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ABSTRACT

In this paper, we propose a new Markov-tree Bayesian model-
ing of wavelet coefficients. Based on a group-sparse Gaussian
Scale Mixtures model with 2-layer cascaded Gamma distri-
butions for the variances, the proposed method effectively
exploits both intrascale and interscale relationships across
wavelet subbands. To determine the posterior distribution, we
apply Variational Bayesian inference with a subband adap-
tive majorization-minimization method to make the method
tractable for large problems.

Index Terms— Group-sparse modeling, Markov-tree,
majorization minimization, variational Bayesian, dual-tree
complex wavelets.

1. INTRODUCTION

Linear inverse problems appear often in many applications
of image processing where a noisy indirect observation y, of
an original image x, is modeled as y = Bx + n, where B
of size M × N is the matrix representation of a direct lin-
ear operator and n is usually additive Gaussian noise with
variance ν2. Wavelet-based methods are good for solving
ill-posed image restoration problems because natural images
can often be sparsified using a wavelet basis [1]. Note that,
the statistical properties of wavelet coefficients can often be
modeled by heavy-tailed Gaussian scale mixture (GSM) pri-
ors that capture the intrascale relationships among wavelet co-
efficients [2, 3]. However, many authors have argued that
there is a strong persistence of large/small wavelet coeffi-
cients across scales, and such interscale relationships are ben-
eficial for modeling wavelet coefficients [4, 5, 6]. In gen-
eral, this interscale dependency mechanism can be well rep-
resented using a wavelet tree structure where child coefficient
energy relates strongly to parent energy [6]. Various methods
such as bivariate shrinkage [7], Hidden Markov Tree (HMT)
[5], and overlapping-group penalties [6] have been used to
exploit the parent-child relationship.

2. MODEL FORMULATION

In this paper, our contribution is a new Markov-tree based
model that explores both intrascale and interscale dependen-
cies among wavelet coefficients. Assume we can represent the
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Fig. 1: Joint probability of s and b based on a Markov-tree
model.

image x by wavelet expansion as x = Mw where M is the
inverse wavelet transform, and w is an N × 1 vector which
contains all wavelet coefficients. This results in a wavelet-
based formulation as y = BMw + n. It is noted that for an
orthogonal basis, M is a square orthogonal matrix, whereas
for an over-complete dictionary (e.g. a tight frame), M has
N columns and M rows, with N > M [1]. The resulting
likelihood of the data can be shown to be

p(y|w, ν2) =
(
2πν2

)−M
2 exp{− 1

2ν2
‖y −BMw‖2} (1)

Following the assumptions in [8], we use a non-overlapped
group-sparse GSM model to model w, and the prior of w,
conditioned on S, can then be expressed as

p (w|S) =

G∏
i=1

N
(
wi|0, σ2

i

)
= N

(
w|0,S−1

)
(2)

where the ith group wi is a vector of size gi whose elements
are drawn from a zero-mean Gaussian distribution with a sig-
nal variance σ2

i (as yet unknown), and where G is the number
of groups and S is a diagonal matrix formed from the vector
s whose ith entry is si =1/σ2

i . Note that N =
∑G
i=1 gi, and

that, because S needs to be of size N ×N , when N > G the
diagonal of S is an expanded form of s in which each si is
repeated gi times [8]. From (1) and (2), the posterior distribu-
tion for w is

p
(
w|y,S, ν2

)
=
p
(
y|w, ν2

)
× p (w|S)

p (y|S, ν2)
(3)



which can be rearranged into a Gaussian form as

p
(
w|y,S, ν2

)
= N (w|µ,Σ) (4)

with

µ = ν−2ΣMTBTy (5)

Σ =
(
ν−2MTBTBM + S

)−1
(6)

The computation of the posterior variance Σ requires in-
version of the N ×N square matrix (ν−2MTBTBM + S).
This operation is not computationally feasible for large im-
ages and 3D datasets. To overcome this, in [8], we introduced
the Bayesian Majorization Minimization (MM) framework to
simplify the posterior:

p
(
w, z|y,S, ν2

)
= p (z|w)× p

(
w|y,S, ν2

)
(7)

where
p (z|w) = N (w|z,Σz)

∝ exp{−(w − z)T
Λα −MTBTBM

2ν2
(w − z)} (8)

Λα is an N ×N diagonal matrix formed from a vector α
whose elements αj may be optimized independently for each
subspace/subband j of M, such that (Λα − MTBTBM)
is positive definite [1, 9, 10]. When z is given (typically
as a previous estimate for w), the approximation model
p
(
w, z|y,S, ν2

)
can be shown as

p
(
w|y, z,S, ν2

)
= N

(
w|µ,Σ

)
(9)

with

µ = ν−2Σ[(Λα −MTBTBM)z + MTBTy] (10)

Σ = (ν−2Λα + S)−1 (11)

3. MARKOV-TREE BASED VB STRATEGY

To proceed with Bayesian Inference and model dependency
and persistence across scale, we propose a joint probability
density between s and a hidden variable b based on a Markov-
tree model, as shown in Fig. 1. This is the main contribu-
tion of this paper. In this tree structure, we denote the parent
node of node i by d(i). We use l(i) to indicate the level of
node i, and denote J as the number of levels of wavelet de-
composition. A key feature of this new Markov-tree model
is that there is a hidden node bi linking node si to its par-
ent node sd(i), which differs distinctly from the conventional
HMT model where si and sd(i) are linked using a predefined
transition matrix. We thus have

p(s,b) = p(s1|b1)p0(b1)

J∏
j=2

p(sj ,bj |sj−1) (12)

where, for level 1 (the root level),

p(s1|b1) =
∏

i∈{l(i)=1}

p(si|a1, bi)

×
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Fig. 2: The graphic model of linear regression with hierarchi-
cal priors. y and z are Gaussian distributions, w is a GSM, s
and b are Gamma distributions.

and, for levels 2 ≤ j ≤ J ,

p(sj ,bj |sj−1) =
∏

i∈{l(i)=j}

p(si|a1, bi)p(bi|a2, τsd(i))

To strongly encourage sparsity, we assume S and b
are associated with Gamma priors such that p(si|a1, bi) =
G(si; a1, bi) and p(bi|a2, τsd(i)) = G(bi; a2, τsd(i)), where
a1 and a2 are shape factors and τ is an energy gain factor.
Since we do not have prior knowledge about root level nodes,
we impose a noninformative Jeffrey’s prior for root level b1

such that p0(b1) =
∏
i∈{l(i)=1}

1
bi

. The complete graphical
model is shown in Fig. 2. As a result, the posterior of hidden
variables now becomes

p (w, z, s,b|y) =
p(w, z, s,b,y)

p(y)

=
p(y|w, β) p(z|w) p(w|S) p(s,b)

p(y)
(13)

where in different applications, β = ν−2 is either a user pa-
rameter for adjusting the regularization strength or can be es-
timated by imposing a Gamma distribution.

However the exact Bayesian inference of (13) cannot be
performed as p(y) is intractable. To approximate the poste-
rior p(ξ|y) where ξ = {w, z, s,b}, we adopt the variational
Bayesian (VB) approximation, which provides a distribution
q(ξ) to approximate p(ξ|y) [11]. Specifically, q(ξ) is deter-
mined by minimizing the Kullback-Leibler (KL) divergence
between q(ξ) and p(ξ|y):

KL(q(ξ)‖p(ξ|y)) = −
∫
q(ξ) ln

(p(ξ|y)

q(ξ)

)
dξ (14)

To find q(ξ), we use the mean field approximation as

q(ξ) = q(w, z, s,b) ≈ q(w)q(z)q(s)q(b) (15)

Based on this factorization, the distribution of each vari-
able q(λ), λ ∈ ξ can be optimized as [11]

ln q(λ) = 〈ln p(ξ|y)〉q(ξ\λ) = 〈ln p(ξ,y)〉q(ξ\λ) + const (16)

where 〈·〉q(ξ\λ) denotes expectation over all the factors of q(ξ)
except q(λ). The key steps of Markov-tree based VBMM
image restoration algorithm are shown in Algorithm 1.



Algorithm 1 Markov-tree based VBMM algorithm
1: Inputs: parameters for the sensing matrix B, observation y,

Λα, a1, a2, β, initial estimations of z(0), s(0) and b(0).
2: while iteration t = 0 : tmax or z has converged, do

3: Σ
(t)

=
(
βΛα + S(t)

)−1

4: µt = βΣ
(t)

[Λαz
(t) −MTBT (BMz(t) − y)]

5: w(t+1) = µt

6: z(t+1) = w(t+1)

7: for i = 1...G do
8: if 1 ≤ l(i) ≤ J − 1

9: s
(t+1)
i =

gi + 2(a1 + 4a2)

‖µ(t)
i ‖2 + tr[Σ

(t)
i ] + 2(b

(t)
i + τ

∑
k∈c(i) b

(t)
k )

10: elseif l(i) = J

11: s
(t+1)
i =

gi + 2a1

‖µ(t)
i ‖2 + tr[Σ

(t)
i ] + 2b

(t)
i

12: end for
13: for i = 1...G do
14: if l(i) = 1

15: bi
(t+1) =

a1
si(t+1)

16: elseif l(i) = 2 ≤ l(i) ≤ J
17: bi

(t+1) =
a1 + a2

si(t+1) + τs
(t+1)

d(i)

18: end for
19: β(t+1) =

M + 2c

‖y −BMµ(t)‖2 + tr[ΛαΣ
(t)

] + 2d
(Optional)

20: end while
21: Output restored image x = Mzt+1

4. SELECTION OF HYPERPARAMETERS

In this work, we have chosen the dual-tree complex wavelet
transform (DT-CWT) as our redundant sparsifying transform
as it has good sparsity inducing properties and is efficient to
compute [12]. We optimize the parameters a1, a2 and τ based
on the statistics of complex coefficients from natural images
as shown in Figure 3, where we minimize the KL divergence
between histograms of parent reweighted complex wavelet
coefficient magnitudes Vi = |wi|

|wd(i)|
and pdfs of synthesized

Gamma-Rayleigh distributed models for Vi, given by random
samples drawn as follows

Vi ∼ siV e
−V 2si

2 , with

{
si ∼ G(s; a1, bi)

bi ∼ G(b; a2, τ)
(17)

This takes into account the fact that the marginal distribu-
tion of DT-CWT coefficient magnitudes can be approximated
by the Rayleigh law [13, 14]. Using several standard test
images including Lenna, Cameraman, House, Peppers and
Boat, we empirically find that the set of values are a1 = 11,
a2 = 1.5 and τ = 1.2 as shown in Fig. 4.

5. RESULTS

We present a set of experiments to evaluate our proposed
Markov-tree VBMM (VM) algorithm. We show that the per-

−2 −1 0 1 2
0

1

2

3

4
Peppers

lo
g

1
0
(b

in
 c

o
u

n
t+

1
)

log
10

(v/v
mean

)
−2 −1 0 1 2

0

1

2

3

4
Gamma−Rayleigh Model

log
10

(v/v
mean

)

Fig. 3: Comparison of log-histograms of parent reweighted
coefficient magnitudes Vi at wavelet level 1 for 256 × 256
Peppers image (left) with synthesized coefficients from the
Gamma-Rayleigh model for Vi ( right). The log-histograms
for images Lenna, Cameraman, House and Boat are very sim-
ilar.

formance is significantly better than the VBMM algorithm
(VC) described in Section 2 and its overlapped group tree-
structured extensions (V1 and V4 in [8]).

5.1. 1-D heavisine signal recovery

In this section, the proposed algorithm is tested using a simi-
lar experiment to that described in [15, 16]. Since this is a 1-D
CS problem, B becomes the sensing matrix Φ. Because it is
piecewise smooth, the signal is compressible in the wavelet
domain. The entries of sensing matrix Φ are generated from
a Gaussian distribution N (0, 1). The observation is obtained
from M = 80 noise free random Gaussian measurements.
The recovery quality was assessed using root-mean-square er-
ror RMSE = ‖x−xr‖2

‖xr‖2 where x is the reconstructed signal
and xr is the original (reference) signal. We set α = ρ(ΦTΦ)
in order to assure group acceleration as suggested in [15]. For
wavelet bases, we have chosen the DT-CWT, and the level of
decomposition is 9. Because the DT-CWT produces complex
coefficients, we assume a pair of real and imaginary coeffi-
cients share the same variance and can be clustered into one
group. As a result, we have G = N

2 groups for VM. We set
a1 = 4, a2 = 0.5 and τ = 0.3 according to the estimation of
KL divergence in Section 4.

Table 1: RMSE results over 20 random samples of Φ

M 80 60 50
mean std mean std mean std

VC 0.033 0.005 0.050 0.007 0.064 0.009
V1 0.032 0.007 0.049 0.006 0.064 0.006
V4 0.030 0.006 0.047 0.007 0.061 0.008
VM 0.029 0.007 0.045 0.007 0.059 0.009

To demonstrate the quality of recovery, we ran our algo-
rithms for 100 iterations over 20 random implementations of
Φ. Table 1 compares the RMSE results of VC, V1, V4 and
VM. It is shown that VM achieves lowest RMSE results for
all cases.
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Fig. 4: Determination of optimal a1, a2 and τ based on the KL divergence between histograms of parent reweighted complex
wavelet coefficient magnitudes vi = |w|i

|w|d(i)
and pdfs of synthesized Gamma-Rayleigh distributed models for vi.

Table 2: Average ISNR (dB) results for VC, V1, V4 and VM
over 30 noise realizations.

iters 10 30 50 70 100

20dB

VC 2.66 3.15 3.35 3.45 3.52
V1 2.95 3.55 3.67 3.71 3.74
V4 2.96 3.62 3.72 3.74 3.76
VM 3.11 3.60 3.72 3.75 3.76

40dB

VC 7.20 7.66 7.85 7.95 8.04
V1 7.63 7.99 8.11 8.16 8.20
V4 7.57 8.01 8.14 8.20 8.24
VM 7.44 7.99 8.24 8.36 8.46

50dB

VC 10.17 10.66 10.87 10.99 11.08
V1 10.17 10.75 10.94 11.04 11.14
V4 10.19 10.86 11.06 11.16 11.26
VM 10.28 10.88 11.17 11.34 11.51

5.2. Image deconvolution

In this section, we perform experiments for image deconvo-
lution. Here the linear operator B becomes a convolution
matrix H. We have chosen the 2D directionally selective
DT-CWT as our redundant sparsifying transform. Because
the DT-CWT produces complex coefficients, we assume
that a pair of real and imaginary coefficients share the same
variance and form non-overlapping groups of size gi = 2
for all i. As a result, we have G = N

2 groups for VM.
In the experiment, we convolved the Cameraman image
with a 9×9 uniform blur kernel. White Gaussian noise was
added to the blurred image and the blurred signal-to-noise
ratio (BSNR)=10 log10

‖Hxr−Hxr‖2
Mν2 was used to define the

noise level. xr is the original image and Hxr is the mean
of Hxr. The improvement in signal-to-noise ratio (ISNR)
=10 log10( ‖y−xr‖2

‖Mw−xr‖2 ) was used to evaluate each estimate
w. We calculated the matrix Λα using the method proposed
in [10] where the contributions from every sub-band are ac-
counted in determining the gain of a particular sub-band. The
initial estimation of xr was achieved by an under-regularized
Wiener filter x0=(HTH+10−3ν2I)−1HTy. We set a1 = 11,
a2 = 1.5 and τ = 1.2 as shown in Fig. 4. In Table 2, we

show average ISNR values over 30 noise realizations where
three noise levels, BSNR= 20 dB, 40dB and 50 dB were con-
sidered. It is shown that VM outperforms VB, V1 and V4.
To assess the dependency characteristic, Figure 5 shows the
conditional histogram of parent-children wavelet coefficients
across scale after 200 iterations. It is shown that compared
with VC, VM imposes better persistence across scale, as
desired.

(a) VC (b) VM

Fig. 5: Conditional histogram of parent-children wavelet co-
efficients for the Cameraman image. Note that the real part
of complex wavelets are shown here while the imaginary part
demonstrates similar characteristics.

6. CONCLUSION

Here we have extended the VBMM algorithm to incorporate
a new Markov-tree structure, which effectively explores both
intrascale and interscale dependencies among wavelet coeffi-
cients. The proposed method significantly outperforms the
VBMM algorithm and its tree-structured extensions, while
the computation per iteration increases by only 6%, relative
to the VBMM which takes 0.09 seconds per iteration with a
256 × 256 image in Matlab. When deconvolving a 3D MRI
dataset of size 256× 256× 256, the algorithm takes 7.29 sec-
onds per iteration, thus showing its order-N properties. Other
related models, such as pairwise Markov trees [17] and hier-
archical infinite divisibility [18], are to be studied in future
research.
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