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ABSTRACT

It is well known that many more than three or four spectral measure-
ments are required for accurate measurement of color. Previous work
has shown seven to ten measurements can yield accurate results on
average, but with significant numbers of errors above the threshold
of obvious visual detection. Furthermore, the filters used for these
measurements are very difficult to fabricate. We show that such fil-
ters are not needed and, in fact, have much poorer performance, in
perceptual quality measured in ∆Eab, than simple narrow-band fil-
ters. This is especially true in the presence of Poisson noise at a
level common in current digital cameras. In realistic Poisson noise,
our filter sets of up to 12 filters allow average ∆Eab values around
0.5, with maximum errors below 3.

Index Terms— Color image processing, spectral measurement

1. INTRODUCTION

It has been known for many years that in order to capture accurate
color under varying illumination more than three or four color bands
are required [1, 2, 3, 4, 5, 7, 6]. Commercial cameras are currently
limited to this small number. Cameras used for archival recording
are designed to work with a single illuminant in a controlled en-
vironment with many more filters [8, 9, 10, 11]. In this work, we
consider optimal filters for cameras that can be used with varying
illumination. Such filters could be used with a color mosaic that is
larger than the current 2x2 arrays. Some work on larger arrays has
begun. These extend the number of bands to five to seven bands
and also address the necessary operation of demosaicking to obtain
spectral estimates for each pixel [14, 6]. For example, a simulated
4× 4 CFA pattern increases the number of measured spectral bands
to 5 with a gain in color fidelity [6]. Unfortunately, this is not suffi-
cient for the applications, such as textiles quality control [16], which
require higher color accuracy.

Reducing the number of bands improves spatial resolution. The
ultimate optimal trade-off in color accuracy versus spatial resolution
remains a problem for the future that is likely to be determined by
each manufacturer and relates to specific applications. The goal of
this work is to lay a foundation by considering the criteria for se-
lecting optimal filters for the fewest color bands required to obtain
accurate color estimates in a realistic environment.

The capture of color information for a single reflectance sample
by a P band sensor is modeled by

c = STLmr + η, (1)

where r is the N × 1 reflectance vector, Lm is the N × N diag-
onal matrix representing the spectral power of the illuminant used

for measurement, S is the N × P matrix representing the sensitiv-
ities of the P filter bands, η is the measurement noise, and c is the
P × 1 vector of measured values. The tristimulus values that define
the color in CIEXYZ space are defined by

t = ATLvr, (2)

where AT is the 3×N matrix of CIE color matching functions, Lv
is the N × N diagonal matrix representing the viewing illuminant,
t is the 3× 1 tristimulus vector.

It is clear that if the measuring illuminant is known and we can
measure N independent bands of the spectrum, we can reconstruct
the N -dimensional spectrum r and, thus, obtain perfect color mea-
surement. Of course, a goal is to determine if a relatively small num-
ber of bands, P << N , will allow sufficient accuracy. The accuracy
that is required is related to the perception of human observers. Thus,
this accuracy will be measured by transforming the tristimulus val-
ues to CIELAB space and using the ∆Eab color difference formulas
[12].

The estimate of the reflectance uses the minimum mean square
error (MSE) method that is given by:

r̂ = ΣrS[STΣrS + Ση]−1(c− c̄) + r̄ (3)

where c is the recorded values of the filter array, Σr is the covariance
matrix of the reflectance ensemble, Ση is the covariance matrix of
the noise, c̄ is the mean of the recorded values over the reflectance
ensemble, r̄ is the mean of the reflectances.

2. FILTER DESIGN

The usual color filter design emphasizes creating filters that can in-
clude the space defined by the CIE color matching functions under
various illuminants [15] or spans a subspace defined by the statisical
characteristics of the reflectance data of interest [13]. The number
of filters will vary depending on the accuracy of the final estimate of
the spectrum that is desired. We will show that 12 or fewer simple
Gaussian shaped filters will permit estimation with an average ∆Eab
error of less than 0.5 and maximum error of less than 3.0. These filter
sets are easily approximated by current tunable methods [11].

Let us consider three ways of generating filters:

1. eigen filters: P non-negative filters created to span the P-
dimensional space defined by the eigenvectors associated
with the largest eigenvalues of the covariance matrix, ΣTr ,
of the training set of interest. To make the filters less suscep-
tible to noise, we choose the set of non-negative filters that is
most orthogonal,by minimizing the condition number of the
matrix containing the filters [13].



2. ALm filters: P non-negative filters created to span the P-
dimensional space defined by the union of spaces defined by
the color matching functions and the illuminants of interest,
{Lm}Mm=1, AM = [L1A,L2A, ...,LMAT ]. This set is a
simple modification of that used by [2]. We again adjust to
use the most nearly orthogonal set of non-negative filters that
span the column space of AM . See Section 3.2 for more
motivation.

3. Gauss filters: For the visual range of 380nm-730nm, we dis-
tribute the P filters uniformly and fix their standard deviation
at half the distance between centers. This covers the range
without leaving gaps. Experience has shown that this exact
formulation is not critical.

3. NOISE ANALYSIS

3.1. Measurement Noise

For practical applications, we need to consider the effects of both
measurement noise and quantization noise. Our work and others
[13, 17] have indicated that the measurement noise, which is Pois-
son, dominates the quantization noise in current cameras. Since we
are concerned with images captured by commonly available cameras
that use 12 to 14 bits in the raw mode, we use 14 bit quantization for
our simulations.

Previous work in choosing filters used 1% shot noise [13]. More
recent work with common, high-end cameras gives a better model
[16]. The relationship between the recorded pixel values, µ, and
their variances, σ2, was modeled by σ2 = αµ + β, where the β is
an offset applicable for measured data. Typical values for the model
were α = 0.4, and β = −20. The R2 value for the fit for a Nikon
D7000 was nearly 1.0. This was implemented in our simulations by
scaling our filtered values to the range of those of the camera. We
used a maximum camera value of 10000, rather than the absolute
maximum of 16383 for 14-bit data to enable the range to agree with
the data of [16]. Since the β offset is so small, we will omit it in the
simulations. The recorded value of the filtered spectra in the camera
domain is modeled as

tk = γck +
√
αγck η (4)

where ck is the ideal simulated output of the kth filter,
γ = maxcam/maxsim is the scaling factor used to adjust the range
of the Poisson noise to the correct range, η is white Gaussian noise
with zero mean and unit variance, and tk is the recorded signal. We
have used the scaled-Gaussian approximation to the Poisson distri-
bution, since our light levels are assumed to be large.

For use in the MSE estimate, Eq.(3), the covariance, Ση , which
is related to the Poisson noise, is estimated using a diagonal matrix
related to the variances of the noise in each filter measurement. The
MSE estimate for the simulations is

r̂ = ΣTrS[STΣTrS + α · diag(c)/γ]−1(c− c̄) + r̄ (5)

where c comprises the recorded values from the filter array, ΣTr is
the covariance matrix of the training dataset (estimator of Σr), c̄ is
the mean of the recorded values over the training set, r̄ is the mean
of the reflectances over the training set, and the constants α and γ
are defined by Eq.(4).

3.2. Metamerism Noise

We now introduce a different type of noise that is related to relation-
ships between the space defined by the measurement filters and the

space defined by the CIE color matching functions and the viewing
illuminant. From [15], we know the reflectance can be decomposed
into the portion in the visual space (span of row vectors of ATLv ,
denoted span(ATLv) hereafter) and its complement, known as the
black space. The tristimulus values depend only on the projection
of r onto the visual space. Call this projection operator, Pv , and
its complementary projection onto the black space, Pb = I − Pv .
Thus, we have

t = AT
v r = AT

v Pvr, (6)
where AT

v = ATLv .
The span of the measurement filters with the measurement illu-

minant, span(STm), where STm = STLm , may not match that of the
visual space under the viewing illuminant, i.e., span(AT

v ). In order
to capture all of the information needed to determine the tristimulus
values under the viewing illuminants of interest, the span(STm) must
contain the span of AT

k for all k illuminants.
Consider the projection of r onto the measurement space, de-

fined by the operator, Pm = Sm(STmSm)−1STm. Similarly, let Pv

define the projection onto the viewing space, the span(ATLv). Us-
ing linear methods, the best we can do from the measurements is to
recover the part of the reflectance that is projected onto the viewing
space. The spectral error is e = Pvr−PvPmr = PvPbmr, where
Pbm = I−Pm.

For a given viewing illuminant, we write r = Pvr + Pbr. Any
nonzero Pbr defines a metamer of Pvr, since ATLvPbr = 0. The
error depends only on the part of r that is in the black space of the
measurement space, in other words, the part of r that is in the view-
ing space but not captured by the sensors. This missing part of the
spectrum of r is what we will refer to as metamerism noise.

3.3. Relation of measurement and metamerism noise

The noisy, measured values are given in Eq.(1), where η is the Pois-
son measurement noise. The error in the tristimulus values is e =
AT
v (Pvr−PvPmr). By substitutions, this can be written as

e = AT
v Pbmr−AT

v Sm(STmSm)−1η (7)

where the first term is the metamerism error and the second term is
the error caused by measurement noise.

To get an idea of the relationship between the measurement
and metamerism noises for a given filter set, we compute the er-
ror variances of the two terms of Eq.(7). Since this error is in
the tristimulus domain, the signal is the correct tristimulus values,
i.e., AT

v r, for each measurement/viewing illuminant. For this ex-
periment, the viewing and measurement illuminants are the same.
Figure 1 summarizes the two types of error for four different illu-
minants D65 (daylight)[12], A (incandescent)[12], F2 (cool white
fluorescent)[12] and LED (white indoor lighting)[22], shown in Fig.
5, and the three filter sets. The illuminants are normalized to a
maximum value of 100. The errors for the Munsell sample training
set [18] are shown as Signal-to-Noise Ratio (dB), so higher is better.

SNRdB = 10 log10

(∑K
k=1 ||tk||

2∑K
k=1 ||ek||2

)
, (8)

where e is one of the two error types of Eq.(7).
We can see that the error is dominated by the measurement noise

for almost all filters. The metamerism SNR improves with the num-
ber of filters, as does the error caused by the Poisson noise. The
metamerism SNR is usually better for the filters derived from the
optimal eigenvectors, especially the ALm filter results. However,
the SNR from the Poisson noise is always better for the Gaussian
filters. This result is seen in the figure bars for measurement noise.



3.4. Figure of Merit Analysis

The figure of merit (FOM) of [21] can be used to predict the perfor-
mance of a filter set in the presence of noise. This measure includes
the effects of the distribution of the reflectance samples and the per-
ceptual space in which we are interested. The FOM has a range of
[0,1] with unity representing perfect color reproduction. In Figures
2 and 3, we give the figures of merit of the ”optimal” eigenvector-
based set, the ALm set and the uniformly spaced Gaussian set in
both the noiseless and noisy cases, respectively. From Figure 2, we
see that the ALm filters are always rated better in the noiseless case.
The Gaussian filters perform surprisingly well and are superior to
the eigen filters for higher numbers of filters. From Figure 3, we
see that the Gaussian filters are always rated better in the noisy case,
except for the D65 illuminant for 8 filters. In Figure 4, we show the
Noise susceptability, which is defined as the difference between the
Noiseless FOM and the Noisy FOM. The Gaussian set is clearly less
susceptible to noise than either the eigen or ALm sets.

Key for Figures: FNXXX indicates using N filters under illu-
minant XXX, e.g., F10D65 indicates 10 filters under D65, F8F2
indicates 8 filters under F2 illuminant.

Fig. 1. Measurement and Metamerism Signal/Noise Ratios

Fig. 2. Figure of Merit: Noiseless

4. RESULTS

We now test the performance of the filter sets on a standard spec-
tral dataset, the Munsell set of 1269 samples [18]. The filters are
required to work in a camera, so we must use different illuminants
to simulate different viewing conditions. Most current cameras have
adjustments for the viewing illuminant. Thus, we will assume for

Fig. 3. Figure of Merit: Poisson Noise

Fig. 4. Figure of Merit: Noise Susceptability

this work that the measuring illuminant and the viewing illuminant
are identical i.e., Lm = Lv . The problem of estimating the color
under mismatched illuminants is left for later work. We use the illu-
minants of Fig. 5.

We obtain the simulated measured data, Eq.(7), for each of the
filter sets, for each illuminant and for both the noiseless case and
the simulated Poisson noise. The estimation of the spectra and the
resulting CIELAB values use the MSE method of Eq.(5).

We used a training set of 300 random examples from the Mun-
sell reflectance database [18] for “optimal” filter design. We tested
the performance of the filters using a different set of 300 samples
from the same ensemble. This was repeated for five different ran-
dom samplings of the Munsell ensemble. For the noisy simulations,
we added five realizations of noise for each sample set (25 simu-
lations). Similar results were obtained training and testing using a
textiles database [19].

We show both the average ∆Eab error and the maximum error of
the test sets, i.e., the average over the five samples and the maximum
over the five samplings. The maximum error is particularly impor-
tant since it indicates the worst case. For evaluation in the textiles
industry, an error of greater than 1.0 usually means the difference
between acceptance and rejection.

The results shown in Fig. 6 demonstrates the ALm set performs
very well in the noiseless case, as expected from the analysis of
metamerism noise and the FOM. However, the Gaussian filter does
about as well for 10 and 12 filters. In the noisy cases shown in Fig.
7, the Gaussian filter sets substantially outperform the other two sets.



Fig. 5. Illuminants used for simulations

This is very good news, since those filters are much easier to fabri-
cate than the “optimal” filters. Note that we have truncated the per-
ceptual errors in the graphs to better show the combination of values
for noiseless and noisy. Perceptual values above 10 are obviously
easily perceived and the relative values above this are not important.

Fig. 6. ∆Eab errors: average and max, noiseless data

Since the estimation is based on minimizing the MSE of the
spectral error, it is reasonable to show those errors and relate them
to the perceptual errors of Figures 6 and 7. The spectral errors for
these cases are shown in Figure 8. We truncate the spectral errors to
better show the smaller values. It is noted that increasing the num-
ber of filters also results in lowering the MSE of the spectra for all
cases. However, we see that a smaller spectral error does not always
produce a smaller perceptual error. This is not surprising, since the
ALm sets were designed to cover the CIE color spaces, while the
eigen set was designed to reproduce the entire spectrum, which may
have a significant part in the black space.

We also tested to check the sensitivity of the method to specific
qualities of a particular ensemble. We varied the combinations of
training and test sets. We experimented with databases of textile
samples [19], Dupont Automotive paint samples [20] along with the
Munsell set in variations as training and test sets. We summarize
these results as: for fewer filters and the eigen and ALm filter sets
the effect of the mismatch is significant. For the Gaussian filters and

Fig. 7. ∆Eab errors: average and max, noisy data

Fig. 8. Average Spectral Errors: noiseless and noisy data

larger number of filters, the effect is quite small, since that filter set
does not depend on a training set.

5. CONCLUSIONS

We have shown that color filters designed to capture accurate color
in the presence of the dominant Poisson noise should not follow
the usual rules for optimization. The filters that are, in theory, best
matched to the data or color spaces are not optimal in the presence of
the actual noise encountered in common digital cameras. While this
work has not determined the most optimal filters, it has indicated that
the cheaper and more realizable narrowband filters are very good.

Preliminary investigations have shown that variations of the
width of the Gaussian filters does not improve performance above
that of the sets presented here. We have not investigated a change in
the spacing or distribution of the filters.

Our work has also indicated that there may be a limit on the
accuracy of high-resolution cameras with the current level of Poisson
noise. The noise may be reduced by averaging over a small region
of the same color. This represents a further trade-off between color
accuracy and spatial resolution.
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