Matlab environment. This expensive nature of
dual-layer operation makes it difficult to implement an optimisa-
tion strategy to search for a minimum correlation, which was suc-
cessfully adopted for a single-speed estimation [12]. Perhaps, the
PSFs to produce the likes of Fig. 7 can be run concurrently by using
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Fig. 7. Plot of correlation metrics vs. various sound speeds in the bottom layer of a
simulated dual-layered phantom. The deconvolution images were axially interpo-
lated to make circles occupy the same number of horizontal image lines regardless
of bottom-layer sound speeds in their PSFs.
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bottom-layer speed is +3 m/s and is indicated by the full vertical-length dotted line.
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multiple computing resources, but the PSFs for an optimisation pro-
cess can only be calculated in series. Because we are only seeking to
demonstrate the speed-estimation capability of our deconvolution
algorithm in a dual-layered medium, we have not pursued such an
optimisation process, but analysed and displayed the correlation
metric curves via numerous PSFs as illustrated in Fig. 7.

4. In vitro measurements

After verifying our sound-speed estimation technique in the
simulated dual-layered media, we proceeded to apply the estima-
tion algorithm to in vitro dual-layered datasets.

The following ultrasound system was used to acquire the radio-
frequency (RF) data for in vitro measurements. The system con-
sisted of a General Electric1 probe RSP6-12 and a Diasus ultrasound
machine from Dynamic Imaging Ltd.2 which has 128 A-line capabil-
ity and operates an active aperture of 32 piezoelectric elements, syn-
chronised with a Gage3 Compuscope CS14200 digitiser. The
digitisation process was linked to the locally-developed Stradwin
software,4 which is a user-friendly cross-platform tool for medical
ultrasound acquisition and visualisation.

4.1. Preparation of in-house phantoms

We locally produced ultrasound tissue-equivalent phantoms by
mixing agar powder, scatterers, propanol and water [21]. For dual-
layered phantoms with each layer having different speed of sound,
we created phantoms in two steps. First, a liquid form of phantom
after heating and cooling of the aforementioned mixture is poured
into an empty container, and allowed to congeal. Several hours la-
ter, when the phantom has completely solidified, another liquid
form of phantom with different composition was poured on top
of the already solidified phantom. In this way, we prepared a pair
of phantoms. One was made to have its top layer with thickness of
15.3 mm, and the other with 20.5 mm. The thickness of each top
layer was evaluated later based on the estimated speeds of the
top layer. The pair of phantoms were prepared such that the mate-
rial in the top layer of one phantom is the same (and made to-
gether) as that in the bottom layer of the other phantom, and
vice versa. For these in-house phantoms, the speed of sound in
each layer is not known a priori. We measured their speeds by
means of our deconvolution-based estimation method reported
for a single-speed situation [12]: the speed measurement of the
phantom material composing the top layer is a straightforward
and direct implementation of the algorithm. Then, we treat the
speed estimated for the top layer in one phantom as a gold stan-
dard for the speed to be estimated in the bottom layer of the other
phantom through our dual-layer estimation algorithm.

4.2. Results of dual-layer algorithm applied to phantoms

Figs. 8 and 9 illustrate examples of the correlation metric ap-
plied to these in vitro phantoms. For these datasets, the correlation
metric is shown to detect the speeds of the bottom layer. The curve
in Fig. 8 demonstrates the uneven nature of the metric and indi-
cates a potential risk if a local-minimum based search method is
applied. This local fluctuation may be related to the interpolation
process. However it is found that a higher-order interpolation such
as a cubic spline does not noticeably improve the situation. Cur-
rently, there is no clear indication of which RF dataset behaves bet-
1 GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, BUCKS UK.
2 Dynamic Imaging used to be based near Edinburgh in Scotland, but they are no

longer in business.
3 Gage Applied Technologies, 900 N. State Street, Lockport IL 60441, USA.
4 This is available free at http://mi.eng.cam.ac.uk/~rwp/stradwin/.
ter or worse after an axial interpolation is conducted. But, in
general, correlation metrics with interpolation seem to detect the
minimum with certain error bounds. More ultrasound acquisitions
were carried out. For each phantom from the pair, a total of eight
measurements were conducted: four different lateral focus set-
tings for two different locations in each phantom. The overall er-
rors in the estimation of the bottom-layer speed were found to be:

�9 ± 16 m/s (target speed of 1550 m/s) for the phantom in
Fig. 8;
+13 ± 17 m/s (target speed of 1498 m/s) for the phantom in
Fig. 9.

Here the errors are presented in the notation of ‘‘mean ± standard
deviation”.

The results suggest that the errors of the dual-layer estimation
method are not as good as those accomplished for our single-speed

http://mi.eng.cam.ac.uk/~rwp/stradwin/


Fig. 10. Ultrasound images of an in vitro in-house dual-layered phantom: (a) original ultrasound image, (b) deconvolution by dual-layered PSF with estimated speeds of
1550 m/s and 1496 m/s for the top and bottom layer, respectively. The bright horizontal lines are the boundary between two layers of phantom materials. The size of the
images is 38.1 mm � 25.0 mm, when the speed of sound is assumed to be 1540 m/s for comparison purposes. The ultrasound dataset is the same as that used in Fig. 9. The
dynamic range of the logarithmically compressed images is 60 dB.
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estimation. We reported �7 ± 5 m/s for a phantom made from an
independent manufacturer and 0 ± 9 m/s for locally made phan-
toms [12]. Note especially that the standard deviation in the sin-
gle-speed method is much better than that of the dual-speed
method. This may indicate that the dual-speed approach could
be inherently less reliable than that of the single speed. To reach
a workable model within the framework of our deconvolution
method [15,16], several assumptions have been made in earlier
sections: for example, trivial reflection from a layer boundary par-
allel to the probe aperture, perfect plane wave incidence and
refraction guided by Snell’s law, and phantoms with pure fluid
characteristics. In addition, there may be an error propagated from
the estimation of the top-layer speed whose bounds were men-
tioned earlier in this paragraph.

Despite the reduced performance of our dual-layer estimation
algorithm compared to our single-speed method, it is discovered
that our dual-layer approach is still capable of producing an esti-
mate better than or comparable to some other methods reported
for local speed estimation. Kondo et al. [4] reported a standard devi-
ation of 41.1 m/s when the mean speed was 1550 m/s. Their meth-
od was developed for estimating the speed of local regions which is
more complicated than our dual-layer scenarios, but the quoted er-
ror was obtained from a single-speed homogeneous phantom con-
sisting of agar and graphite particles. As a reminder, the standard
deviation of our method for dual-layer phantoms is around 15 m/
s. Using a transaxial compression technique, Ophir and Yazdi [5]
measured the sound speed in the bottom layer of a dual-layered
laboratory phantom made of polyester sponge, water and glycol
solution. They reported a mean estimation error of +12 m/s for
the bottom-layer speed of a single phantom, while the standard
deviation of the error was not reported. Note that mean estimation
errors for both of our in vitro phantoms are �9 and +13 m/s.

Fig. 10 shows the ultrasound images for the phantom whose
correlation metric for the bottom layer is shown in Fig. 9. The im-
age (a) in Fig. 10 is the original ultrasound image acquired by the
aforementioned ultrasound system. The image (b) is the deconvo-
lution via dual-layered PSF having estimated speeds of 1550 m/s
and 1496 m/s for the top and bottom layer, respectively. In the
images, one can see the bright horizontal lines which are indeed
the boundary between the two layers of phantom materials. It is
clear that the deconvolution image (b) is enhanced greatly from
the original ultrasound image (a): the speckle size is reduced,
and point-like scatterers especially further down the images are re-
stored to be more distinct from their surroundings. One can also
notice that the boundary line gets thinner as a result of deblurring
in deconvolution, which may indicate that the amount of true
reflection might not be as much as judged in the original image
(a). An intriguing aspect about the boundary line is that it seems
to be tilted after deconvolution, but this appears to be an optical
illusion upon closer inspection.

5. Discussion

The focus of the paper is to demonstrate proof-of-concept for
the multi-layer algorithm in a very simple context. Therefore, we
have introduced several assumptions and idealisations in the
experiments. In particular, a two-layered medium has been chosen
as the simplest form of multi-layered structure. It would be valu-
able to investigate the difference in the calculated boundary inter-
section and focusing with a tilted boundary layer. However (as in
most ultrasound deconvolution), our algorithm assumes that the
data has been blurred with a kernel that is shift invariant in the lat-
eral direction. Therefore, despite being important and interesting,
this issue is beyond the scope of the present paper.

In addition to assuming a parallel boundary, we further assume
that the boundary position is known a priori. This is an even greater
simplification for easy implementation of the algorithm. In the fu-
ture, however, we can explore ways of handling two regions where
the location of the boundary is not known in advance. Once a tech-
nique for estimating the boundary has been incorporated into the
algorithm it will then be possible to study its inaccuracies and their
impact on the rest of the deconvolution process.

In Section 4: ‘‘In vitro measurements”, we performed our exper-
iments with simple planar structures which do not result in infor-
mative images because of the difficulty of producing complex
phantoms with precisely controlled sound speed properties. Build-
ing on the present work, it will be possible to explore the efficacy
of the algorithm in media that has a more realistic structure.

Readers may wonder whether the restored image in Fig. 10b
correctly represents the actual texture of the phantom, especially
for the lower part. It is an interesting question, but difficult to an-
swer, because we do not have a ground truth for the phantom tex-
ture. It might thus be an interesting idea to have the ultrasound
system set to a sound speed of 1496 m/s and to scan the lower
medium to see if that is the true texture with proper focusing.
However, such an approach would necessitate a completely
different set of experiments, because the RF data in our ultrasound
system are acquired after the delay-and-sum stage.
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6. Conclusions

We have demonstrated that image deconvolution applicable to
medical ultrasound systems can be used to estimate the speed of
sound in dual-layered media. An ultrasound simulator has been
developed specifically for dual-layered media. It is assumed that
soft tissue can be treated as non-dispersive fluid, and it is found
that pulse-echo ultrasound is mainly transmitted at the medium
boundary for moderate speed differences. It is also shown that
the refracted arrival times can be calculated using Snell’s law. Un-
like homogeneous media, it has been found that the deconvolution
with dual-layered media requires axial interpolation for consistent
comparison of correlation metrics among different speeds in the
bottom layer.

Our estimation method for dual-layered media has been
validated in simulations and in vitro phantoms. Its estima-
tion errors were found to be �9 ± 16 m/s and +13 ± 17 m/s
(mean ± standard deviation) for a pair of in vitro in-house
phantoms. Its uncertainty level is not as good as that of our esti-
mation approach for homogeneous media, but is found to be
better than or comparable to other local speed estimation meth-
ods where the data acquisition may not be as simple as in our
proposed method.
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Appendix A. Deconvolution algorithm

The paper is mainly concerned with the estimation of the sound
speed in pulse-echo ultrasound applications. But, the deconvolu-
tion of an ultrasound image is a pivotal part of our estimation pro-
cess. Therefore, we briefly explain the key components of our
deconvolution algorithm for the benefit of readers who may not
be familiar with it. Complete details can be found in [15,16].
A.1. Ultrasound image formation

The A-lines of an ultrasound imaging system can be mathemat-
ically modelled as a Fredholm integral of the first kind [15]. The
wave propagation is assumed linear. Although non-linearity is
present in in vivo scans of clinical applications, our approach is still
applicable to most clinical ultrasound images which are usually
dominated by linearity. In medical ultrasound imaging, linearity
is generally preserved in pulse propagation and reflection, with
higher order harmonic imaging as exceptions [22].

When we adopt a discrete space-time formulation, the integral
can be further simplified using a vector-matrix notation with a
complex random variable x as the reflectivity function and y as
the complex analytic baseband counterpart of the measured ultra-
sound signal:

y ¼ Hxþ n: ðA:1Þ

Potential measurement errors are taken into account as complex
additive white Gaussian noise (n). H is a block diagonal matrix
along the lateral dimension. Each block matrix maps from the axial
depth dimension to the time domain at a given lateral position.
Here, two-dimensional data (y,x,n) are rearranged into one-dimen-
sional vector equivalents by lexicographic ordering, and thus the
sizes of the vectors and the matrix are: N � 1 for x, n, and y, and
N � N for H. Here, N is the total dataset size.
A.2. Deconvolution under an Expectation-Maximisation (EM)
framework

Our goal is to estimate a reflectivity function x from a noisy and
blurred image y. The algorithm operates in a Bayesian context. Be-
cause the finite resolution cell of a PSF merges the responses from
neighbouring scatterers during the blurring process (Hx), the
deblurring procedure tends to be ill-posed, and therefore a direct
inverse filtering is likely to fail. One of the standard solutions to
this problem is to incorporate regularisation in a maximum a pos-
teriori framework (MAP, see p. 314 in [23]) with a prior on the
reflectivity function:

x̂ ¼ arg max
x

ln pðyjx;r2
nÞ þ ln pðxÞ

� �
: ðA:2Þ

Here, x̂ is an estimate of the reflectivity function, obtained from the
deconvolution process, and r2

n the variance of n. Possible priors
could involve assuming Gaussian or Laplacian statistics for the
reflectivity function. The Gaussian prior, in particular, leads to the
well-known Wiener filter:

x̂ ¼ arg min
x

1
2r2

n
ky �Hxk2 þ 1

2
xHC�1

x x
� �

¼ ðHHHþ r2
nC�1

x Þ
�1HHy:

ðA:3Þ

In a further simplified case of Cx ¼ r2
x IN , this is known as zero-

order Tikhonov regularisation. The superscript H denotes the Her-
mitian transpose. The term Cx represents the covariance matrix
E(xxH) of x; r2

x the variance of x, and IN the identity matrix with
size N. Instead of using this conventional prior for the entire tissue
(x), we model the tissue reflectivity as the product of microscopi-
cally randomised fluctuations (w) and a macroscopically smooth
tissue-type image called the echogenicity map (S) which shares
the characteristics of natural images [16]:

x ¼ Sw: ðA:4Þ

Here, w is a N � 1 complex vector, and S is a N � N diagonal matrix
with real non-negative values. If a zero-mean Gaussian prior is as-
signed to w, then x is also observed to be a zero-mean Gaussian
when S is known. It leads to the conditional probability density
function of x, given S:

pðxjSÞ / 1

jSj2
exp �1

2
xHS�2x

� �
: ðA:5Þ

This implies two key procedures of our algorithm. First, when S
is known, then x can be found using the Wiener filter in Eq. (A.3)
with S2 representing the covariance matrix. Second, when x is
known from the first step and ln jwij is treated as additive noise,
then S can be determined through a denoising process:

ln Si ¼ ln jxij � ln jwij; i ¼ 1; . . . ;N: ðA:6Þ

The subscript i denotes the element of the vectors and the diag-
onal matrix, and j � j the modulus of a complex variable. Using an
Expectation-Maximisation (see p. 285 in [23]) framework, we can
construct an iterative deconvolution strategy alternating between
the Wiener filter for x (Expectation step) and the denoising for S
(Maximisation step).

For denoising, we adopted a wavelet-based algorithm to sepa-
rate x into its S and w components. We therefore represent the
reflectivity function (x) using the dual-tree complex wavelet trans-
form DT-CWT [24,25] which has been shown to be particularly
effective in denoising applications [26].
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