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ABSTRACT

Evaluation plays an important rôle in the advancement of any field.
In computer vision, unsupervised segmentation algorithms, although
of great interest, often suffer from lack of a well-defined goal and/or
explicit ground truth data, thus rendering evaluation difficult. This
paper presents a novel method for evaluating such algorithms us-
ing a database for which ground truth data is not explicitly avail-
able. Unlike methods of evaluation that rely on the existence or cre-
ation of explicit ground truth data, the proposed evaluation proce-
dure subjects human observers to apsychovisualtest comparing the
results of different segmentation algorithms. The test is designed
to answer two main questions: does consensus about a ‘best’ seg-
mentation exist, and if it does, what do we learn about segmentation
schemes? The results confirm that human subjects are consistent in
their judgements, thus allowing meaningful evaluation. The rele-
vance of the procedure for the evaluation of CBIR systems is dis-
cussed.

1. INTRODUCTION

The task of image segmentation has been much studied in
image processing and computer vision. It is often viewed
as the first step on the road to statements that concern not the
image itself, but the ‘scene’ of which the image is a represen-
tation, this being the goal of machine image understanding.
As such, it is important to be able to evaluate the results of
image segmentation schemes in a way that does not depend
on the opinion of the evaluator.
The output of a segmentation algorithm is a labelled partition
of the image domain, or in other words a map from the im-
age domain to a set of labels. The status of the set of labels
divides segmentation algorithms into two categories. The la-
bel associated with each pixel may imply a statement about
a quantity in the scene of which the image is a representa-
tion (this is equivalent to having a well-defined ‘semantic
space’, as defined and discussed in [1]), or it may not. Note
that this distinction is different from that between supervised
and unsupervised segmentation schemes. A scheme in which
models for classes in the image are trained beforehand, or
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in which regions are selected in the data at hand and used
to train classes, without assigning a semantic value to those
classes, fall into the second category. On the other hand,
a clustering algorithm that assigns values to its parameters
based only on the data at hand with no interference from a
human operative could fall into the first class if it is asserted
that the aim is to segment the image into such-and-such se-
mantically pre-defined possibilities.
Although there may be problems in actually obtaining the
‘ground truth’ information for the first category of schemes,
if ground truth can be obtained then in principle there is no
problem with their evaluation. It is possible to compare the
output of the segmentation scheme with ‘measurements’ (in
a generalised sense) of the scene, and to determine whether
or not the statements implied by the label assignments are
true. A metric must be chosen with which to compare the
output of the scheme to the ground truth, but this is a tech-
nical problem rather than a conceptual one. Previous work
has taken this approach to image collections for which well-
defined semantics exist, but for which ground truth is hard to
obtain. Chalana and Kim [2] and Yanget al. [3] use multiple
expert observers to agree on ground truth in the context of
medical imagery, while Hooveret al. [4] do so in computer
vision.
The same is not true of the second category of schemes how-
ever. In the absence of well-defined semantics for the seg-
mentation, one does not have a reference point to which to
compare the output of the scheme. The absence of well-
defined semantics may simply be the result of failing to de-
fine some. In many cases however, it is a result of the com-
plexity of the images involved. For many classes of images,
the semantics may seem unbounded and the task of defining
them too difficult. In this situation, which is not at all rare,
is it then possible to perform an evaluation of segmentation
schemes at all? The performance of just such an evaluation
is the subject of this paper.

1.1. Evaluation Methodologies

Despite this analysis, the idea persists, implicit in segmenta-
tion schemes that have no well-defined semantics, that some
ways of partitioning the image domain are better than others
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for most choices of statement one may wish to make about
the scene. In the absence of explicit semantics, the only al-
ternative is to turn to human subjects, who will introduce im-
plicit semantics through their understanding of the images.
The critical question in any such endeavour is whether a con-
sensus about the evaluation emerges. If it does not, then it is
hard to claim that the notion of a segmentation in the absence
of explicit semantics is amenable to evaluation at all. If a
consensus does emerge, then the nature of that consensus is
in itself the most interesting consequence of the evaluation. It
can then be used to compare different segmentation schemes.

One approach is to ask human subjects to segment the im-
ages by hand. If a reasonable consensus emerges, the hand
segmentations can be treated as ground truth, and compared
to the outputs of segmentation schemes. Martinet al. [5]
take this approach. They have human subjects hand segment
images from the Corel database, and then analyse the result-
ing segmentations. They indeed find a degree of consistency
across the image data set that they use.

An alternative approach is to allow human subjects to eval-
uate directly the output of segmentation schemes using psy-
chovisual tests. This has two advantages. It allows the min-
imum of instruction to be given to the subjects, thus permit-
ting them to use whatever semantics seems most natural to
decide which of the segmentations seems most meaningful
to them. Second, it can be used even when the generation of
hand segmentations is difficult due to the semantic complex-
ity of the images, as is the case with the testbed of images
used in this paper.

Within this approach, it is at first natural to think of asking
the subjects to assign an absolute value to the segmentations
from the different schemes. One could then compare these
values. Unfortunately the meaning of these values would be
very hard to define, and might differ from image to image
throughout a sequence of test images. The results would thus
be very hard to analyse. The approach taken in this paper is
a little different. Human subjects, rather than giving absolute
values to segmentations, are instead asked to choose between
the segmentations resulting from different schemes. In addi-
tion to the binary variable indicating their choice, the time
taken for them to reach their decision is recorded. The inten-
tion is to discover an underlying consensus about thediffer-
encein meaningfulness of the different segmentations. The
subjects choose between two schemes at a time on a number
of images. Analysis of the results, described in section 4,
then leads to a pairwise ranking of the schemes. It is not nec-
essary that such a pairwise ranking be consistent with any
single total order on the schemes: cycles may exist in the
pairwise ranking rendering this impossible. It is a first check
that consensus exists that such a total ordering is in fact pos-
sible.

The impetus for this work arose from the area of content-
based image retrieval (CBIR), and in particular the evaluation

of retrieval systems. (See [1] for a discussion of evaluation
methodologies for retrieval systems.) CBIR has become in-
creasingly important as a research area in recent years, due to
the explosive growth both of image archives in many fields
and of the Web. It is also an interesting area theoretically,
bringing all the important questions of machine vision into
focus and providing a natural and potentially objective test-
bed for image understanding systems. CBIR attempts to re-
place current retrieval based on manual textual annotation of
images with automatic processing in which indices are gen-
erated for each image and then used for retrieval. For this
to work well, the indices must capture the relevant seman-
tics of the images in the database, and it is here that the link
with segmentation methods arises. It is clear that for many,
maybe even most, queries to such systems, asine qua non
of successful retrieval will be a description, at some level,
of the ‘principle objects’ in the images in the database. The
phrase ‘principle objects’ is of course not well-defined and
may even vary from query to query. If such segmentations
do exist however, then the ability to produce them automat-
ically will be a good first indicator of success in a retrieval
setting.
The paper is structured as follows. In section 2 we describe
the basis on which the segmentation schemes and the images
used in the evaluation were selected. A short description of
each scheme is also presented. In section 3 we describe in
detail the evaluation procedure. Section 4 presents the results
obtained from the evaluation procedure and we discuss these
and conclude in section 5.

2. IMAGE SEGMENTATION SCHEMES AND
DATASET

Any scheme for evaluating segmentation methods must choose
a test-bed of images with which to work. Conclusions drawn
using this testbed will nota priori generalise to other types
of images. Such a conclusion can only be reached after ex-
tensive experimentation with many types of images. Never-
theless, the analysis of the results from any one testbed may
suggest avenues of exploration both in research on segmen-
tation algorithms and on evaluation methodologies.
The images used for evaluation in this paper are scanned im-
ages of fine art paintings from the Bridgeman Art Library
(BAL) collection.1 BAL is a commercial art library supply-
ing electronic and hard copy images to magazines, newspa-
pers, designers and others. The images are realistic in intent,
but in many cases the colours and forms do not correspond to
‘photographic realism’. The semantic content of the images
is complex and varied. Some are landscape scenes, while
others are portraits. Very often there is no dominating ob-
ject in the foreground on which attention can be fixed and

1All images in this paper are used with the permission of the Bridgeman
Art Library, www.bridgeman.co.uk .
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that can be used to label the image as a ‘picture of X’. It
is clear that the semantics of these images are more or less
unbounded, and that the idea of defining ‘ground truth’ is
highly optimistic. The collection thus falls squarely into the
first category mentioned in the introduction. In addition, it is
hard to generate hand segmentations of the BAL images. The
number of possibilities is extremely large, and our attempts
to generate such segmentations were a failure. Subjects did
not know what to do.
Two subsets of10 and50 images respectively were selected
at random from an initial set of3000 images from the BAL
collection. Although the segmentation schemes are unsu-
pervised, some minimal setting of parameters is required.
This is to avoid drastically over- or under-segmenting the
images, thus adding further difficulty to the evaluation prob-
lem. Thus, the first subset of10 training images was used to
fine-tune the parameters of the schemes. The fine-tuning was
done by the authors of each scheme. Each image was accom-
panied by rough guidelines indicating the number of regions
expected, and some idea as to the identity of the principle re-
gions in each image. The number of regions ranged from2–
10. After the fine-tuning, the parameters were left untouched
while the schemes segmented the remaining50 test images.
These50 images and the resulting segmentations were then
used in the evaluation.
Six schemes were made available for evaluation, of which
five came from the members of the MOUMIR project and
one from outside (Blobworld). Details of the features used,
the models and the algorithms can be found in the cited pa-
pers.

• Multiscale Image Segmentation (MIS): This scheme
is outlined in [6]. It generates classes using a robust
mean shift procedure, which operates on a7 - dimen-
sional joint spatio-feature space, containing3 colour,
2 texture and2 spatial feature components. The subse-
quent classification procedure consists of a Bayesian
multiscale process which models the inherent uncer-
tainty in the joint specification of class via a Markov
Random Field model.

• Blobworld: The Blobworld scheme aims to transform
images into a small set of regions which are coherent in
colour and texture [7]. This is achieved by clustering
pixels in a joint colour-texture-position feature space
using the EM-algorithm.2.

• Iterated Conditional Modes(ICM): The likelihood for
this model uses an i.i.d. Gaussian model of pixel inten-
sities, combined with a Potts-like prior. ICM is used to
maximise the posterior probability, an initial configu-
ration being created using k-means. A full description
can be found in [8].

2It was not feasible to alter any of the internal parameters of Blobworld.

• Learning Vector Quantization(LVQ): The feature vec-
tors used in the LVQ clustering algorithm consisted
of the RGB colour values and the coordinates of each
pixel. LVQ is a self-organizing neural network with
a competitive learning law. The model is described
in [9].

• Double Markov Random Field(DMRF): The double
Markov random field assumes Gaussian MRF models
for classes within the image, and that class labels fol-
low a Potts model [10]. In this approach, the poste-
rior distribution of class labels and all model param-
eters given observed intensities are simulated using a
Markov chain Monte Carlo approach. The segmenta-
tion is taken to be the marginal posterior mode, where
each pixel is classified to be that class that was sam-
pled most often in the simulation.

• Complex Wavelets and Hidden Markov Trees(CHMT):
Segmentation using Complex Wavelets and Markov
Trees is initialised using the mean shift procedure to
generate classes. Then texture and colour models, based
on hidden Markov trees of complex wavelet [11] and
scaling function coefficients respectively, are trained.
A segmentation is found by using maximum likelihood
classification of the coefficients given the models [12].

An idea of the variation in the segmentations produced by the
schemes that we evaluate can be obtained from figure 1(b),
which shows the output of six different segmentation schemes
given the image in figure 1(a).

3. EVALUATION METHOD

The psychovisual test consisted of a series (‘evaluation set’)
of ‘trials’, each of which asked the subject (‘subject’) to choose
between the segmentations of a single image by two differ-
ent schemes. As stated, six schemes were compared to each
other, thus giving15 pairwise comparisons. The number of
subjects was14.

3.1. Evaluation Set

Previous work in the area of psychovisual testing [13] sug-
gests that a30-minute time limit should be placed on the
length of the test. This is to guard against subject fatigue,
which could influence the results in an unpredictable man-
ner. In preliminary investigations of the testing process, we
found that each trial took about10 seconds. An evaluation
set therefore consisted of150 trials. The existence of15
pairwise comparisons meant that each pair of schemes was
compared over10 trials.
To assign10 images to each pair of schemes, we sampled
without replacement from the50 images in our test set, be-
ginning again when all images had been used. The result-
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(a)

(b)

Figure 1: 1(b) shows the variation in the segmentations of
the image in 1(a) resulting from the six schemes evaluated
(Image c© Bridgeman Art Library).

ing 150 trials were then randomly sequenced, and the two
schemes in each trial assigned randomly to left or right for
display purposes (see section 3.2). Once done, this same
evaluation set was used for each subject.

3.2. Trial

In each trial, five images were used. The original image was
displayed centre screen, with, on either side of it, the seg-
mentation results from the two schemes being compared in
that trial. Each scheme’s segmentation was presented to the
subject using two different representations. We term these
images the ‘outline map’ and the ‘segmentation map’. The
outline map shows the region boundaries superimposed on
the original image. The segmentation map shows the regions
themselves by colouring a region with the mean colour of
the regions corresponding to its class. Figure 2 illustrates the
layout of a trial.
The reason for using two representations of a single segmen-
tation result is the following. The outline map is designed
to display the coincidence (or not) of region boundaries with
features in the image, and the nature of the interior of each
region. The segmentation map is designed to show the global

Segmentation Map Segmentation Map

Scheme BScheme A

Outline Map Outline Map

Original Image

(a) (b)

Figure 2: 2(a) is a schematic of the on-screen layout of a
trial, while 2(b) contains a screen shot (Imagec© Bridgeman
Art Library).

(a) This screen shot shows
the first stage of a trial, in
which the original image is
displayed to the subject until
they are familiar with it. To
proceed to the trial, the sub-
ject clicks on the original im-
age.

(b) This screen shot shows
the second stage of a trial,
in which the segmentations
from the two schemes are
represented by their outline
and segmentation maps. This
stage of the trial is timed, re-
sulting in the soft score de-
scribed in the text.

Figure 3:This figure contains the two stages of a trial (Image
c© Bridgeman Art Library).

layout of the regions and to show which regions are classi-
fied as belonging to the same class. It also presents a greatly
simplified version of the original image.
The images in each trial were displayed in two stages. First,
the original image was displayed on its own. The subject had
an indefinite amount of time to look at this image and become
familiar with it. When ready, the subject could click on the
original image, at which point the other four, segmented im-
ages were displayed. When the subject had made a decision,
the next original image was displayed, thus commencing the
next trial. Figure 3 shows these two stages of a trial.
During each trial, two types of measurements were made of
the subjects’ response to the proposed segmentations: a ‘soft
score’ and a ‘hard score’. The soft score is the time taken for
the subject to make their decision after the segmented images
are displayed. The time taken looking at the original image
before the segmented images were displayed was recorded,
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but is not used in this paper. The idea of displaying the orig-
inal image first, and then of waiting until the subject is ready
to proceed, was to reduce as far as possible the effects of im-
age complexity on this soft score. In practice, for analysis,
we use the reciprocal of the time, termed the ‘speed’. The
speed is signed, the sign of the speed indicating which of
the two schemes the subject chose. If the subject was ‘unde-
cided’, the speed was set to zero. The measurement of speed
is intended to indicate how close in meaningfulness the seg-
mentations from the two schemes are to each other (although
not necessarily close geometrically), a longer decision indi-
cating that the two segmentations were closer. This type of
‘speed of response’ measurement has proven to be an effec-
tive measure in other psychovisual tests relating to detecting
image compression artifacts [13]. The hard score consists
simply of the sign of the speed, therefore indicating which
scheme the subject chose, but not how quickly. These two
measurements form the basis of the results analysis in sec-
tion 4.

3.3. Instructions

Prior to performing the psychovisual tests, all subjects were
issued with a set of instructions. The instructions were de-
signed to be minimal, in the sense of influencing the seman-
tics the subject would use to understand the image as little
as possible. The instructions read:The pair of images to the
left of the original image illustrates one way of splitting the
original image into its most important pieces, while the pair
of images to the right of the original image illustrates a sec-
ond way. Decide which of the ways, left or right, of splitting
the image into its most important pieces makes most sense to
you. Once the subject comes to a decision, using a mouse
they click on either of the outline or segmentation maps of
the chosen scheme. Subjects may also beundecidedin their
choice, in which case they click on the original image.
In order to allow subjects to familiarise themselves with the
test, each subject underwent a short ‘familiarisation session’
prior to performing the test proper. The session consisted of
10 trials. The images used in the familiarisation session were
not used again.

4. RESULTS AND DISCUSSION

The first goal of the analysis is to determine whether or not
there is coherence in the results of the psychovisual tests.
In particular, are they consistent with a total order on the
schemes? To obtain such answers, the measurements ob-
tained from the14 different subjects who took part in the
evaluation need to be combined in some way. Recall from
section 3, that during each trial two measurements were made:
‘hard’ and ‘soft’. The soft measurement is the (signed) speed
of the subject on that trial, while the hard score, the ternary

Hard Scores
MIS Blob. ICM LVQ DMRF CHMT

MIS – -0.11 -0.07 -0.34 -0.04 -0.11
Blob. 0.11 – -0.09 -0.11 -0.27 -0.19
ICM 0.07 0.09 – 0.09 0.13 0.04
LVQ 0.34 0.11 -0.09 – -0.14 -0.14

DMRF 0.04 0.27 -0.13 0.14 – -0.1
CHMT 0.11 0.19 -0.04 0.14 0.1 –

Table 1: The table shows the hard scores produced by the
procedure described in the text. Each row of the table con-
tains the scores of that scheme against the others. For exam-
ple, the Blobworld scheme scored0.11 against MIS,−0.09
against ICM etc. A positive score in a row is good for that
scheme.

choice the subject made, is equal to the sign of the speed:+1
to the ‘winning’ scheme,−1 to the ‘losing’ scheme, and0 to
both if the decision was ‘undecided’.
In order to compare the results from different subjects, some
model has to be given for the variation among subjects. In
principle this variation could be extremely complicated, in
which case there is little hope of discovering a consensus.
We make perhaps the simplest assumptions possible: that for
each trial, or in other words for each image and each pair of
schemes, there is an ‘intrinsic’ scored that determines each
subject’s mean speed linearly. In other words, each subject
possesses a ‘speed coefficient’α that multiplies the intrinsic
score to give the mean speed. We further assume that the ob-
served speeds are distributed normally about this mean with
a subject-dependent variance,σ2 = 1/λ. By assuming igno-
rance priors onα, λ andd, marginalising overα andλ, and
then taking a MAP estimate, we arrive at the simple recipe
of first normalising the vector of speeds of each subject over
all trials using the Euclidean norm and then averaging over
subjects, giving an intrinsic score for each trial. We average
the hard scores over subjects also.
In order to create a pairwise ranking of the schemes, we
average the intrinsic scores over the trials for each pair of
schemes, giving a hard and a soft score for each pair of schemes.
One can view this as ‘averaging over the dataset’. These
scores give us two pairwise rankings for the set of schemes,
which may or may not be consistent with each other. The
results of this procedure for the hard scores are shown in ta-
ble 1, while those for the soft scores are shown in table 2.

Note that, ifs is an entry in table 1 for schemes (A,B), then
(1+ s)/2 is the frequency with which scheme A was picked.
Some of the frequencies are not far from 0.5 at first sight, but
it must be borne in mind that they are averages over140 sam-
ples. The probability of a frequency of0.45 being produced
by a binomial distribution withp = 0.5 is small (∼ 0.03).
Another way of saying the same thing is that the standard
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Soft scores
MIS Blob. ICM LVQ DMRF CHMT

MIS – -17.5 -9 -35.1 -0.5 -20.6
Blob. 17.5 – -11 -6.9 -31.7 -15.6
ICM 9 11 – 9.2 11.3 5.3
LVQ 35.1 6.9 -9.2 – -6.9 -14.8

DMRF 0.5 31.7 -11.3 6.9 – -5.8
CHMT 20.6 15.6 -5.3 14.8 5.8 –

Table 2: The table shows the soft scores produced by the
procedure described in the text, multiplied by1000. Each
row of the table contains the scores of that scheme against
the others. For example, the Blobworld scheme scored17.5
against MIS,−11 against ICM etc. A positive score in a row
is good for that scheme.
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Figure 4:A graph illustrating the pairwise ordering arising
from both the hard and soft scores, and the resultant total
ordering. There is an arrow from vertex A to vertex B if the
scheme associated with vertex A performed better than that
associated with vertex B. The arrows from a given vertex are
coloured and dashed in the same way, and the total ordering
arrows are shown thickened.

deviation of the MAP estimate (0.45) of p for a binomial dis-
tribution when140 observations give a frequency of0.45, is
3.4× 10−3. The randomization procedures used to construct
the experiment remove bias as far as possible, and we are left
with a significant effect.

Given the results, the following natural questions arise: do
the two (hard and soft) pairwise rankings lead to consistent
total orderings? Are these total orderings the same for the
hard and soft scores? In both cases the answer is ‘Yes’. Fig-
ure 4 shows a graph in which an arrow from vertex A to
vertex B indicates that the scheme associated with vertex A
performed better than that associated with vertex B. The di-
agram illustrates how unlikely it isa priori that such a pair-
wise assignment would lead to a total order. For six schemes,
there are approximately45 possible pairwise orderings for
each possible total ordering. The order resulting from this
analysis is: ICM> CHMT > DMRF > LVQ > Blobworld
> MIS.

The results are intriguing, because ICM has the simplest fea-
ture set of any of the algorithms tested, eschewing even the
use of colour. CHMT on the other hand has one of the most
complex, training hidden Markov tree models of wavelets for
texture, and using scaling coefficients for colour. One expla-
nation might be that the coincidence of region boundaries
with semantically significant boundaries in the image is an
important factor determining subjects’ responses. The use of
greyscale intensity differences in the ICM model renders it
sensitive to sharp boundaries that models that include texture
may miss, thus helping to compensate for the lack of sophis-
tication in its features.
Perhaps the closest direct comparison is between ICM and
LVQ. Both use simple features (ICM uses pixel intensity,
LVQ pixel colour), but they differ in the way they take into
account region geometry. LVQ clusters pixels using their co-
ordinates as another feature, while ICM applies a Potts-like
prior favouring consistent regions. It would appear that the
latter is more successful.
Connected to this difference is the possibility that the number
of regions (as opposed to classes) plays an important rôle. At
least as limiting cases (one region, or a very large number), it
is clear that this is a significant factor. LVQ tended to produce
a large number of regions, whereas ICM produced a reason-
able number (say∼ 5). This is not a consistent interpretation
of the results however, as Blobworld also produces a reason-
able number of regions. However, Blobworld’s use of ana
priori structure for these regions may have hampered its per-
formance on the images in the BAL database. Blobworld was
originally applied to natural images often possessing a single
dominant object in the centre foreground.
The results give an indication that a consensus about ‘fun-
damental’ image segmentations exists. Further experiments
and analysis are necessary to understand the nature of this
segmentation.

5. CONCLUSION AND DISCUSSION

The evaluation of segmentation schemes in the absence of a
well-defined semantics is a thorny problem. Without explicit
knowledge of what one would like the output of the algo-
rithm to be, it is hard to say whether one scheme is better
than another. The most important question for such schemes
is whether there exists any kind of consensus arising per-
haps from a hidden and somewhat universal set of seman-
tics. The only way to access such a set if it exists, is to per-
form tests with human subjects. One way would be to allow
subjects to create hand-segmentations, and look for consis-
tency amongst the results, subsequently using the results as
‘ground truth’. In this paper we have taken another approach,
asking subjects to compare directly the output of segmenta-
tion algorithms and judge which of a pair of segmentations
is more meaningful to them. This has the advantages that
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it allows the minimum of instruction to be given to the sub-
jects, and it can be used even when the generation of hand
segmentations is difficult due to the semantic complexity of
the images. The images used for evaluation in this paper are
scanned images of fine art paintings, which are very complex
semantically.
Based as they are on pairwise comparisons of segmentation
schemes, it is remarkable that the results we obtain are con-
sistent with a total ordering on the six schemes tested, and
that this ordering is essentially unaltered by various means
of analysing the data. Certainly the results are very far from
chance levels. This consistency suggests that human subjects
do perceive images as broken up into regions in a consistent
way, and that further study might enlighten us as to what cri-
teria are at play in this process. The results of our study are
inconclusive about the reasons for the ordering we obtain.
The two most successful schemes use very different features
and models. Further testing and analysis is necessary to de-
termine if there are commonalities linking the successful seg-
mentations.
Central to this evaluation procedure is the hypothesis that an
image segmentation scheme which closely mimics human in-
terpretation of semantic content is in a better position to at-
tempt retrieval of that content within a CBIR setting. Thus,
work is currently under way integrating the CHMT scheme
into a CBIR framework, results of which will be published at
a later date.
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