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Abstract—We present a matching framework to find robust
correspondences between image features by considering the
spatial information between them. To achieve this, we define
spatial constraints on the relative orientation and change in
scale between pairs of features. A pairwise similarity score
which measures the similarity of features based on these spatial
constraints is considered. The pairwise similarity scores for all
pairs of candidate correspondences are then accumulated in
a 2D similarity space. Robust correspondences can be found
by searching for clusters in the similarity space, since actual
correspondences are expected to form clusters that satisfy similar
spatial constraints in this space. As it is difficult to achieve
reliable and consistent estimates of scale and orientation, an
additional contribution is that these parameters do not need
to be determined at the interest point detection stage, which
differs from conventional methods. Polar matching of dual-tree
complex wavelet transform features is used, since it fits naturally
into the framework with the defined spatial constraints. Qur
tests show that the proposed framework is capable of producing
robust correspondences with higher correspondence ratios and
reasonable computational efficiency, compared to other well-
known algorithms.

Index Terms—Object matching,
DTCWT, Pairwise spatial constraints

SIFT, Polar matching,

I. INTRODUCTION

The search for robust and accurate correspondences be-
tween images is an important problem in computer vision.
Many computer vision and image processing tasks such as
wide baseline matching, object detection, classification and
recognition require accurate correspondences to achieve good
performance. Thus, designing algorithms that produce more
accurate and robust correspondences should lead to systems
with better performance.

One common approach to solve the correspondence prob-
lem is to consider only local correspondences using interest
points and feature descriptors. A comprehensive comparison
of commonly used interest point detectors and descriptors
can be found in [1]-[3]. However considering local feature
appearance alone is often insufficient when searching for
robust correspondences, due to various challenging factors
such as occlusion and changes in viewpoint and illumination.
Other information, such as spatial information, can potentially
be used to produce more robust correspondences. For example,
groups of matching features should approximately have the
same orientation and distance relative to each other between
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interest points. These additional pieces of information can be
used to define spatial constraints on the features that match.

The main aim of this paper is to develop a robust interest

point matching framework that considers spatial constraints
defined by the relative orientation and change in scale between
pairs of features, rather than single features. An additional
benefit from this framework is that the orientation and scale
of individual features do not need to be determined at the
interest point detection stage. This differs from conventional
methods of finding correspondences (such as SIFT [4]), which
typically need the orientation and scale of features to be esti-
mated by interest point detectors. With the proposed pairwise
framework, the relative scale change and orientation change
are determined only at the interest point matching stage, and
our results demonstrate that this framework is capable of
producing more robust correspondences.

Our main contributions are:

1) We define a set of pairwise spatial constraints that can be
used to select the relative orientation and change in scale
between features when searching for correspondences.

2) We develop a robust matching framework that searches
for clusters of pairwise correspondences, satisfying the
defined spatial constraints, by using a 2D similarity
space. Robust and accurate correspondences can be
found as clusters in this similarity space.

3) As a comparison, we study the performance of several
common matching algorithms on 3D objects under the
effects of geometric distortion and viewpoint change.
These algorithms also make use of spatial information to
find correspondences. We demonstrate that our proposed
framework compares well with these algorithms.

II. RELATED WORK

Spatial constraints provide important information on the
layout of features which can be used to search for robust
correspondences. In this section, we review prior work related
to the use of spatial information for matching, which can be
broadly classified into two approaches.

A. Graph-based approach

Graphs provide a flexible way of representing the features
in images, thus image matching can be considered as a graph
matching problem. Generally, graph matching can be formu-
lated as an assignment problem with certain mapping con-
straints, and solving it is usually NP-hard [5]-[9]. Thus, there
is a need to design efficient algorithms to find approximate
solutions for the problem. One such approach is the use of



spectral methods. Umeyama [10] proposed an analytic solution
based on the eigendecomposition of adjacency matrices to find
the permutation matrix. The algorithm requires the graphs
to have the same number of nodes, which is not practical
in most computer vision applications. Shapiro and Brady
[11] proposed an algorithm which compared eigenvectors
obtained from the adjacency matrices of individual images.
Correspondences were found by minimising the Euclidean dis-
tance between rows of the modal matrices. Generally, spectral
methods are sensitive to outliers, and modal representations
alone may not be sufficient to produce robust correspondences
when matching complicated objects [12].

Another approach is to formulate the assignment problem
as an integer quadratic program (IQP) [5], [6], [8], [13],
and approximate solutions can be obtained by solving the
optimisation problem. In [5], a graduated assignment approach
that iteratively refined previous matches using mapping con-
straints on the permutation matrix was proposed to find partial
matches between attributed graphs. Even though the algorithm
produced good results, the algorithm is computationally costly.

In [12], a point matching algorithm that made use of the
thin-plate spline for modelling the non-rigid spatial mapping
of points was proposed, and softassign was used for correspon-
dences. Similar to [S] and [12], Belongie et al. [14] proposed
using shape context descriptors to solve for correspondences
between different objects as a graph matching problem. The
correspondences were then fitted with a thin-plate spline
transformation model, and the results were refined based on
the derived model. Berg et al. [13] minimised a cost function
formulated as an IQP for feature similarity and the geometric
distortion between candidate correspondences. After solving
the optimisation problem, a model between the points was
estimated and used to refine the correspondences. Torresani et
al. [15] solved the problem as an energy minimisation graph
matching problem using a dual decomposition technique.

Since graph matching is generally computationally costly,
Leordeanu and Hebert [8] proposed an efficient spectral relax-
ation method to solve the IQP by finding the best matching
clusters in the graphs. The affinities between pairs of points
were considered and the algorithm was shown to produce good
approximate solutions efficiently. In [16], a discriminative
algorithm was proposed, which uses the technique in [8]
for object recognition and localisation based on geometric
constraints. In [17], the spectral matching technique was
extended to include affine constraints along with bistochastic
normalisation. Improved matching performance was achieved
at the tradeoff of increased computational complexity.

B. Geometric approach

Spatial information can also be used for matching by
considering different ways of representing the features’ spatial
information and local appearance. Generally, these approaches
model the spatial relationships between features directly. One
common approach is to use spatial information to derive the
parameters of a pre-defined geometric model, assumed to
represent the relationship between two sets of features. In
particular, algorithms that sample the space of candidate corre-
spondences to remove outliers which do not follow the defined

model have been used to produce robust correspondences, such
as RANSAC [18]. Gold et al. proposed a point matching
algorithm [19] based on pose estimation using a geometric
affine model for finding correspondences. A cost function
which modelled the affine mapping of points, along with the
defined mapping constraints on the matches was solved using
an optimisation technique. In [20], Lowe extended the basic
SIFT matching procedure by fitting an affine model to the
matches using a Hough transform and solving for the model
parameters iteratively. The matches have been shown to be
accurate, and these matches are then clustered into different
models of a single object from various viewpoints, resulting
in an effective object recognition system [4].

Lazebnik et al. proposed an object recognition algorithm
in [21] based on groups of local affine regions to model 3D
objects. Spin images and a variant of SIFT are used as features
to find correspondences between images by identifying sets of
three regions that match. Objects are then represented by semi-
local affine parts, which are learned using the correspondences
found with additional training images. Carneiro and Jepson
proposed a pairwise clustering algorithm for finding corre-
spondences using semilocal constraints in [22], along with a
semilocal feature based on an extension of the shape context
descriptor in [14] for matching. Geometric prediction models
are also used to improve the performance of the algorithms.
The pairwise clustering algorithm in [22] defines a pairwise
similarity score using the distance, orientation and appearance
of feature pairs which is then collected in an affinity matrix.
A connected component analysis is performed on the matrix
to find the correspondences. This algorithm has similarities to
the spectral matching algorithm in [8] since both algorithms
consider the similarity between pairs of features in one image
to pairs of features in another, and define a pairwise similarity
score between the feature pairs in the affinity matrix. More
importantly, both the algorithms in [8] and [22] search for
correspondences by finding strongly connected clusters in the
affinity matrix. Even though the pairwise similarity scores are
defined differently in [8] and [22], the underlying approach
of finding strongly connected clusters in the defined affinity
matrices is similar. Likewise, our proposed algorithm has
similarities to [22], since we also define the pairwise similarity
score by considering relative orientation and change in scale
between features. However, our approach is different since we
perform a search for correspondences in a defined pairwise
similarity space, instead of the affinity matrix directly.

C. Our approach

Generally, geometric approaches assume that correct cor-
respondences follow a pre-defined geometric model, such as
the geometric affine model [4], [19], [20]. This assumption
restricts the correspondences that can be found, and the
pre-defined model may also be an inadequate representation
of the relationship between complicated objects under large
viewpoint changes. Even though graph matching approaches
consider the relationship between features, solving the com-
binatorial optimisation problem is NP-hard, and obtaining an
approximate solution is still computationally costly, while not



necessarily producing accurate solutions [8], [9]. In addition,
the use of invariant features in different matching algorithms
imply that they tend to rely on the scale and orientation of
features estimated by the feature detector and descriptor.

In this paper, we consider the pairwise relationship between
pairs of features, since the distortion between them can gen-
erally be modelled as a rotation and scale change under large
viewpoint changes. By mapping the pairwise relationship into
a similarity space using a set of pairwise spatial constraints
defined on the relative orientation and change in scale between
pairs of features, we are able to find robust correspondences
which satisfy the constraints. Using these constraints, the
proposed matching framework does not depend on interest
point detectors to estimate orientation and scale.

III. PAIRWISE MATCHING USING SIFT

In this section, we describe our basic framework for
matching with pairwise spatial constraints. For simplicity, this
employs a pairwise matching algorithm which uses the well-
known SIFT interest-point detector and descriptor [4] and
makes effective use of spatial information between pairs of
candidate correspondences to produce good matching perfor-
mance [23]. In later sections we extend the pairwise matching
ideas to a system based on complex wavelet methods. Note
that in the following discussion, a pair of candidate correspon-
dences refers to 2 interest points in one image being matched
to 2 interest points in another image.

A. Framework for using spatial constraints

Generally, matching algorithms that make use of spatial
information such as [8], [20] have two main stages, as shown
in figure 1. The initial matching stage finds a set of candidate
correspondences between individual features of the images
based on a similarity score such as the Euclidean distance,
distance ratio threshold [4] or correlation score [24] of feature
descriptors. The subsequent stage refines these correspon-
dences using spatial information, such that the output consists
of more robust correspondences. This is a good approach for
designing these matching algorithms, since the initial matching
stage eliminates features that are poor correspondences, such
that the number of correspondences N, is small enough to
keep the subsequent matching stage computationally efficient,
instead of having to consider all N, features directly. N, is
the total number of output correspondences produced by the
subsequent matching stage. We adopt this two-stage approach
for all the matching algorithms considered in this paper. Next,
we describe a pairwise matching algorithm for this second
stage, that is capable of producing robust correspondences by
defining spatial constraints on the relative orientations between
pairs of candidate correspondences.

B. Spatial constraints using orientation of SIFT features

Our SIFT-based pairwise matching algorithm, first presented
in [23], requires that groups of interest points which are
true correspondences to satisfy certain spatial constraints.
For example, interest points in image Y should have the
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Fig. 1. Generic framework for matching with spatial information. For N,
the number of interest points to be matched, an initial matching stage produces
Ny, correspondences. Spatial information such as the orientation and scale
of features is then used to produce Ny robust correspondences as the output.

same relative orientation within image X when they are true
correspondences. These constraints are defined between pairs
of candidate correspondences, and robust correspondences can
be found by searching for clusters in a similarity space.
Consider interest points, v and v, in an image X, as shown
in figure 2. The line vector & between them can be defined as:

ju;u = 614711 eXp(jeum) (1)

where d,, ., is the length and 6, , the orientation of ,, ,. For
a second pair of interest points, p and ¢, in another image Y,
a second line vector §J, 4 is defined similarly. The pairwise
spatial relationship between these line vectors can be defined
as the complex log-ratio:
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where w is the difference in orientation of the vectors (i.e. rota-
tion) and  is the log-ratio of vector lengths (i.e. scale change).
We define a more convenient scale parameter, A = ﬁ, which
is the ratio of the vector lengths on a log, scale. A pairwise
similarity space XC(w,\) can then be defined for pairs of
candidate correspondences in X and Y. For each of these,
a pairwise similarity score gy p),(v,q)}» Which measures the
orientation consistency and feature similarity, is stored in /C
at location {w, A\} and is given by:

Xu,pYu,p + Xov,gVo,
Uiup) gy = =y 3)

where ¥, is the orientation consistency of w and p, and 7,
is the feature similarity score. These are defined as:
COS(¢u - au,v - ¢p + 01)7(1) +1

Xu,p = 2 (4)

Yu,p = €XP (_Hfu - prQ/QUQ) (5)

where f,, and f, are the feature vectors at interest points u and
p respectively with orientations ¢, and ¢p. Xv,q and 7y, 4 can
then be defined similarly, with f, and f, the feature vectors
at interest points v and ¢, with orientations ¢, and ¢,.

An illustration of a pair of candidate correspondences is
shown in figure 2. Note that ¢,,—0,, , is the difference between
the dominant orientation of the feature f,, and the orientation
of the line vector &,, ,. Pairs of true correspondences will give
1 = 1, since they will satisfy the orientation consistency
while also having similar feature appearance. Hence, we
accumulate in /C(w, A) the ¢ values of all pairs of candidate
correspondences between X and Y which have values larger




than a threshold 7y. True correspondences can then be found
by searching for modes or regions of high density in K(w, \),
since corresponding groups of interest points with the same
relative spatial information (and hence from the same object)
will tend to be tightly clustered in (w, \) space. In [23], this
algorithm was shown to produce more robust correspondences
compared to [8] using the CALTECH database [25].

Conventionally, the scale and orientation of features used for
matching are estimated by the interest point detector. However,
it is often challenging to estimate these well, since the exact
spatial extent of a feature is usually unknown, and a feature can
potentially have several dominant orientations. Previous works
on the estimation of scale include the discrete scale space
theory developed in [26] and automatic scale selection for
feature and edge detection [27], [28]. Others include the search
for peaks in 3D space of spatial location and scale to determine
the location and scale of interest points. They usually use the
Laplacian-of-Gaussian (LoG) or other differential filters [29],
or the Difference-of-Gaussians filter (DoG) [4], [20] to form
the metric for interest point detection and scale estimation.
Orientation can then be estimated, using the detected scale
to define the size of local region around each interest point.
In [4], [20], a histogram of the gradient orientations in each
local region is formed, and peaks in the histograms are then
assigned as the dominant orientations of the interest point.

In view of the difficulty in achieving reliable and consistent
estimates of scale and orientation, we have decided to develop
an alternative approach to the pairwise matching algorithm
in [23], which is based on the flexibility afforded by the
dual-tree wavelet transform (DTCWT). Feature descriptors
that are multi-scale and multi-orientation in nature can thus
be efficiently produced, and hence we do not require such
parameters from the detector.
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Fig. 2. Matching a pair of interest points u,v to a second pair p, q. 0y,
is the direction of the vector between u, v, and . is the distance between
u, v (similarly for 6, ¢ and dp, ¢). Pu, dv, Pp, Pq are feature orientations at
interest points u, v, p, q.

IV. PAIRWISE MATCHING USING COMPLEX WAVELETS

In theory, we do not require the interest point detector
to estimate orientation and scale, since we can consider the
relative orientation R and change in scale s between features
directly during matching. More specifically, based only on the

line vectors &, , and g, ,, we can estimate I? and s between
pairs of correspondences, {u,v} and {p, ¢}, and define spatial
constraints with them, since groups of matching features are
expected to satisfy certain spatial relationships such as having
approximately the same relative orientation and change in
scale. These constraints can then be used directly to select
R and s between clusters of true correspondences. We now
extend the formulation of orientation-based pairwise matching
from section III-B to incorporate both scale and orientation
into our matching framework, such that it can produce robust
correspondences without requiring the orientation and scale to
be estimated by the interest point detector.

A. Spatial constraints between pairs of correspondences

Consider again the pairs of interest points, {u, v} and {p, ¢},
from figure 2. The orientation consistency x of the pair {u, p}
may be re-defined as:

o cos(¢y — bp — (euw - 91%«1)) +1
Xu7p - 2
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_ sl =) ©

where R, , is the relative orientation between the features at
u and p, and w is the rotation between the line vectors of the
candidate correspondence pair, as defined in (2). Similarly,
we may define ), , to depend on R, , and w, where R, , is
the relative orientation between the features at v and q. We
can then define a spatial constraint on the relative orientations
between pairs of candidate correspondences, such that:

Ryp~w and R,,~w (N
if {fu,fp} and {f,, f,} are true correspondences, as shown
in figure 3. This is a valid constraint, since we expect the
relative orientations between pairs of true correspondences to
be approximately the same as the difference in orientation of

the line vectors joining them. In addition, we can define a
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Fig. 3. Matching a pair of features u, v to a second pair p, g by considering
the relative orientation and change in scale between them. 6.,  is the direction
of the vector between u, v, and J,,+ is the distance between u, v (similarly for
0p,q and 6p 4). The relative orientation between the features is determined as
the rotation w between the line vectors based on the defined spatial constraint.
Su,p and sy ¢ can be approximated as A, the log ratio of the line vectors’
lengths.



second spatial constraint on the change in scale between pairs
of candidate correspondences, such that:

Su,p ~ log, (; =)\ and s, ~log, g“’v =\ 8
P.q
if {fu,fp} and { fv, fq} are true correspondences, and s, ,
and s, are the changes in scale between them. d,, and
0p,q are the lengths of the line vectors and A is the log,
version of x in (2). Equation (8) is a valid constraint since
the change in scale between a pair of true correspondences
should remain approximately unchanged under the effects of
geometric distortions and viewpoint change, as shown in figure
3 and should approximately match the change in lengths of the
vectors joining the pairs of points if they are from similar rigid
objects in the two images. (Note that there will be some pairs
of points where viewpoint perspective effects on 3D objects
will invalidate either the scale or rotation constraints to some
extent but it is expected that these will be in the minority.)
Having defined spatial constraints on R and s between
pairs of candidate correspondences, the absolute orientation
and scale of individual features are no longer required and we
can now design a matching framework based on these relative
rotation and scale parameters. To include these constraints, the
similarity between a pair of features should vary as a function
of both R and s. The feature similarity score defined in (5) is
modelled as the Gaussian function of the Euclidean distance
between features. For a pair of interest points v and p, (5) can
be re-defined as:

Yu,p eXp( Hfu pr /20 )
= eXp( Hfu||2+|‘fp||2 qufp)/2‘72)
= exp( l—fufp /o)
~ exp( — Vyp( ))/O’ ) 9)

where f, and f, are assumed to be [>-normalised (typically
to reduce sensitivity to lighting variations), and f, f, can be
interpreted as the similarity score v, ,(©) between features
fu and f,, based on a set of unknown parameters ©. Since the
spatial constraints are defined on the relative orientation and
change in scale between pairs of correspondences, we assume
that © = {R, s}, and (9) can be defined as:

Vu,p(Roup, Su,p))/02)

where the feature similarity score is now a function that varies
with the assumed values of both relative orientation R, ;, and
the change in scale s, , between features f,, and f,. Based
on the defined spatial constraints in (7) and (8), R, , and
s,,p can be approximated by w and A respectively. Hence,
assuming that { f,,, f,} and {f,, f,} are true correspondences,
we define:

Yu,p R €XP (7(1 — (10)

Vu,p exp (—(1 = vup(w, A)/0?)
Yog = exp(—(1—1vyq(w,N))/0?) (11)

We observe that SIFT is not very suitable as a feature
descriptor for the feature similarity score in (11), since it only
retains the most dominant orientation(s) for each descriptor
and discards all the other orientations; and similarly for scale.
SIFT patches are ‘de-rotated’ and ‘rescaled’ by the estimated

orientation and scale before the feature vectors are calculated,
so it is not easy to see how the similarity score v would vary
for different assumptions of orientation and scale.

For the proposed matching framework, we require the
feature similarity score -y to be a function of R and s, such that
the defined spatial constraints can be used directly to determine
v when R = w and s = A. (Note that w and A\ will vary for
a given match pair {u,p}, according to which other points
{v, q} are paired with them.) A more suitable choice of feature
descriptor here is the polar matching matrix (p-matrix) [24],
derived from complex wavelet coefficients. We give a brief
overview of this material now.

B. Polar matching as a function of rotation R

In general, wavelet transforms possess many attractive prop-
erties which can be used for object matching. For example, the
directional selectivity and invariance to shifts and rotations
of Gabor wavelets have produced good performance for face
recognition tasks [30]-[32]. Wavelets have also been used
previously for object recognition [33]-[35], producing good
results in general. However, computational complexity is a
concern when wavelet features are used for object recogni-
tion, since over-complete wavelet transforms typically become
computationally intensive when accounting for different scales
and orientations, and this also leads to large wavelet feature
vectors. The dual-tree complex wavelet transform (DTCWT)
[36], [37] possesses several qualities that are potentially useful
for the task of object matching, while addressing the concerns
mentioned above. The DTCWT has shift invariance and direc-
tional selectivity comparable to the Gabor wavelets, while hav-
ing significantly lower redundancy and better computational
efficiency, as discussed in [32]. The p-matrix, proposed in
[24], is a feature descriptor based on DTCWT coefficients,
that permits an efficient algorithm, called polar matching, to
find correlations between image patches as a function of the
angle of rotation between them.

At each level (octave scale), the 2D DTCWT decomposes
an image into six complex directional subbands. By con-
sidering also the complex conjugate of these subbands, the
coefficients consist of 12 different directions spaced regularly

t (30k — 15)°, for k = 1...12. The DTCWT descriptor is
formed by assembling the coefficients from 12 points around
a ring, together with those from the ring’s centre point (the
interest point), into a p-matrix. The coefficients are arranged
such that each 30° rotation of the image patch about the centre
of the ring corresponds to a cyclical shift by one element of
each column of the p-matrix.

If two similar image features have a nx30° rotation between
them and we consider two p-matrices from equivalent interest
points in them, a summation of the column-wise correlations
of the two p-matrices will produce a response vector with
a peak at a shift by n elements. Thus, the peak correlation
score gives an estimate of the relative rotation between the
two images (n x 30°). However, the estimated rotation will
only be at intervals of 30°. Fortunately the correlation, being
cyclic over the columns, can be calculated efficiently in the
Fourier domain; and the resolution can be improved by using



zero-padding of the Fourier coefficients. This may be used
to upsample the original 12 directions to 48 and give a 48-
point correlation vector, now with rotation intervals of 7.5°.
The rotation may now be estimated to 7.5° resolution or better.
More details of the p-matrix can be found in [24]. The amount
of information carried by the p-matrix can be increased by
adding more columns to the matrix, corresponding to multiple
levels and additional rings with the tradeoff being increased
computational complexity. In this paper, a sampling ring from
a chosen decomposition level of the DTCWT, along with the
centre points from this level and the next coarser level are used
to form the p-matrix, resulting in a 12 X 8 matrix containing
96 complex coefficients (c.f. typically 128 real coefficients in
a SIFT feature vector).

Polar matching efficiently produces a 48-point similarity
score which varies as a function of the relative orientation
R between two p-matrices. Based on the spatial constraint
in (7), the similarity score between pairs of corresponding
p-matrices can be determined as the correlation score when
R =~ w, rounded to 7.5° resolution. Next, we extend the above
concepts and introduce a version of polar matching that is
tolerant to changes in scale s, such that the correlation score
varies as a function of both R and s.

C. Polar matching as a function of scale s

Polar matching may be extended to tolerate changes in
scale by considering correlation vectors between p-matrices
from different scales (DTCWT levels) of the image pair.
Scale increments of less than 2:1 may be achieved by
interleaving parallel DTCWT decompositions, starting from
different resized versions of the input image. This then leads
to a similarity score which varies smoothly with s as well as
R, and is achieved as follows.

Given two images X and Y with Mx and My interest
points respectively, X is sampled at a set of initial coarse
scales S, and the interest points are projected across all
|So| scales, resulting in My p-matrices at each scale. Polar
matching then results in S, correlation vectors for each pair
of interest points in X and Y (c.f. section IV-E). Typically
S, = 5 and the scale interval is v/2 : 1, requiring just two
DTCWTs. These correlation vectors can then be interpolated
across a fine set of scales Sy, resulting in a correlation map
for each pair of features f,, and f, in X and Y respectively.

The correlation map is a 48 x |S¢| matrix which measures
the similarity as a function of both the relative orientation
R and change in scale s between p-matrices. More impor-
tantly, we observe that the correlation map takes the form
of vy p(w,A) and v, 4(w, ) in (11), which can be used to
determine the similarity of the p-matrices of points {u, v} to
those of {p,q} at R = w and s = ), determined from the
line vectors &, , and §, 4. An illustration of the interpolation
is shown in figure 4. Y is only sampled at one scale, since
we are considering s to be in the range of 0.5 and 2, and this
can be produced by resampling X . However, a wider range of
scales can possibly be considered by resampling Y.

The pairwise similarity score ¥y (y,p),(v,q)} i0 (3) can then
be calculated as a function of R and s between pairs of

Maximum correlation §core...
at A= -0:8-and o = 200°

Output: S, correlation
curves between a pair of
interest point which are
interpolated across S; scales
to form correlation map.

(a) (b)

Fig. 4. (a) Extension of polar matching to tolerate change in scale. (b)
Example of a correlation map produced for an actual correspondence. Y is a
rotated and scaled version of X, with a rotation of 200° and scale of 270-8,
We observe that there is a corresponding peak at approximately R = 200°
and s = —0.8.

Correlation Score

Coarse scales S, of X.
Interest points detected
at S, = 1 used across S,

0.

correspondences. Following the spatial constraint in (7), the
pairwise similarity score can be simplified to be:

_ ,)/u,p + 'Yv,q

Vwp)rwa)} = 7 5 12)

since the sampling of the correlation score at ¢, — ¢, =
Py — g = Oy — Opq (ie. Ryp = Ry g = w) ensures that
Xu,p = Xv,g = 1 in (3). The 2 values for pairs of candidate
correspondences are then accumulated in the similarity space
K(w, \) and robust ‘object’ correspondences can then be found
by searching for clusters in K. The proposed framework now
no longer requires estimates of the orientation and scale of
individual features.

D. Summary of matching framework with spatial constraints

A summary of the proposed matching framework can be
found in figure 5. Similar to our earlier algorithm described
in [23], local interest point groups are being considered for
matching such that spatial constraints will be considered over
a local neighbourhood. To form these groups, we only consider
pairs of interest points with a distance § below a threshold
Ts, such that the pairs of correspondences considered in our
framework are all within a local neighbourhood.

To find robust correspondences between two images X and
Y, polar matching is performed across all S, scales. Interest
point pairs with maximum correlation scores larger than a
threshold 7. are considered as candidate correspondences.
We consider S, = 2(-170-5.0.051) "guch that the sampled
scales are logarithmically uniform. Local interest-point groups
are then formed from the candidate correspondences. For
each candidate correspondence, the interpolated correlation
map v, ,(R,s) is formed. The scales are interpolated to
S = 2(=1,=0.75..0.75,1) yging bicubic interpolation, such that
the correlation map is a 48 x 9 matrix, where R is the relative
orientation and s is the change in scale between two features
fu and fp.

Consider N,, candidate correspondences produced by the
extended polar matching technique, which consist of N inter-
est points in X and L interest points in Y, interest point groups
are formed by iterating through the candidate correspondences.
For each candidate correspondence {u,p}, where u and p are
interest points in X and Y respectively, interest point groups

Interpolated correlation map from S, coarse scales



can then be formed:

if 0
and if &,

n=1...N —>nUN,
l=1...L—=1UL,

< Tsx

< Tsy, (13)

where N, is the group defined for w containing all the interest
points in X with a pairwise distance d,, ,, between n and u
below a threshold of 74, . Similarly, L, [ and 74, are defined
for the interest point p in Y as well. Note that n and [ are
interest points in the set of candidate correspondences. Thus,
the number of groups formed depends on the number of unique
interest points present in the candidate correspondences (with
a maximum of 2N, groups).

The proposed matching framework then considers the pair-
wise spatial constraints between the interest points in N,, and
L, and the pairwise similarity scores for all possible pairwise
combinations (which are also candidate correspondences) are
collected as votes. A pairwise similarity space K(w,\), as
defined in section III, is used to accumulate these votes
(12). This is then repeated for all IV, candidate correspon-
dences, with the pairwise similarity scores for all pairwise
combinations of candidate correspondences in the respective
groups being collected in C(w, A). The pairs of apparently
valid correspondences are then found by searching for maxima
in the K-space which are larger than 7,. Note that K is a
2D space which collects the pairwise similarity scores of all
the candidate correspondences based on the pairwise spatial
constraints defined over a local region. Thus, searching for
clusters in K is equivalent to finding pairs of correspondences
which satisfy similar spatial constraints.

Here, /C is quantised into bins and we can use either a mean-
shift mode estimator [38] or a histogram-based method to find
the maxima. 1) is calculated from the correlation map v(w, \)
(using equations (11) and (12) based on the defined spatial
constraints in (7) and (8)). In this paper, we use a histogram-
based method and search for the maxima of a smoothed
histogram containing the votes in K.

E. Implementation details for polar matching

In this section, we elaborate on several implementation
details of the extended polar matching technique of section
IV-C which affect the performance and efficiency of the
proposed matching framework. To form the correlation map
v(R, s), we have assumed that the same set of interest points
will be detected across the scales S,. This assumption can
result in errors when matching objects of different scales.
Since small objects tend to have fewer interest points, using the
same number of interest points from a fine scale may result in
more false matches. Quantisation errors will also be introduced
since the image is downsampled, and features detected at the
coarse scale might be less distinct or informative.

To address this, we select the scales S, as 2(0:0:0,0-5,1)
instead of 2(~1:=0-5.0.0.5.1) “gych that the p-matrices used are
from the original scale, S, = 1, instead of S, = 27! or 2703,
so as to prevent information loss due to subsampling errors.
We can then scale the other image with S, = 2(1:0:5:0.0.0) gych
that we follow the original design of having 5 scale changes

from 0.5 to 2 at intervals of 20, accounting for multi-scale
samples for both X and Y.

Unlike SIFT descriptors which are formed based on an
estimated scale obtained by searching for extrema in scale-
space, our multi-scale design adopts a different approach
by considering a range of scales for both X and Y. The
p-matrices considered are all formed using the third and
fourth levels of the DTCWT decomposition of X and Y
for S, and S; respectively. Improved tolerance to changes in
scale could potentially be achieved by considering p-matrices
formed using different levels of the DTCWT decomposition.
However, we have found this not to be necessary since we are
using the spatial constraints in (8) to select the appropriate
change in scale between features over the range of 0.5 to 2.
Also, considering p-matrices formed using different levels of
the DTCWT decomposition starts to become computationally
costly, since we have to consider multiple correlation maps v
for the p-matrices. In practice, we found that the choice of p-
matrices formed using third and fourth levels produced good
results experimentally.

The computational efficiency of the proposed framework
can be improved by choosing the appropriate levels of the
DTCWT to form the p-matrices at scales S, and S; for the
image pair X and Y. More specifically, we only require 2
DTCWT decompositions per image, one at the original scale,
the other at a scale factor of 29°. The p-matrices at scales S,
of X can then be obtained by selecting the levels as: [x =
3for S, =1and Iy = 2 for S, = 2 from the DTCWT
decomposition of X, Ix = 3 for S, = 2°% from the DTCWT
decomposition of scaled X (by a factor of \/5), where [ x is the
level of the DTCWT decomposition, [x = 1 being the finest.
Similarly for Y, the p-matrices at scales S; can be obtained
by selecting the levels as: [y = 3 for S; = 1 and ly = 2 for
S; = 2 from the DTCWT decomposition of Y and ly = 3
for S; = 29 from the DTCWT decomposition of scaled Y’
(by a factor of \/ﬁ), where [y is the level of the DTCWT
decomposition of Y, [y = 1 being the finest.

We also consider that interest points detected at different
scales might differ significantly, and using the same set of
interest points across S, can also lead to poor estimates of
candidate correspondences between images. This is especially
the case when there is a large difference in the number of
interest points. To address this issue, we collect more interest
points when one image has significantly fewer interest points
than the other. In our tests, when My < Ny /2 (My and Ny are
the numbers of interest points in images Y and X), we collect
more interest points by upsampling Y by 2. We typically
consider X as the ‘reference’ image and Y as the ‘test’
image. Thus, the resampling only applies when the ‘test’ image
produces fewer interest points than half the number produced
by the ‘reference’ image. Since we are matching single objects
with distinctive features across different viewpoints in our
tests, we only consider the resampling stage when the scale of
the test image is smaller than or equal to that of the reference
image.

We find that the above changes to the extended polar
matching technique produce correspondences that are more
tolerant to changes in scale, thus resulting in better matching
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Fig. 5.

Summary of the matching algorithm. Top-Left Two images X and Y, containing interest points with N, candidate correspondences. Top-Right

Matching a group N, in X to a group L, in Y. Btm-Left Collect pairwise similarity scores for all pairs of correspondences in N,, and Lgq, where {u, g}
is also a candidate correspondence. Btm-Right Repeat the process for all Ny, candidate correspondences using the groups formed to obtain all the pairs of
correspondences, where N, and L; represent arbitrary groups in X and Y respectively which are candidate correspondences.

performance. By choosing an appropriate initial threshold 7,
for polar matching to select candidate correspondences and
an appropriate distance threshold 75 to form interest point
groups, we can ensure that the proposed framework produces
a reasonably large number of correct correspondences, while
being computationally comparable to the other algorithms.
From the calibration tests in section V-A, we found that a
choice of 7, = 0.65 and 75 = 0.1 times the maximum
dimension of the images produced good results.

F. Discussion

Before presenting the experimental results, we highlight
several important points regarding the algorithms in sections
II-B and IV. Firstly, we emphasise that both algorithms have
the same pairwise similarity scores 1, as defined in (3) and
(12). In both cases, v is the mean of the feature similarity
score v weighted by the orientation consistency y. Note that
1 is not constrained directly by the scale change between
the features, which could be accounted for by defining an
additional scale consistency measure. The difference in (3)
and (12) is that in (12), ¢ varies as a function of scale
change and relative orientation between features because of the
feature similarity score + defined in (11). In (3), ¢ is defined
for scale and rotation-invariant features such as SIFT, thus ~y
is calculated directly as the Euclidean distance between the
features, without the need to consider its variation with scale
and orientation. We do not require the scale and orientation
of individual features in (12), since we estimate these when
we match a pair of features in one image to a pair in another
using w and A in (2), which depends only on the line vectors
between the pairs of features. Note that 1) is the same for
the algorithms in sections III-B and IV, and thus it is fair to
compare their performance, as discussed in section V.

Secondly, we emphasise that the proposed algorithm does
not rely on the feature detector to provide estimates of the scale

and orientation of features. This is because unlike the SIFT
descriptor, which relies on the DoG detector to estimate a scale
for the feature, and subsequently forms the descriptor at the
estimated scale such that SIFT is nominally scale-invariant,
the extended polar matching technique does not require the
feature detector to estimate a scale for the feature descriptor.
Instead, we consider the feature over a range of sampled
scales. We note that an appropriate feature similarity score
can be obtained for the proposed algorithm by using w and A
to estimate the relative orientation and change in scale between
features, calculated according to the line vectors between the
feature pairs.

Lastly, we note that to obtain the set of candidate corre-
spondences using polar matching, the orientation and scale
of individual features are also not required. Candidate cor-
respondences are obtained by selecting the pairs of interest
points with correlation maps having a peak larger than ..
The correlation maps for the candidate correspondences are
then used to select an appropriate correlation score in (11)
based on w and A in the proposed pairwise algorithm.

To conclude our discussion, we highlight how the proposed
algorithm differs from other algorithms that consider the
pairwise relationships between features, such as [8], [22]. In
[22], the authors defined a pairwise similarity score based on
the change in scale, change in distance and change in heading
between features, which is similar to the defined spatial
constraints in (4), (7) and (8). [8], [22] also both considered the
pairwise relationships between pairs of features, and searched
for correspondences by finding strongly connected clusters in
the defined affinity matrix.

Despite the similarities, there are several significant differ-
ences between our work and [8], [22]. Firstly, the pairwise
similarity score 1 in section III is defined differently. Our
work considers the soft consistency measure x in (4) defined
using the difference in feature orientation and rotation of



the line vectors between pairs of correspondences, which is
used as weights to v in (3). This is different from [22],
which formulated the pairwise similarity score as a Gaus-
sian function of the defined semilocal spatial relationships.
Secondly, the proposed algorithm in section IV formulates a
pairwise similarity score ) that is independent of the scale and
orientation of individual features. Instead, it is calculated based
on the rotation and length-ratio of the line vectors between
pairs of features, using (7) and (8). This is different from
[22], which considered the orientation and scale of features
provided by feature detectors and descriptors in the pairwise
similarity score. Thirdly, the proposed algorithm searches for
correspondences in a similarity space with w and A in (2) as its
dimensions. This is different from both [8], [22], which used
graph-based approaches to find strongly connected clusters in
the affinity matrix. For these reasons, we only compared the
proposed algorithm with [8] by using the defined pairwise
similarity score in (3) to form the affinity matrix, since [8],
[22] have similar approaches to finding correspondences in the
affinity matrix. By using the same pairwise similarity score i
in (3), we try to ensure a uniform comparison between the
algorithms. We also compare the proposed algorithm with the
Hough transform algorithm in [4], [20].

V. EXPERIMENTAL RESULTS

We compared the performance of our proposed pairwise po-
lar matching framework with four other matching algorithms:

1) The basic unconstrained SIFT matching algorithm from
[4] (uc-siff), which uses the nearest-neighbour distance
ratio threshold 7, as a baseline algorithm. In our exper-
iments, 7,, = 0.8 such that a large number of candidate
correspondences were considered.

2) The spectral technique in [8] (sp-siff) using SIFT fea-
tures with bistochastic normalisation [17]. The candidate
correspondences were selected with 7,, = 0.8 and pair-
wise affinities defined as (3).

3) An algorithm based on the proposed algorithm in [4],
[20] (hough-sift). This algorithm refines the matches
produced by uc-sift using a Hough transform to find the
parameters of an affine transform between the candidate
correspondences. Here, 7. = 0.8.

4) Our earlier pairwise algorithm from [23] (pw-sift) which
uses SIFT features for all matching and the distance-
based technique in section IV-D to form interest point
groups. In our experiments, 7. = 0.8, and 75 = 0.1.
The scale factor o in thefeature similarity score (5) was
set to 0.75. We accepted votes in (w, \) with pairwise
similarity score (3) larger than a threshold 79 = 0.8.

We define the proposed extended polar matching technique
as pmat, and the pairwise framework based on this as pw-
pmat. When we include the resampling process, which is
described in the second-last paragraph of section IV-E and
is used to overcome problems of small scale in the test image,
we denote the framework as pw-pmatsc. For the SIFT-based
algorithms, interest points were detected using the standard
Difference-of-Gaussians (DoG) detector from [4]. To ensure a
fair comparison, the same sets of interest points produced by

this DoG detector were also used for the proposed framework,
without using their scale and orientation. To compare the
algorithms’ performance, we calculate the correspondence
ratio r. (inlier ratio), defined as:

p— NC
=7

where N, is the number of correct or true correspondences
(inliers), and N; the total number of output correspondences.
rc is an appropriate performance measure since we are con-
sidering the improvements that these algorithms can bring to
a set of candidate correspondences, and it has been used to
measure the quality of matching algorithms, most recently
in [39]-[41]. We also consider N,, since large r. and N,
imply that the algorithm is capable of producing a reasonably
large number of robust correspondences while removing false
correspondences (outliers) effectively.

We selected 30 objects from the database in [25] which can
be found at http://www-sigproc.eng.cam.ac.uk/~esn21. The
database contains images of different objects that were taken
as they were rotated on a turntable at intervals of 5° and
each image is 1024 x 768 pixels. We have selected objects
in the database that have distinctive features since we are
using interest points and descriptors to find correspondences.
In particular, we left out objects with near-spherical surfaces
and specular reflections. Since the same objects have been used
for all the tests, we believe this to be a fair comparison of the
algorithms. Interest points were detected from a rectangular
region selected by hand around each object, such that only
features from the objects are being considered for matching.
Some of the objects are shown in figure 6.

We adopted an evaluation framework similar to that pro-
posed in [25] using epipolar constraints of the calibrated
stereo rig, and we calculated the correspondence ratio when
test views are matched to a selected reference view of each
object. Note that the test views of each object considered have
viewpoint changes of —45° to 45° at intervals of 5°, relative
to the reference view of the object.

(14)

Te

Fig. 6. Examples of test objects and the regions selected for interest points.

A. Calibration tests

First, we performed calibration tests to select parameters
for pw-pmat. We tested the selected 30 objects with reference
views at the viewpoint of 0°. Test views were taken at
+45°,430°, £15°, at the same scale as the reference view
(i.e. no change in scale). To select an appropriate threshold
7. for the maximum correlation score of pmat, we varied 7.
from 0.5 to 0.85 at intervals of 0.05, and observed the V.
produced. As shown in figure 7a, we observe that N, remained
approximately constant as 7, is increased initially, while above
T. ~ 0.65, the number of candidate correspondences tends
to decrease. We also observe in figure 7b that the average



computation time for pmat becomes approximately constant
when 7. > 0.65. Thus, a suitable choice of 7. will be 0.65 for
selecting candidate correspondences pmat.

Next, we calibrated pw-pmat by varying 7s in the range
of 2777675 =2 ysing candidate correspondences selected
with 7. = 0.65. The scale factor ¢ in the feature similarity
score (10), was set empirically to 0.85, and we accepted
votes in K(w, \) with pairwise similarity scores, ¢ from (12),
larger than a threshold 7, = 0.7. As shown in figure 7c, N,
varies with 75, and 75 was selected such that approximately
50% of correct correspondences in N, were retained during
calibration. The other algorithms are calibrated to produce the
same number of correct correspondences approximately as pw-
pmat. For pw-pmat, we observe that 75 ~ 0.1 is an appropriate
selection, since the computation time increases significantly
above this.

We also observe in figure 7d that the computation time for
the pairwise matching stage increases with 75. In particular,
the computation time increases rapidly when 75 > 0.1. From
figures 7b and 7e, we observe that the computation time for the
pairwise matching stage is comparable with the polar matching
stage for 7. = 0.65 and 75 = 0.1 when the viewpoint change
is large. To investigate the differences between using pmatsc
and pmat for selecting candidate correspondences, we consider
A = —1, since the resampling stage in pmatsc was designed
specifically to account for large changes in scale between the
features to be matched. In figure 7f, we compare N, produced
by both polar matching techniques as 7. is varied. We observe
that pmatsc generally increases N.. However, the increased
N, has a tradeoff of increased computation time, as shown in
figure 7g. This is the case for pw-pmatsc as well, as shown in
figure 7h, where it has longer computation times compared to
pw-pmat.

B. Viewpoint change

Next we tested the effects of viewpoint change on the
correspondences produced. The test views of each object
considered have viewpoint changes of —45° to 45° at intervals
of 5°, relative to the reference view of the object. Each test
view was scaled in log, intervals of 0.3 from —0.9 to 0.9
and the test was repeated 3 times for each scaled image, with
the reference view at viewpoints of —30°, 0° and 30°. The
average correspondence ratios 7. of the algorithms at each
scale interval across all viewpoints are compared in figure
9. From the results, we observe that the pairwise methods
(pw-sift, pw-pmat, pw-pmatsc) generally perform better across
the tested scales and viewpoints, which imply that the use of
pairwise spatial constraints with our approach can produce
more robust correspondences by removing correspondences
that do not satisfy the defined constraints. When the change
in scale A\ is small, pw-pmat, pw-sift and hough-sift have
similar r., but when A is large, the performance of hough-sift
decreases, while sp-sift improves. pw-pmatsc performs better
than pw-pmat when ) is small and it has a more consistent r,
across the test scales compared to pw-pmat, which indicates
that the proposed improvements in section IV-E contribute to
a more consistent performance across changes in scale.

More importantly, we observe that pw-pmat and pw-pmatsc
produced large 7. across all test scales, and the r. decreased
more gradually than the other algorithms when the viewpoint
angle is increased. This indicates that the defined spatial
constraints result in a matching framework that is tolerant of
distortions caused by changes in scale and viewpoint of an ob-
ject. We also compared the number of correct correspondences
N, produced by the algorithms in figure 10. Generally, pw-
pmat and pw-pmatsc produce more N, compared to the other
algorithms, which show that the r. observed has not been
skewed by small values of N, and NN;. This suggests that the
proposed pairwise matching technique is capable of producing
a good number of inliers, while removing the outliers using
the defined spatial constraints more effectively than the other
matching algorithms. pw-pmatsc produced more N, than pw-
pmat due to the resampling stage, and we also observe that NV,
remains approximately consistent across scales for pw-pmatsc.

In general, we observe that the curves for the tested al-
gorithms are approximately symmetric about 0° viewpoint
change, which is expected due to the approximate symmetry
of the objects. pw-pmatsc and pw-pmat also produce similar
correspondence ratios for uniform changes in the log, scale,
with A = —0.9,—-0.6, —0.3 having approximately the same
correspondence ratios as A = 0.9,0.6, 0.3 respectively.

Based on our experiments, we have shown that the proposed
matching framework can produce more robust correspon-
dences than algorithms that rely on the orientation and scale
estimated by interest point detectors. Note that the improved
performance of pw-pmat and pw-pmatsc comes with a tradeoff
of increased computation time as shown in figure 8. The
computation time considered here is the total time taken for
both the initial feature matching stage and the subsequent
matching stage using spatial information for all the matching
algorithms, as shown in figure 1. Typically, these stages form
the early stages of various image processing and computer vi-
sion applications, such as object detection algorithms. We also
observe in figure 8a that pw-pmatsc has longer computation
times than pw-pmat due to the resampling stage. Thus, pw-
pmat may be more appropriate for most image processing and
computer vision applications, since pw-pmat and pw-pmatsc
have similar 7. for most test scales.

Note that at small viewpoint changes (£5°), the pairwise
algorithms, pw-pmat, pw-pmatsc and pw-sift, have longer com-
putation times than other algorithms since the algorithms are
considering the same image and they need to consider a large
number of pairwise combinations of interest points. However,
this is not a situation which will typically arise in complicated
image processing and computer vision applications, since we
expect distortions to be present between the test and reference
images in practice. Thus, it is more important to compare the
algorithms’ computation times at larger viewpoint changes.
In general, the choices of 7. = 0.65 and 75 = 0.1 for
pw-pmat produced good results experimentally, along with
a reasonable increase in computation times. The increase in
computation time is likely to be justified, considering the
improved matching performance of the proposed algorithm.
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Fig. 7. Calibration tests using 30 images (objects) at each viewpoint. 7., the threshold for accepting correspondences produced by polar matching, is varied
from 0.5 to 0.85 at intervals of 0.05. 75, the distance threshold for interest point groups for pairwise matching, is varied from 2~7 to 22 at log, intervals
of 0.25. (a) Average number of correspondences produced by polar matching for A = 0 per image (b) Average computation time of polar matching for A = 0
per image (c) Average number of correspondences produced by pairwise matching for A = 0 per image (d) Average computation time of pairwise matching
for A = O per image (e) Average computation time of pairwise matching for A = O for small 75 per image (zoomed in version of (d)) (f) Average number

of correspondences produced by polar matching per image, with and without resampling, for A = —1 (g) Average computation time of polar matching per
P! p Y P! g P 4 pling g 8 p 3 gp
image, with and without resampling, for A = —1 (h) Average computation time of pairwise matching per image, using candidate correspondences produced
8 pling g p p gp g g P! p
by both versions of polar matching, for A = —1
A=-0.9 A=0 . . .
10' - v 10' - — Alternatively, we select k best correspondences if £ < 5. This
., ya \a B - /.(’)\\. B follows the approach adopted in [2] where various ways of
10 s N - 10 LA R e . . .
g faeer o pupmais  E pAmoaet Al v 4 = pu_pmaisd selecting correspondences were considered for the evaluation
g gpetmeeee eapoea oy § P ke of feature descriptors, including the use of nearest-neighbour
3" R ST AR AN . . . .
2 2 |~ oo, distance ratio, the nearest-neighbour, and distance threshold.
£ ~ £ 7 N Te . . . .
EXE Qg *\’\tH4HW 20 T %o Our approach of selecting 5-nn which satisfy a certain thresh-
£ ¥ N £ [ L . .
ém—@ meal gwg old is similar to the use of a distance threshold, and it
& & achieves a good balance between increasing the number of
105 25 105 = correct correspondences considered, while maintaining reason-

20 0 20 20 0 20
Viewpoint change (degrees) Viewpoint change (degrees)
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scale. The computation times include both the initial single feature matching
stage and the subsequent matching stage using spatial information.

C. k-nn tests

Lastly, we conducted tests for viewpoint change using
alternative ways of selecting candidate correspondences in the
first stage of figure 1. Instead of just the nearest neighbour,
we considered the case of selecting up to 5 nearest-neighbours
(5-nn) as candidate correspondences, with feature similarity
scores which satisfy a certain threshold, for each feature in
the reference view.

More specifically, if there are k candidate correspondences
which satisfy the threshold 7. for each feature in the refer-
ence view, we select the 5 best correspondences if £ > 5.

able computation times. Since we are using the same method
of selecting candidate correspondences for the algorithms, we
can still ensure a fair comparison of the algorithms without
considering all the candidate correspondences selected with
a given threshold. Generally, considering all candidate cor-
respondences which satisfy the threshold is computationally
expensive for the matching algorithms.

For the SIFT-based algorithms, a calibration process similar
to the one in section V-A is performed, and we set the
distance threshold such that the Euclidean distance between
candidate correspondences is always less than 0.5. For pw-
pmatsc and pw-pmat, we set 7. = 0.65 to select the candidate
correspondences. The remaining parameters for the algorithms
remain the same as defined earlier in section V-B, along with
the same experimental setup.

This test increases the number of false correspondences and
correct correspondences present in NV,,, and good matching
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Fig. 10. Average number of correct correspondences per test view for viewpoint change of —45° to 45°. In general, pw-pmat produces more correct

correspondences compared to other algorithms. pw-pmatsc produces the largest number of correct correspondences due to the additional resampling stage.

algorithms are expected to remove the increased number of
false correspondences, while maintaining a high r, and N,.
By comparing the algorithms’ performance with larger N,,,
we can reinforce our observations and show which algorithms
are capable of producing robust correspondences.

We observe in figure 11 that pw-pmat and pw-pmatsc
have higher r. compared to the other algorithms across the
test scales, which indicate that the defined spatial constraints
can remove false correspondences effectively, while retaining
the correct correspondences. The SIFT-based algorithms tend

to perform poorly, which suggests that the use of spatial
constraints to select the change in scale and relative orientation
may be a better approach for matching. pw-sift performs
better than hough-sift and sp-sift for small A\, however as
A is increased, sp-sift performs better. hough-sift performs
poorly at large A, which suggests that the algorithm may
not be effective at removing outliers when more outliers
are present. In contrast, sp-sift performs better with higher
r¢, which suggests that the algorithm is more effective at
removing outliers. We also observe that pw-pmat and pw-



pmatsc produced similar results to section V-B for A\, which
indicates that they can perform consistently even with more
candidate correspondences.

Furthermore, we observe from figure 12 that pw-pmat and
pw-pmatsc generally produced more N. compared to the other
algorithms. pw-sift also produced more N, than hough-sift and
sp-sift, with hough-sift having the smallest N.. Thus, even
though pw-sift produced lower r. for large A, it produced
more N, than sp-sift. Generally, our results show that when
more candidate correspondences are being considered, the
proposed pairwise matching framework has better matching
performance compared to the other algorithms, which have
significant differences in performance compared to figure 9.

VI. CONCLUSIONS

Matching features based on local appearance alone is often
insufficient to produce robust and accurate correspondences
under different conditions, such as geometric distortions or
viewpoint changes. The use of additional information, such
as the orientation and scale of features, can result in bet-
ter correspondences. In this paper, we develop a pairwise
matching framework that defines spatial constraints on the
relative orientation and change in scale between pairs of
correspondences, such that robust correspondences can be
found by searching for clusters in a 2D pairwise similarity
space. The proposed framework does not depend on orienta-
tion and scale of individual features estimated by the inter-
est point detector, thus avoiding any undesirable fluctuations
in matching performance due to poor orientation and scale
estimation. This additional benefit of the framework results
from the defined pairwise spatial constraints. Features based
on DTCWT coefficients (p-matrices) and polar matching are
used such that the feature similarity score between candidate
correspondences is calculated efficiently as a function of both
relative orientation and change in scale. Thus, the pairwise
similarity score can be determined based on the defined spatial
constraints on the relative orientation and change in scale
between pairs of actual correspondences. Our tests have shown
that the proposed framework performs better than a number
of other matching algorithms under viewpoint changes. This
improvement can be attributed to both the spatial constraints
used and the search for clusters in the similarity space. The
proposed framework also provides an alternative to relying on
the estimated orientation and scale of a feature during feature
detection. With better correspondences, the performance of
subsequent computer vision and image processing tasks will
improve as well. As an extension to the proposed algorithm,
future work could involve testing the matching algorithm in
cluttered scenes and to include the pairwise similarity score
in a classification system.
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Fig. 12. Average number of correct correspondences per test view for viewpoint change of —45° to 45° using 5-nn. In general, pw-pmat produces more

correct correspondences as compared to the other algorithms. This suggests that the proposed framework is able to remove outliers effectively, while retaining
a large number of correct correspondences without having to rely on the estimated orientation and scale of interest points.



