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Abstract

In this work, we present a recent wavelet-based image restoration frame-
work based on a group-sparse Gaussian scale mixture model. A hierarchical
Bayesian estimation is derived using a combination of variational Bayesian
inference and a subband-adaptive majorization-minimization method that
simplifies computation of the posterior distribution. We show that both of
these iterative methods can converge together without needing nested loops,
and thus good solutions can be found rapidly in the non-convex search space.
We also integrate our method, variational Bayesian with majorization mini-
mization (VBMM), with tree-structured modeling of the wavelet coefficients.
This extension achieves significant gains in performance over the coefficient-
sparse version of the algorithm. The experimental results demonstrate that
the proposed method and its tree-structured extensions are effective for var-
ious imaging applications such as image deconvolution, image superresolu-
tion and compressive sensing magnetic resonance imaging (MRI) reconstruc-
tion, and that they outperform more conventional sparsity-inducing methods
based on the l1-norm.
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1. Introduction

Linear inverse problems appear often in many applications of image pro-
cessing such as restoration, motion estimation, reconstruction and segmenta-
tion, where a noisy indirect observation y, of an original image x, is modeled
as [1, 2]

y = Bx + n (1)

where B of size M×N is the matrix representation of a direct linear operator
and n is usually additive Gaussian noise with variance ν2.

In many scenarios, this inverse problem is highly ill-posed, i.e. the direct
operator does not have an inverse or it is nearly singular so that its inverse is
very sensitive to noise [3]. Thus it can only be solved satisfactorily by incor-
porating some regularization techniques, often using Bayesian inference with
prior information [4]. In previous works, it is found that wavelet-based tools,
such as the Discrete Wavelet Transform (DWT), are powerful for modeling
this prior knowledge [4, 5, 6].

In the past two decades, the DWT has been exploited for a wide range
of signal processing applications such as denoising, deconvolution, superres-
olution, compression and classification (see, e.g., [7, 8, 9, 10, 11]). The DWT
provides an efficient implementation based on a filter bank structure uti-
lizing decimation and two discrete filters, a low-pass and a high-pass filter
[12]. Wavelet-based regularization methods are good for image restoration
problems because wavelet coefficients tend to be sparse for most image types.

Although the DWT is compact, it suffers from shift dependency, lack of
directionality, oscillation and aliasing [13]. These will significantly constrain
the performance of a DWT-based signal processing system. To solve these
shortcomings, the dual-tree complex wavelet transform (DT CWT) first pro-
posed by Kingsbury, is a recent simple and efficient redundant transform that
has been widely used in solving diverse signal processing problems. The DT
CWT is better than the DWT for image restoration problems due to the fact
that directional filters encourage greater sparsity and complex coefficients
show more consistent persistence across scale. Other recent extensions of the
DWT, such as curvelets [14] and contourlets [15], would also work in this
context but few, if any, combine the efficiency and good performance of the
dual-tree approach.

It is known that the wavelet coefficients of natural images display non-
Gaussian statistics and their marginal distributions typically show a large
peak at zero with long heavy tails [16, 17]. To account for this non-Gaussian
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Figure 1: (a) 8×8 image with 3-level 2D DWT decomposition. (b) quadtree structure of
wavelet coefficients.

behavior, many univariate parametric models such as generalized Laplacian
distributions [17] and Bessel K form density models [18] have been previously
used to model the wavelet coefficients. However, these models do not consider
the persistence across scales of wavelet coefficients [19]. In fact, the energies
of wavelet coefficients of natural images exhibit a strong characteristic signal-
dependent structure. Fig. 1 depicts an example of quadtree structure that
corresponds to an 8×8 image with 3-level 2D DWT decomposition. To well
capture the statistical dependencies, bivariate shrinkage [20], Hidden Markov
Tree models (HMM) [21, 22] and Gaussian Scale Mixture Models (GSM)
[16, 23] have been widely applied to model wavelet coefficients whose energies
are not randomly distributed. Among those methods, it is acknowledged that
the GSM model can be used in the framework of sparse Bayesian learning
(SBL) where the sparsity is obtained by reweighting the Gaussian prior [24,
25]. Based on this connection, several researchers have shown that Bayesian
methods are applicable for wavelet-based regularization problems [4, 5, 16].

Recently, Bayesian group-sparse (or block sparse) modeling has emerged
where the sparsity is imposed on groups instead of individual components
[27, 28]. In [28], variational Bayesian (VB) inference is used for group-sparse
modeling and has been shown to find sparse solutions effectively. These
approaches can potentially be used in the wavelet domain since a pair of
coefficients at a certain location and adjacent scales are typically both large
or both small in amplitude [29]. Tree-structure existing in the wavelet domain
allows group-sparse models to be easily constructed and used. One of the
major contributions of our work is to investigate the use of Bayesian group-
sparse modeling for wavelet-based regularization problems.

In [26], we proposed a hierarchical Bayesian modeling of wavelet coef-
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ficients derived from a group-sparse GSM model. Based on a combination
of VB inference with a subband-adaptive majorization minimization (MM)
method, the VBMM method in [26] effectively simplifies computation of
the posterior distribution and finds good solutions in the non-convex search
space. In addition, the VBMM method has also shown good potential with
group-sparse modeling. In [30], we incorporate the VBMM method with a
wavelet tree structure based on overlapped groups, which leads to an im-
proved solution compared with unstructured coefficient-sparse modeling.

In this paper, we extend the ideas from [26] to generalize the VBMM
method and discuss the theoretical foundations in some detail. Different
from [26] and [30], we also include the results of image superresolution and
MRI image reconstruction. The proposed method can handle very large
data sets with a good performance and low computation cost. The paper
is organized as follows. Section 2 describes our proposed VBMM image
restoration framework. Section 3 discusses the tree-structured extensions
of VBMM. Experimental results are shown in Section 4. Conclusions are
provided in Section 5.

2. VBMM Image restoration

In this section, we describe our proposed VBMM Image restoration frame-
work and its tree-structured extensions.

2.1. Model Formulations

To obtain a wavelet-based formulation, we note that the image x can be
represented by wavelet expansion as x = Mw where w is a N × 1 vector
representing all wavelet coefficients, and M is the inverse wavelet transform
whose columns are the wavelet basis functions. In the case of an orthogonal
basis, M is a square orthogonal matrix, whereas for an over-complete dictio-
nary (e.g. a tight frame), M has N columns and M rows, with N > M [6].
The linear model in (1) then becomes

y = BMw + n (2)

and the resulting likelihood of the data assuming Gaussian noise n can be
shown to be

p(y|w, ν2) =
(
2πν2

)−M
2 exp{− 1

2ν2
‖y −BMw‖2} (3)
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A GSM model is now employed to model the wavelet coefficients. Inspired
from [28], we adopt a model which incorporates group sparsity such that wi,
the ith group of w, follows a zero mean Gaussian distribution with an (as
yet) unknown variance of σ2

i per element. Therefore the conditional prior of
w can be expressed as

p (w|S) =
G∏
i=1

N
(
wi|0, σ2

i

)
= N

(
w|0,S−1

)
(4)

where wi is a vector of coefficients comprising the ith group of size gi, S is a
diagonal matrix of size N ×N formed from the vector s of size G whose ith

entry is si =1/σ2
i , and G denotes the number of groups. The case G = N

corresponds to independent sparse modeling of the wavelet coefficients [28];
whereas the case, G = N/2 and gi = 2 for all i, can be used to model the real
and imaginary parts of G complex coefficients, each with a 2-D circularly
symmetric pdf. To be consistent with the following algebra, S needs to be of
size N × N and, when N > G, its diagonal must be an expanded form of s
where each si appears gi times for the elements of group gi, and N =

∑G
i=1 gi.

To proceed with Bayesian inference, the posterior distribution can be
calculated via:

p
(
w|y,S, ν2

)
=
p (y|w, ν2)× p (w|S)

p (y|S, ν2)
(5)

Because both p (y|w, ν2) and p (w|S) are Gaussian functions of w, the
posterior distribution can be rearranged into a Gaussian form as

p
(
w|y,S, ν2

)
= N (w|µ,Σ) (6)

where, from (3) and (4):

Σ =
(
ν−2MTBTBM + S

)−1
(7)

µ = ν−2ΣMTBTy (8)

The computation of the posterior variance Σ requires inversion of the N ×N
square matrix (ν−2MTBTBM + S). This operation is not computationally
feasible for large images and 3D datasets, as N is often ∼ 107 or more. Here
we adopt the MM technique from [31], together with the recent subband-
adaptive MM from [32, 33] to derive our fast algorithm. The aim is to
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replace the troublesome (MTBTBM) term in (7) with the purely diagonal
Λα, as in (16).

To derive MM from a Bayesian viewpoint, we now introduce the following
approximation model for the posterior distribution of w and the new hidden
variable z:

p
(
w, z|y,S, ν2

)
= p (z|w)× p

(
w|y,S, ν2

)
(9)

where

p (z|w) ∝ exp{−(w − z)T
Λα −MTBTBM

2ν2
(w − z)} (10)

Note that taking the negative logarithm of both sides of (9) will give a
similar surrogate function to that proposed in [32, 33]

Jα(w, z) = J(w) + (w − z)T
Λα −MTBTBM

2ν2
(w − z) (11)

where Jα(w, z) = − ln p(w, z|y,S, ν2) and J(w) = − ln p(w|y,S, ν2) from
(6). Λα is a diagonal matrix formed from a vector α whose elements αj
may be minimized independently for each subspace/subband j of M, such
that Λα −MTBTBM is just positive definite. This property ensures that
Jα(w, z) > J(w) for any w 6= z, and Jα(w, z) = J(w) for w = z [33], and
hence produces monotonicity of the decay of J(w), since for tth iteration [6]

J
(
z(t+1)

)
= Jα

(
z(t+1), z(t+1)

)
≤ Jα

(
z(t+1), z(t)

)
≤ Jα

(
z(t), z(t)

)
= J

(
z(t)
)

(12)

The first inequality results from Jα(w, z) ≥ Jα(w,w) = J(w) for any w
and z. The second inequality comes from the fact that Jα

(
w, z(t)

)
attains

its minimum for w = z(t+1) according to the definition of a MM iterative
algorithm [6]:

z(t+1) = arg min
w

(
w, z(t)

)
(13)

The use of (11) is known as the subband-adaptive MM technique. Related
algorithms are called subband-adaptive iterative shrinkage/thresholding (SIST)
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algorithms [32, 33, 34]. In [33] and [34], fast algorithms for computing Λα

are proposed. We refer the reader to Appendix 6.1 for more detailed discus-
sion where we summarize ways of selecting Λα for both convolutional and
non-convolutional kernels.

Because p (z|w) ∝ N
(
w|z, ν2(Λα −MTBTBM)−1

)
and p (w|y,S, ν2),

given by (6), (7) and (8), are Gaussian functions of w, the approximation
model p (w, z|y,S, ν2) is also a Gaussian distribution and, when z is given,
we can rearrange (9) into the Gaussian form:

p
(
w|y, z,S, ν2

)
= N

(
w|µ,Σ

)
(14)

with

µ = ν−2Σ[(Λα −MTBTBM)z + MTBTy] (15)

Σ = (ν−2Λα + S)−1 (16)

where Σ
−1

is now purely diagonal and easy to invert. This gives the subband-
adaptive MM technique in a Bayesian framework as introduced in [26], whose
convergence rate is improved by keeping the spectral radius of the matrix
(Λα −MTBTBM) small.

In the above approximation model for p (w|y, z,S, ν2), it is required to
estimate the inverse signal variance S since we do not know it yet. In [35],
maximum a posteriori (MAP) estimation with an independent prior is used
to determine S. However, it is known that point estimates do not define much
of the available signal space, and better convergence is achieved if approx-
imate distributions of the posterior density are used. In fact, VB inference
possesses this property by providing a distribution that approximates the
posterior distribution of the hidden variables [36], and it has been shown in
[37] that VB inference can effectively smooth out local minima and help to
ensure that a near-global minimum solution is found. Compared with MAP,
VB inference can be seen as a more principled approach, which should find
improved solutions to inverse problems.

2.2. VB Continuation Strategy

In this section, we apply the VB approximation to derive the continuation
strategies of our model. To update the variables appearing in (9), we con-
struct a 3-layer hierarchical prior as described in [26]. To be more specific,
we impose a multivariate Gamma distribution for the inverse signal variance
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vector s (which is expanded into S for (4)) using shape parameter a and rate
vector b:

p(s|a,b) =
G∏
i=1

bai
Γ(a)

sa−1
i exp(−bisi) (17)

and a further Gamma distribution for b:

p(b|k, θ) =
G∏
i=1

θk

Γ(k)
bk−1
i exp(−θbi) (18)

When shape k and rate θ both tend towards zero, the Gamma prior on
p(b) tends to a noninformative Jeffreys prior [38], and therefore the mean of
signal variance σ2 approximately follows a noninformative prior. This means
that the posterior depends only on the data and not the prior, which is known
to strongly promote sparse estimates [39]. If prior knowledge is available
for the model, we can tune the hyperparameters so that the prior becomes
more informative. As a result, we can move between the informative and
noninformative prior flexibly using the 3-layer Gamma GSM model. Because
it often leads to simple closed-form solutions, we will use it in this paper
for encouraging sparsity. However, there are many alternative choices for a
sparsity-favouring prior that can be used for the GSM such as Multivariate
Laplace, Inverse Gaussian and Bessel function distributions [28].

Here we keep the noise variance ν2 ≡ β−1 as a user parameter in order to
be able to adjust the regularization strength. Note that although ν2 can be
estimated via Bayesian inference as discussed in Section 2.3, its estimate can
be inaccurate because of the difficulty of accurately separating broadband
signal components from noise. The complete graphical model is shown in
Fig. 2. As a result, the posterior of hidden variables now becomes

p (w, z, s,b|y, β) =
p(w, z, s,b,y|β)

p(y)

=
p (y|w, β) p (w|S) p(z|w)p(s|a,b)p(b|k, θ)

p (y)
(19)

where β ≡ ν−2. Note that the exact Bayesian posterior of (19) cannot be cal-
culated as the marginal likelihood p (y) is intractable [36]. To approximate
the posterior p(ξ|y, β) where ξ = {w, z, s,b}, we adopt the VB approxima-
tion, which provides a distribution q(ξ) to approximate p(ξ|y, β) [28, 36].
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Figure 2: The graphical model of linear regression with hierarchical priors. y and z are
Gaussian distributions, w is a GSM, s and b are Gamma distributions.

To be specific, q(ξ) is determined by minimizing the Kullback-Leibler (KL)
divergence between q(ξ) and p(ξ|y).

From the basic probabilistic theory, we can decompose the log marginal
probability using [40]

ln p(y) = L(q(ξ)) + KL(q(ξ)‖p(ξ|y)) (20)

with

L(q(ξ)) =

∫
q(ξ) ln

(p(ξ,y)

q(ξ)

)
dξ (21)

KL(q(ξ)‖p(ξ|y)) = −
∫
q(ξ) ln

(p(ξ|y)

q(ξ)

)
dξ (22)

By rearranging (20), we get

L(q(ξ)) = ln p(y)−KL(q(ξ)‖p(ξ|y)) (23)

When solving for the pdfs of the parameters in ξ, we want to build the
joint pdf q(ξ) which most closely matches the shape of p(ξ,y) for the given
y, i.e. which maximizes L(q(ξ)). This is equivalent to minimizing the KL

divergence [40]. Because ln(p(ξ|y)
q(ξ)

) ≤ p(ξ|y)
q(ξ)
− 1 and both q(ξ) and p(ξ|y) are

valid pdfs over ξ, we get KL(q(ξ)‖p(ξ|y)) ≥ 0. Since ln p(y) is a constant,
the maximum of L(q(ξ)) occurs when q(ξ) equals the posterior distribution
p(ξ|y), and then KL(q(ξ)‖p(ξ|y)) = 0 and L(q(ξ)) = ln p(y).

This can be viewed as a generalization of the Expectation-Maximization
(EM) algorithm such that the VB model only contains hidden variables and
no parameters [36]. This methodology is also referred to as nonparametric
distribution estimation in statistics [41]. Although we can calculate p(ξ,y)
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from the model, the true posterior distribution p(ξ|y) is intractable because
we do not know p(y). This means that q(ξ) cannot be simply obtained.
Therefore we consider a restricted family of distributions q(ξ) instead and
minimize the KL divergence for each member of this family [40]. By using
the mean-field approximation which assumes posterior independence between
different variables [28], we can then factorize q(ξ) into disjoint groups, so that

q(ξ) =
D∏
i=1

qi(ξi) (24)

where D is the total number of disjoint groups. For instance, in VBMM,
q(w), q(z), q(s) (and hence S) and q(b) are pdfs of disjoint groups from
q(ξ). The purpose is to find a set of qi(ξi), i = 1 . . . D, such that L(q(ξ)) is
maximized, so that q(ξ) ≈ p(ξ|y).

Based on this factorization, the distribution of each variable q(ω), ω ∈ ξ,
which minimizes (22) can be optimized as

ln q(ω) = 〈ln p(ξ|y)〉q(ξ\ω)

= 〈ln p(ξ,y)〉q(ξ\ω) + const (25)

where 〈·〉q denotes expectation over q and ξ \ ω means the set of ξ with ω
removed. The detailed proof is given in Appendix 6.2. By sequentially cal-
culating q(ω) for each ω ∈ ξ in turn, we obtain the following updating rules.

(i) Optimize ln q(w) using (5), (9) and (14)

ln q(w) = 〈ln p(ξ,y)〉q(z)q(s)q(b) + const

= 〈ln(p(y|w, β)p(w|S)p(z|w))〉+ const

= 〈ln p(w|z,y, β,S)〉+ const

= −1

2
wTΣ

−1
w + wTΣ

−1
µ+ const (26)

This represents a multivariate Gaussian distribution q(w) with mean µ and
covariance Σ. Thus the mean of w = µ, and hence

w(t+1) = 〈w〉 = µ(t) (27)
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where µ(t) is computed using the current estimates of S(t) and z(t) as in (15)
and (16):

Σ
(t)

=
(
βΛα + S(t)

)−1

(28)

µ(t) = βΣ
(t)

[Λαz
(t) −MTBT (BMz(t) − y)] (29)

(ii) Optimize ln q(z) using (10)

ln q(z) = 〈ln p(ξ,y)〉q(w)q(s)q(b) + const

= 〈ln p(z|w)〉+ const

= −1

2
zTΣzz + zTΣz〈w〉+ const (30)

This represents a Gaussian distribution q(z) where Σz = ν2(Λα−MTBTBM)−1.
Thus provided (Λα −MTBTBM) is positive definite, the mean of z occurs
when

z(t+1) = 〈w〉 = w(t+1) (31)

(iii) Optimize ln q(s) using (4) and (17)

ln q(s) = 〈ln p(ξ,y)〉q(w)q(z)q(b) + const

= 〈ln(p(w|S)p(s|a,b))〉+ const

=
〈 G∑

i=1

(gi
2

ln si −
1

2
si‖wi‖2 + (a− 1) ln si − bisi

)〉
+ const

=
G∑
i=1

((
a+

gi
2
− 1
)

ln si −
(〈‖wi‖2〉

2
+ 〈bi〉

)
si

)
+ const (32)

This is the exponent of the product of G Gamma distributions [36]. Thus
the mean of si for i = 1 . . . G, occurs when

s
(t+1)
i = 〈si〉 =

gi + 2a(
‖µ(t)

i ‖2 + tr[Σ
(t)

i ]
)

+ 2b
(t)
i

(33)

where µ
(t)
i and Σ

(t)

i are the components of µ(t) and Σ
(t)

corresponding to

group wi, and b
(t)
i = 〈bi〉 at iteration t. Note that the mean of a Gamma
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Algorithm 1 VBMM-based image restoration algorithm

1: Inputs: parameters for the sensing matrix B, observation y, Λα, a, k,
θ, β, initial estimations of z(0), s(0) and b(0).

2: while iterations t = 0 : tmax or w has converged, do

3: Σ
(t)

=
(
βΛα + S(t)

)−1

4: w(t+1) = βΣ
(t)

[Λαz
(t) −MTBT (BMz(t) − y)]

5: z(t+1) = w(t+1)

6: s
(t+1)
i =

gi + 2a(
‖µ(t)

i ‖2 + tr[Σ
(t)

i ]
)

+ 2b
(t)
i

for i = 1...G

7: b
(t+1)
i =

a+ k

s
(t+1)
i + θ

for i = 1...G

8: end while
9: Output restored image x = Mw

distribution p(si|a, bi) is given by 〈si〉 = a
bi

.

(iv) Optimize ln q(b) using (17) and (18)

ln q(b) = 〈ln p(ξ,y)〉q(w)q(z)q(s) + const

= 〈ln(p(s|a,b)p(b|k, θ))〉+ const

=
〈 G∑

i=1

(
a ln bi − bisi + (k − 1) ln bi − θbi

)〉
+ const

=
G∑
i=1

((
a+ k − 1

)
ln bi −

(
〈si〉+ θ

)
bi

)
+ const (34)

Thus each q(bi) is a Gamma distribution and the mean of bi, for i =
1 . . . G, occurs when

b
(t+1)
i = 〈bi〉 =

a+ k

s
(t+1)
i + θ

(35)

The updating procedure can be viewed as minimizing the KL divergence
with respect to each of the factors qi(ξ)i in turn. Therefore we aim to get a
close approximation of q(ξ) to p(ξ|y), within the limitations of the factorized
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form, (24). The key steps of VBMM-based image restoration algorithm are
shown in Algorithm 1.

Suppose after t iterations bi converges to a stationary point such that
b

(t+1)
i = b

(t)
i , then (35) can be substituted into (33), producing

(‖w(t+1)
i ‖2)

(
s

(t+1)
i

)2
+ (θ‖w(t+1)

i ‖2 + 2k − gi)
(
s

(t+1)
i

)
− (gi + 2a)θ = 0 (36)

where ‖w(t+1)
i ‖2 = (‖µ(t)

i ‖2 + tr[Σ
(t)

i ]). When θ → 0, (36) has a unique
solution as

s
(t+1)
i =

gi − 2k

〈‖wi‖2〉
(37)

It can be seen from (37) that as long as k < gi
2

the proposed method ap-
proximates an l0 norm by reweighting an l2 norm iteratively which can be
regarded as a relaxation of Iterative Reweighted Least Squares (IRLS) stud-
ied in [42]. It is also noted that if θ = 0, the solution does not depend on a.
However, in practice θ should be set just above zero in order for p(b|k, θ) in
(18) to be a proper pdf. Where additional prior knowledge exists, a, θ and
k can be chosen appropriately.

2.3. Estimation of Noise Variance

As discussed, we can keep the inverse noise variance β as a user parameter
to adjust the regularization strength. However for some applications, noise
variance is an unknown and potentially variable parameter, which must there-
fore be estimated. To estimate β, we first assume a Gamma distribution is
imposed for inverse signal variance β (β ≡ ν−2), such that

p(β|c, d) =
dc

Γ(c)
βc−1 exp(−βd) (38)

If we apply the same VB continuation strategy, we obtain that:

β(t+1) =
M + 2c

‖y −BMµ(t)‖2 + tr[MTBTBMΣ
(t)

] + 2d
(39)

Furthermore, if the value of Λα is properly set such that Λα −MTBTBM
is close to zero, the following approximation is obtained:

tr[MTBTBMΣ
(t)

] ≈ tr[ΛαΣ
(t)

] (40)
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Figure 3: Simple example of the non-overlapping transformation corresponding only to
levels 2 and 3 of the quadtree in Fig. 1(b), using the parent+1child grouping of Fig. 4(a),
δ = 1√

1+4ε2
, ε ∈ (0, 1].

This assumption is likely to be valid if most of the energy of MTBTBM
is compressed into the leading diagonal terms [35]. Accordingly, β can then
be estimated as:

β(t+1) =
M + 2c

‖y −BMµ(t)‖2 + tr[ΛαΣ
(t)

] + 2d
(41)

3. Extension for Tree-structured Modeling

To achieve the goal of a fully overlapped group sparse solution, it is possi-
ble to incorporate the VBMM model with a wavelet tree structure as shown in
[30]. Recent works have demonstrated that modeling wavelet parent-children
relationships can be viewed as overlapping group regularization [29, 43]. In-
spired from [43], we adopt a transformation to a non-overlapping redundant
space ŵ = Dw. To encourage the persistence of large/small coefficients
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across scales, where ŵ is a P × 1 vector that forms groups of wavelet coeffi-
cients in the non-overlapping space, and the sparse transformation matrix D
indicates the presence or absence of correspondence between the overlapping
and non-overlapping spaces. Unlike [30], in this paper we construct the D
matrix to be a Parseval tight frame such that DTD = I. A simple example
of this non-overlapping redundant transformation is shown in Fig. 3.

In this case, we set entries of the D matrix that correspond to the finest-
level coefficients as 1 and set entries that represent all parent coefficients as δ.
Because the magnitudes of the wavelet coefficients tend to decay across scale
[22], we further introduce a parameter ε ∈ (0, 1] to adjust the ratio between
the magnitudes of the parent coefficient and its replicated copies, 4 copies
for “parent+1child” and 1 copy for “parent+4children”. The entries that
correspond to the replicated parent coefficients are δε. Note that here we
keep δ = 1√

1+4ε2
for “parent+1child” and δ = 1√

1+ε2
for “parent+4children”

to ensure D is a Parseval tight frame so that DTD = I.
As a result, the likelihood of the data in (3) can be extended to be

p(y|ŵ, ν2) =
(
2πν2

)−M
2 exp{− 1

2ν2
‖y −BMDT ŵ‖2} (42)

where ŵ = Dw. Then we can model ŵ using a group sparse GSM model
similar to (4):

p (ŵ|S) =
G∏
i=1

N
(
ŵi|0, σ2

i

)
= N

(
ŵ|0, Ŝ−1

)
(43)

Now Ŝ needs to be of size P × P , and when P > G, its diagonal is an
expanded form of s where each ŝi is repeated gi times.

However, how best to group coefficients is not clear and becomes an im-
portant question. Here, we consider two grouping schemes: “parent+1child”
and “parent+4children” as illustrated in Fig. 4. In the case of “parent+1child”
scheme, the parent coefficient is grouped separately with each child co-
efficient, whereas for “parent+4children” scheme the parent coefficient is
grouped with all 4 of its children. Note that in both cases, we group the
root-level coefficients individually since they do not have a parent.

Based on Bayes’ rule, the posterior distribution can be then calculated
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Figure 4: Illustration of different grouping strategies: (a) parent+1child, (b) par-
ent+4children. The root-level coefficients are grouped individually shown as the red rect-
angles which represent singleton groups.

via:

p
(
ŵ|y, Ŝ, ν2

)
=
p (y|ŵ, ν2)× p

(
ŵ|Ŝ

)
p
(
y|Ŝ, ν2

) (44)

Because both p (y|ŵ, ν2) and p
(
ŵ|Ŝ

)
are Gaussian functions of ŵ, the pos-

terior can be rearranged as

p
(
ŵ|y, Ŝ, ν2

)
= N

(
ŵ|µ̂, Σ̂

)
(45)

with
µ̂ = ν−2Σ̂DMTBTy (46)

Σ̂ =
(
ν−2DMTBTBMDT + Ŝ

)−1

(47)

However, now the P ×P square matrix
(
ν−2DMTBTBMDT + Ŝ

)
needs

to be inverted, which is not computationally feasible for big data sets and
images. So, we again adopt the Bayesian MM framework as in (9). Here we
introduce a hidden vector z of size N as before and the following approxima-
tion model for its posterior distribution:

p
(
ŵ, z|y, Ŝ, ν2

)
= p (z|ŵ)× p

(
ŵ|y, Ŝ, ν2

)
(48)

and
p (z|ŵ) = exp{−(ŵ −Dz)TQ(ŵ −Dz)} (49)

where

Q =
Λ̂α −DMTBTBMDT

2ν2
(50)
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Algorithm 2 Tree-structured VBMM Image Restoration Algorithm

1: Inputs: parameters for the sensing matrix B, observation y, Λ̂α, a, β,
k, θ, initial estimations of z(0), ŝ(0) and b̂(0).

2: while iterations t = 0 : tmax or z has converged, do

3: Σ̂
(t)

=
(
βΛ̂α + Ŝ(t)

)−1

4: µ̂
(t)

= βΣ̂
(t)

[Λ̂αDz(t) −DMTBT (BMz(t) − y)]

5: ŵ(t+1) = µ̂
(t)

6: z(t+1) = DT ŵ(t+1)

7: ŝ
(t+1)
i =

gi + 2a(
‖µ̂i

(t)‖2 + tr[Σ̂
(t)

i ]
)

+ 2b̂
(t)
i

for i = 1...G

8: b̂
(t+1)
i =

a+ k

ŝ
(t+1)
i + θ

for i = 1...G

9: end while
10: Output restored image x = Mz(t+1)

We find that Q should be positive definite to ensure convergence and
hence:

Λ̂α � DMTBTBMDT (51)

which is equivalent to requiring that:

DT Λ̂αD � DTDMTBTBMDTD

= MTBTBM (52)

where we assume Λα = DT Λ̂αD. It is known that we need Λα �MTBTBM
in order to fulfill the condition. Λα can be found as before using the methods
discussed in Section 2.1 and Appendix 6.1. We can easily compute the Λ̃α

once Λα is found, as it is equivalent to applying the non-overlapping trans-

formation to Λα. Because p (z|ŵ) and p
(
ŵ|y, Ŝ, ν2

)
are Gaussian functions

of ŵ, when z is given (typically as a previous estimate for w), the approxi-
mation model can be rearranged into a Gaussian form as
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Table 1: BLUR, Noise Variance and BSNR (dB)

Exp. BLUR ν2 BSNR

1 9× 9 uniform 31.10 20
2 9× 9 uniform 0.31 40
3 9× 9 uniform 0.03 50
4 hij = 1/(1 + i2 + j2), i, j = −7, . . . , 7 2 31.85
5 hij = 1/(1 + i2 + j2), i, j = −7, . . . , 7 8 25.85

p
(
ŵ|y, z, Ŝ, ν2

)
= N

(
ŵ|µ̂, Σ̂

)
(53)

with

µ̂ = ν−2Σ̂[Λ̂αDz−DMTBT (BMz− y)] (54)

Σ̂ = (ν−2Λ̂α + Ŝ)−1 (55)

Now (54) and (55) are computationally tractable, since Σ̂ is diagonal. Then
we can obtain the tree-structured VBMM Algorithm in Algorithm 2. This
uses the same VB continuation strategy as described in Section 2.2 where we
impose Gamma distributions for both inverse signal variance ŝ and its rate
parameter b̂:

p(ŝ|a, b̂) =
G∏
i=1

b̂ai
Γ(a)

ŝa−1
i exp(−b̂iŝi) (56)

and

p(b̂|k, θ) =
G∏
i=1

θk

Γ(k)
b̂k−1
i exp(−θb̂i) (57)

This extension effectively provides a framework which incorporates a
wavelet tree structure in a variational Bayesian derivation. Note that G
now represents the number of (overlapping) groups of complex coefficients,
and the gi are in general larger than before so that now P =

∑G
i=1 gi.

4. Results

We present a set of experiments to evaluate the performance of these
proposed image restoration algorithms. Three applications including image
deconvolution, image superresolution and compressive sensing (CS) magnetic
resonance imaging (MRI) reconstruction are studied. We have used both
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the coefficient-sparse VBMM (VC) in Algorithm 1 and the tree-structured
VBMM in Algorithm 2 with “parent+1child” grouping (V1) and “parent+
4children” grouping (V4) for all these experiments. The DT CWT is chosen
as our redundant sparsifying transform because it has good sparsity inducing
properties. Since DT CWT produces complex coefficients with circularly
symmetric pdfs, we assume a pair of real and imaginary coefficients share
the same variance and can be clustered into one group. As a result, we have
G = N

2
groups for VC, G = P+6

4
groups for V1 and G = P+6

10
groups for V4,

where P = 4(MN − MN
4lev

) for both V1 and V4. In all experiments, we set
the level of decomposition lev = 4. In all experiments, we set ε = 1 in the D
matrix for simplicity. However, as stated in Section 3, varying ε may further
improve the results.

4.1. Image Deconvolution

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Deconvolution results after 200 iterations on Exp. 2, on Cameraman, BSNR: 40
dB. (a) Original. (b) Blurred. (c) Wiener filter, ISNR=4.512 dB. (d) MLTL, ISNR=7.594
dB. (e) MSIST, ISNR=7.648 dB. (f) VBMM–VC, ISNR=8.127 dB. (g) VBMM–V1,
ISNR=8.221 dB. (h) VBMM–V4, ISNR=8.318 dB.

For image deconvolution, the linear operator B becomes a convolution
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matrix. We compare and show that VBMM and its tree-structured exten-
sions outperform recently developed SIST algorithms including multilevel
thresholded Landweber (MLTL) [32] and modified subband-adaptive itera-
tive shrinkage/thresholding (MSIST) [34]. Here we assume B is known but it
is clear that Bayesian inspired schemes can also be applied for blind deconvo-
lution where both blur kernel estimation and image restoration are performed
[44].

Table 2: Average ISNR (dB) results for Exp. 1-Exp. 5 over 30 noise realizations.
iterations 10 30 50 70 100

Exp.1

MLTL 3.054 3.179 3.197 3.223 3.227
MSIST 2.584 2.990 3.191 3.308 3.403

VBMM-VC 2.731 3.282 3.491 3.582 3.646
VBMM-V1 2.953 3.554 3.666 3.710 3.738
VBMM-V4 2.957 3.618 3.715 3.744 3.758

Exp.2

MLTL 6.818 7.292 7.393 7.477 7.569
MSIST 7.086 7.410 7.516 7.571 7.613

VBMM-VC 7.202 7.656 7.857 7.967 8.061
VBMM-V1 7.630 7.993 8.109 8.163 8.200
VBMM-V4 7.568 8.012 8.138 8.197 8.242

Exp.3

MLTL 7.825 9.531 10.256 10.565 10.871
MSIST 8.760 10.290 10.601 10.669 10.683

VBMM-VC 10.148 10.656 10.879 10.996 11.085
VBMM-V1 10.167 10.749 10.939 11.042 11.137
VBMM-V4 10.191 10.861 11.059 11.164 11.259

Exp.4

MLTL 7.095 7.136 7.154 7.160 7.256
MSIST 6.888 6.890 6.890 6.891 6.891

VBMM-VC 6.769 7.111 7.190 7.211 7.216
VBMM-V1 7.214 7.220 7.226 7.231 7.236
VBMM-V4 7.242 7.325 7.326 7.327 7.330

Exp.5

MLTL 4.891 4.921 4.954 5.041 5.086
MSIST 4.842 4.854 4.855 4.855 4.855

VBMM-VC 4.784 5.192 5.259 5.277 5.281
VBMM-V1 5.387 5.456 5.467 5.473 5.477
VBMM-V4 5.202 5.536 5.562 5.570 5.574

An important issue of implementing VBMM is whether or not to use
sparsity-by-analysis algorithms where we project w into the range space of
MT every iteration before computing z [45]. This is due to the fact that the
sparsity-by-synthesis algorithm seems not to converge towards the ground-
truth solution as shown in Fig. 6 (b).

Because the reconstructed image x = Mw is only a function of the range-
space component of w, we can eliminate the null-space component of w by
replacing w by MTx. When we do this, we obtain results which converge
closer to the ground-truth solution and where the ISNR is non-decreasing.
This is equivalent to regularization based on the sparsity of MTMw = Pw
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rather than based on the sparsity of w where P = MTM is the range-
space projection matrix. By encouraging sparsity of Pw, rather than w, we
reduce visually unpleasant artifacts in the final solution. Therefore we use
the sparsity-by-analysis algorithm for the remainder of our results.
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Figure 6: ISNR results using (a) analysis algorithm (b) synthesis algorithm, on Camera-
man, 9× 9 uniform blur, BSNR=40 dB.

Five experiments were performed as shown in Table 1, where we convolved
the Cameraman image with two different blur kernels: 9 × 9 uniform blur
(Exp. 1, 2, 3) and 15 × 15 cylindrical blur as hij = 1

1+i2+j2
, i, j = −7, . . . , 7

(Exp. 4, 5). White Gaussian noise was added to the blurred image and the

blurred signal-to-noise ratio (BSNR)=10 log10
‖Hxr−Hxr‖2

Mν2
was used to define

the noise level. xr is the original image and Hxr is the mean of Hxr. The

improvement in signal-to-noise ratio (ISNR) =10 log10( ‖y−xr‖2
‖Mz−xr‖2 ) was used

to evaluate the relative performance of different algorithms, where z is the
current estimate of wavelet coefficients w. An under-regularized Wiener filter
x0=(HTH+10−3ν2I)−1HTy was used to estimate the initial x0 and hence
z(0) = MTx0 [34]. In the experiment, we set hyperparameters a = θ = 10−6

and adjusted k to control the sparsity where k should satisfy 0 < k < gi
2

.
We’ve ensured the matrix Λα for the VC, V1, and V4 experiments was the
same for each test scenario.

Deconvolution results are shown in Fig. 5 for visual comparison. It can be
seen (after enlargement) that fewer artifacts are observed using the proposed
VBMM method and its tree-structured extensions. Table 2 summarizes the
ISNR values obtained from Exp. 1-Exp. 5 over 30 noise realizations. It is
found that incorporating VBMM with the group sparse penalty, particularly
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Figure 7: Superresolution results for Butterfly and Girl image, downsampled by a factor
of 3 with ν = 5. Left to right: original image, LR image, MSIST [46], VBMM-VC,
VBMM-V1 and VBMM-V4.

the “parent+4children” grouping strategy, leads to a faster convergence rate
and better ISNR results. Fig. 6 (a) compares the ISNR results of Exp. 2
obtained using different image deconvolution techniques over 200 iterations.

4.2. Image Superresolution

In the case of image superresolution, the linear operator B becomes TH,
where T is a matrix that represents the subsampling operation and H is the
blurring matrix. We compare our VBMM method and its extensions with
MSIST-based image superresolution algorithm as described in [46]. In the
experiments, seven test images including Butterfly, Flower, Girl, Hat, Leaves,
Parrot and Bike were used1.

We convolved the test images with a 7×7 Gaussian kernel with standard
deviation (std.) σh = 1.6 and down-sample them with a factor of 3 in each
direction. White Gaussian noise was then added to generate noisy low reso-
lution (LR) images, and two noise levels ν = 1 (average BSNR=34.280 dB)
and ν = 5 (average BSNR=20.312 dB) were tested. The peak signal-to-noise

ratio (PSNR) =10 log10( max{xr}2
‖Mz−xr‖2 ) and the structural similarity (SSIM) index

[49] were used to evaluate the relative performance of different algorithms.
We performed the power iteration method in (62) to determine the matrix
Λα. The inverse noise variance β was estimated in this case using (41). We
set hyperparameters a = k = θ = d = 10−6, and used c (typically around 105

to be comparable with M = 216) to control the strength of sparsity.

1Available online at http://www-sigproc.eng.cam.ac.uk/Main/GZ243.
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Table 3: PSNR (dB) and SSIM results of image superresolution, after 50 iterations
Noise std. ν = 1 ν = 5

Picture Measure MSIST VC V1 V4 MSIST VC V1 V4

butterfly
PSNR 23.574 23.592 23.791 23.820 22.731 22.760 23.203 23.214
SSIM 0.8300 0.8351 0.8482 0.8483 0.7516 0.8053 0.8119 0.8121

flower
PSNR 27.019 27.136 27.272 27.291 25.772 26.064 26.277 26.333
SSIM 0.8135 0.8197 0.8270 0.8271 0.7317 0.7633 0.7692 0.7731

girl
PSNR 32.831 33.103 33.077 33.134 30.526 31.017 31.395 31.408
SSIM 0.8495 0.8568 0.8561 0.8569 0.7721 0.7895 0.7976 0.7982

hat
PSNR 28.498 28.549 28.761 28.770 26.993 27.377 27.850 27.879
SSIM 0.8286 0.8379 0.8444 0.8448 0.7659 0.7925 0.8013 0.8008

leaves
PSNR 23.376 23.536 23.679 23.700 22.387 22.694 23.034 23.082
SSIM 0.8279 0.8322 0.8492 0.8495 0.7516 0.7946 0.8115 0.8117

parrots
PSNR 27.882 28.010 28.106 28.156 25.913 26.774 27.438 27.494
SSIM 0.8845 0.8960 0.8993 0.8995 0.8212 0.8575 0.8681 0.8683

bike
PSNR 22.278 22.302 22.541 22.553 21.648 21.751 22.016 22.033
SSIM 0.7440 0.7443 0.7562 0.7584 0.6743 0.6921 0.7097 0.7098

Table 3 summarizes the PSNR and SSIM results after 50 iterations. Se-
lected superresolution results with ν = 5 are shown in Fig. 7 for visual com-
parison. It is shown that in most cases, VBMM with “parent+4children”
grouping leads to the best results in terms of both PSNR value and SSIM in-
dex. We acknowledge that current state-of-the art algorithms can give better
superresolution or deconvolution results than our methods. This is mainly
due to the fact that they employ dictionary learning methods [47, 48], which
are computationally demanding. We have not included them as this topic is
beyond the scope of this paper.

4.3. MRI Image Reconstruction

In this section, we show the performance of our proposed methods on
CS MRI Reconstruction. In the MRI imaging problem, B = F represents a
partial n-point Fourier transform with M rows and n columns. The sampling
rate is controlled by M/n ≤ 1, and the scanning time is reduced as this

Figure 8: Test images: Brain; Chest; Shoulder; Cardiac and the sampling mask with
sampling rate 20%.
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ratio becomes smaller. We compare our VBMM algorithm and its extensions
with MSIST-based MRI and a recently developed CS MRI reconstruction
algorithm Wavelet Tree Sparsity MRI (WatMRI) [43].

(a) (b) (c)

(d) (e) (f)

Figure 9: CS MRI reconstruction of Brain image after 100 iterations. (a) original image.
(b) WatMRI, SNR: 17.443 dB. (c) MSIST, SNR: 20.355 dB. (d) VBMM-VC, SNR: 20.988
dB. (e) VBMM-V1, SNR: 21.866 dB. (f) VBMM-V4, SNR: 21.969 dB.

Following the same experimental setting as in [43], we have randomly
chosen more Fourier coefficients from low frequencies and less from high
frequencies with a mean sampling rate of 20 %. Four test images including
brain, chest, shoulder and cardiac (Fig. 8) were used. For all test cases,
white Gaussian noise with std. ν = 0.1 (average BSNR=60.461 dB) was

Table 4: SNR (dB) results of CS MRI reconstruction after 100 iterations, noise std. ν =
0.1, sampling rate is 0.2.

SNR (dB) WatMRI MSIST VBMM-VC VBMM-V1 VBMM-V4

Brain 17.443 20.355 20.988 21.866 21.969
Chest 16.588 20.044 21.244 21.787 21.917

Shoulder 22.193 24.181 25.439 27.654 27.743
Cardiac 18.701 19.753 20.344 21.277 21.407
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Figure 10: SNR results for CS MRI reconstruction over 100 iterations, on Chest Image.

added. The signal-to- noise ratio (SNR) was chosen to determine the relative
performance. We performed the power iteration method in (62) to determine
the matrix Λα, and estimated the inverse noise variance β using (41). In
the experiments, we set hyperparameters a = k = θ = d = 10−6, and
used c (typically around 105) to control the strength of sparsity. Table 4
shows the SNR results of CS MRI reconstruction where we let all algorithms
terminate after 100 iterations. The reconstruction results of Brain image
are shown in Fig. 9 for visual comparison and the convergence plot is shown
in Fig. 10. It is shown that similar to image superresolution, VBMM with
“parent+4children” grouping leads to a faster convergence rate and better
SNR results.

From the above three applications, we find that the VBMM method with
its tree-structured extensions are effective for various image restoration prob-
lems. In particular, VBMM-V4 demonstrates a more robust performance
compared with VBMM-VC and VBMM-V1 in most cases. Although we
have mainly discussed three applications in this paper, our method is likely
to be applicable to many other application areas.

5. Conclusion

The Sparse Bayesian Learning (SBL) framework is a powerful approach
for exploring sparse solutions to large inverse problems, and it can be ap-
plied effectively to Gaussian scale mixture models which are often employed
to model wavelet coefficients. This motivates the use of SBL methods for
wavelet based regularization. In this paper, we propose a wavelet-regularized
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image restoration algorithm (VBMM) which is a combination of hierarchi-
cal Bayesian estimation, using variational Bayesian (VB) inference, with a
subband-adaptive majorization minimization (MM) method for efficiently
finding maxima of posterior distributions. In addition, we show that VBMM
can incorporate tree-structured group-sparse models, that are appropriate for
tight-frame (redundant) wavelet transforms. We then consider three image
restoration problems including image deconvolution, image superresolution
and compressive sensing MRI reconstruction to demonstrate the good per-
formance of our proposed methods.

6. Appendices

6.1. Selection of Gain Coefficients in Λα (Sections 2.1 and 3)

One of the keys to the SIST algorithms is the determination of the Λα

matrix so that the surrogate function majorizes the original objective. To be
specific, αj must be carefully chosen for each subband j to be the smallest
αj which ensures J̄α(w, z) > J(w) in (11) for all z 6= w.

6.1.1. Subband Adaptive Thresholding for Blurring Kernel

Various subband-adaptive methods can be applied to determine the di-
agonal entry αj for jth subband coefficients [32, 33, 34]. In general, the
design of a subband adaptive algorithm for a deconvolution problem aims to
approximate the blurring kernel H based on the following bound [34]:

uT (Λα −MTHTHM)u > 0 (58)

where B = H in this case, and the inequality holds for any arbitrary vector
u 6= 0. When the forward wavelet transform W is an orthonormal basis, the
following approximation is used to calculate Λα [32, 33, 34]:

αj = ρ(MT
j HTHMj) (59)

where ρ denotes the spectral radius and Mj denotes the inverse wavelet trans-
form in the given subband j. However, (59) typically fails for wavelets that
have significant leakage across subbands. To obtain a satisfactory approxi-
mation, we then need to increase the value of αj in (59) to account for the
energy leakage. Systematic ways of achieving this are reported in [33] and
[34].
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Figure 11: Weighted power spectrum of 1-D DT CWT subbands, (a) selection of αj using
(59), (b) αj are increased to account for energy leakage.

In Fig. 11, we illustrate the effect of the subband-adaptive MM technique
for DT CWT. In this case, ‘Hamming (5)’ is chosen as the blurring kernel.
Because

wTΛαw −wTMTHTHMw = xT (
∑
j

αjW
T
j Wj)x− xTHTHx (60)

where Wj denotes the forward wavelet transform in the given subband j, we
can plot αjW

T
j Wj as the power spectrum of DT CWT subbands weighted

by αj and compare it with the power spectrum of HTH. In Fig. 11 (a),
αj is calculated for each subband of the DT CWT using (59). It is shown
that part of the weighted power spectrum of DT CWT subbands is below
‘Hamming (5)’ power spectrum due to the crossband energy leakage. This
makes Λα −MTHTHM < 0 which will affect the convergence. To solve
the problem, we can increase αj so that a safe upper bound to the power
spectrum of HTH is provided as shown in Fig. 11 (b).

6.1.2. Subband Adaptive Thresholding for Non-Blurring Kernel

Note that the techniques discussed above are mainly only applicable
for approximating blurring kernels. When B is not a convolution matrix,
MTBTBM may not be near diagonal and cannot be simply computed in the
frequency domain. In this case, we need to use the power iteration method
to determine the spectral radius (largest eigenvalue) of MT

j BTBMj.
From the Rayleigh quotient, we know that if a nonzero vector x ∈ Rn is

an eigenvector for A ∈ Rn×n with corresponding eigenvalue λ, we have [50]:
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r(x) =
xTAx

xTx
=
λxTx

xTx
= λ (61)

where r(x) denotes the Rayleigh quotient of x whose value actually minimizes
the function f(α) = ‖αx − Ax‖2 over all real numbers α. Therefore, if x is
treated as an eigenvector of A, we obtain the best estimate for an eigenvalue
of A.

In practice, we use the power iteration method to find the eigenvector
which corresponds to the dominant eigenvalue. This is suitable for subband-
adaptive thresholding, since we only need to compute the largest eigenvalue
of MT

j BTBMj. The method of power iteration can be stated as [50]:

vk =
Avk−1

‖Avk−1‖
∀ k = 1 . . . K (62)

with an initialization v0 as a random vector and ‖vk‖ = 1. Vector vk con-
verges to the dominant eigenvector after a number of iterations as all other
eigenvector components have iteration gain < 1 and thus decay to zero.
Then we can use the Rayleigh quotient to find the corresponding dominant
eigenvalue.

6.2. Maximize L(q(ξ)) (Section 2.2)

To maximize L(q(ξ)) in (23) with respect to each of the factors in turn, let
us firstly consider a simplified case where q(ξ) is factorized into two disjoint
groups as q1(ξ1) and q2(ξ2). Substituting (24) into (21) with two disjoint
groups, we obtain two steps:

(i) Consider maximizing L(q(ξ)) with respect to q1(ξ1).

L(q(ξ)) =

∫
q1(ξ1) ln p̃(ξ1,y)dξ1 −

∫
q1(ξ1) ln q1(ξ1)dξ1 + const (63)

where

ln p̃(ξ1,y) = 〈ln p(ξ,y)〉ξ2 + const (64)

and

〈ln p(ξ,y)〉ξ2 =

∫
ln p(ξ1, ξ2,y)q2(ξ2)dξ2 (65)
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is the expectation with respect to q(ξ) over ξ2.
When ln q1(ξ1) = ln p̃(ξ1,y), L(q(ξ)) is maximized with respect to q1(ξ1).

(ii) Similarly if we consider maximizing L(q(ξ)) with respect to q2(ξ2).

L(q(ξ)) =

∫
q2(ξ2) ln p̃(ξ2,y)dξ2 −

∫
q2(ξ2) ln q2(ξ2)dξ2 + const (66)

where

ln p̃(ξ2,y) = 〈ln p(ξ,y)〉ξ1 + const (67)

and

〈ln p(ξ,y)〉ξ1 =

∫
ln p(ξ1, ξ2,y)q1(ξ1)dξ1 (68)

is the expectation with respect to q(ξ) over ξ1.
When ln q2(ξ2) = ln p̃(ξ2,y), L(q(ξ)) is maximized with respect to q2(ξ2).

By sequentially updating these two steps, the KL divergence will then be
minimized. Now consider the general case where q(ξ) can be factorized into
more than two groups. It can be shown that for each factor qj(ξj),

L(q(ξ)) =

∫
qj(ξj) ln p̃(ξj,y)dξj −

∫
qj(ξj) ln qj(ξj)dξj + const (69)

where ln p̃(ξ,y) = 〈ln p(ξ,y)〉q(ξ\ξj) + const and 〈ln p(ξ,y)〉q(ξ\ξj) denotes the
expectation of ln p(ξj,y) with respect to q(ξ) over all variables ξi for i 6= j
[40]. L(q(ξ)) is maximized when ln qj(ξj) = ln p̃(ξj,y).

Although further investigations on the convergence are required, it is
known that convergence to at least a local maximum of L(q(ξ)) is guaranteed
because minimizing the KL-divergence from a prior distribution q is a convex
optimization problem and the bound is convex with respect to each of the
factors [41, 40]. The proof is straightforward. Since ln(x) ≤ x − 1 for any
x > 0, there exists the following inequality for any valid pdfs qa(ξ) and qb(ξ)
and for any η ∈ [0, 1],

ηKL(qa(ξ)) + (1− η)KL(qb(ξ)) ≥ KL
(
ηqa(ξ) + (1− η)qb(ξ)

)
(70)
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