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ABSTRACT

The goal in image segmentation is to label pixels in an image based
on the properties of each pixel and its surrounding region. Re-
cently Content-Based Image Retrieval (CBIR) has emerged as an
application area in which retrieval is attempted by trying to gain
unsupervised access to the image semantics directly rather than
via manual annotation. To this end, we present an unsupervised
segmentation technique in which colour and texture models are
learned from the image prior to segmentation, and whose out-
put (including the models) may subsequently be used as a con-
tent descriptor in a CBIR system. These models are obtained in a
multiresolution setting in which Hidden Markov Trees (HMT) are
used to model the key statistical properties exhibited by complex
wavelet and scaling function coefficients. The unsupervised Mean
Shift Iteration (MSI) procedure is used to determine a number of
image regions which are then used to train the models for each
segmentation class.

1. INTRODUCTION

In recent years, Content-Based Image Retrieval (CBIR) has emerged
as an active research area. This is partly due to the explosion in
the amount of image data being generated in many different fields
and the growth of the Web. Successful image retrieval is the key
to making this large amount of data useful. However, CBIR also
provides a framework within which many important questions of
machine vision are brought into focus: successful retrieval is likely
to require access to the semantic level. Initial approaches to image
retrieval focussed on global properties of the images, but it is ap-
parent that information about the spatial variation of image prop-
erties is critical to retrieval. Image segmentation has thus come
to play a central role in current approaches to CBIR. The hope is
that relatively low-level properties of image regions will be suf-
ficient to characterize semantic value, and hence that the use of
segmentations as summaries of image content will capture seman-
tic distinctions between images.

In return, the nature of the CBIR application imposes con-
straints on the segmentation algorithms to be used. One of the
purposes of CBIR is to avoid the time-consuming and expensive
business of hand-labelling of images by human operators. This
means that the algorithms should be unsupervised: they must learn
the parameters of whatever models they use from the images in
the database without human interference. Secondly, although the
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data in different CBIR applications varies, very often the images
in the database are highly diverse in their semantics. This means
that when a new image is added to the database, there is a sig-
nificant possibility that it possesses semantics that are new to the
database. Consequently, the segmentation algorithm used to gen-
erate database indices for retrieval should operate on the data in the
current image only, without recourse to the rest of the database.

In this paper, we describe probabilistic models of image tex-
ture and colour and use them for unsupervised image segmenta-
tion. These models are based on (complex) wavelet decomposi-
tions of the image, whose value for image processing and analysis
is by now well-established. Modelling of the full joint probability
distribution of the wavelet coefficients is impractical, and yet ig-
noring their mutual dependence completely is unrealistic. Hidden
Markov tree (HMT) models provide a compromise between these
extremes. They capture the key dependencies that exist between
wavelet coefficients at different scales, while remaining compu-
tationally tractable. They have proven very successful in image
restoration and denoising, and are finding increasing use in seg-
mentation applications also [1, 2]. In [2], HMT models for the
coefficients in a wavelet decomposition were used to describe im-
age texture for segmentation. These models use supervised algo-
rithms, and model texture only, rendering them less than ideal in
a CBIR context. This paper proposes new models that overcome
these limitations and demonstrates their value on real images. The
key features of the models we describe are the following:

• The algorithms are unsupervised and operate using the cur-
rent image only. A Mean Shift Iteration (MSI) procedure
partitions the pixels into texturally, chromatically and spa-
tially coherent clusters, which are then used to train the
models for colour and texture.

• Texture is described using HMT models for the magnitude
of the coefficients of the dual-tree complex wavelet trans-
form (DT-CWT) [3] of the intensity (L) component of the
L∗a∗b∗ colour space representation of the image. The DT-
CWT improves on the standard discrete wavelet transform
(DWT) by having much improved translation invariance and
better directional sensitivity, both important properties for
texture characterization, while maintaining low computa-
tional cost. The conditional distributions of wavelet coef-
ficient magnitudes are modelled as Rayleigh distributions,
consistent with the real and imaginary parts of each coeffi-
cient being modelled by i.i.d. zero-mean Gaussians.

• Colour is described using independent Gaussian models for
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the DT-CWTscaling functioncoefficients of the three com-
ponents of theL∗a∗b∗ colour space representation of the
image.

In section 2 we give an overview of the entire segmentation
process. A description of MSI is provided in§3. The DT-CWT
and HMT based texture modelling are discussed in§4.1 and the
colour modelling process in§4.2. Typical results of the scheme
are presented in§6, with conclusions in§7.

2. OVERVIEW

We first outline the steps of the algorithm, and then describe each
step in more detail in subsequent sections.

Mean Shift Iteration (MSI) MSI partitions the pixels into approx-
imately texturally, chromatically and spatially coherent clus-
ters. These clusters will be used to train the colour and tex-
ture models. Note that MSI thus determines the number of
distinct classes in the image.

Training of HMT texture model The data in each cluster gener-
ated by the MSI procedure is used to train the parameters of
six 2-state HMT models of the magnitudes of the DT-CWT
coefficients in each of the6 directional subbands.

Training of colour model The data in each cluster generated by
the MSI procedure is used to train the parameters of Gaus-
sian models of the scaling function coefficients at each level.

Segmentation The texture and colour models are combined at
each level of the decomposition to produce a likelihood that
each macro-pixel belongs to a certain class. Initial segmen-
tation occurs by assigning the maximum likelihood class
to each macro-pixel. Further refinement of this segmenta-
tion is achieved by exploiting inter-scale dependencies us-
ing Data Fusion.

3. MEAN SHIFT ITERATION

The MSI procedure provides a general robust clustering method.
It groups the image pixels into clusters that tend to be texturally,
chromatically and spatially coherent and which can then be used
to train the more sophisticated colour and texture models.

MSI is a kernel-based decomposition method. It can be shown
to be a generalised version of thek-means clustering algorithm.
MSI works as follows. In the data space used, a density gradient
estimate is obtained using a differentiable kernel, which leads to
the calculation of the mean shift vector. Successive evaluations of
this vector result in stationary points, which are taken to be the
cluster centres. The points located in the vicinity of each cluster
centre are assigned to a corresponding class, while the rest of the
points are labelled ‘undecided’ and are not used in training. We
use a7-dimensional data space:3 colour dimensions,2 texture di-
mensions and2 spatial dimensions. The colour components are
obtained from the pixel values in theL∗a∗b∗ colour space, while
the texture components are the two dominant complex wavelet ori-
entations, found using PCA. The spatial components are simply
the row and column coordinates of each pixel. Further detail about
MSI can be found in [4].

Upon convergence of the MSI procedure, the pixels have been
partitioned into a number of clusters. Because of the inclusion of
position information in the feature space, these clusters tend to be
compact spatially, and define regions in the image with coherent
properties. After the use of a smoothing procedure to eliminate
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Fig. 1. A 1-D dependence structure where the dependency is asso-
ciated with the hidden state variable (white node) rather than the
actual observed coefficient (black node).

small ‘holes’ in the regions, binary masks are constructed for each
cluster. These masks are then used in the training phase of the al-
gorithm to ensure that each model is trained on data coming from
its respective cluster only. Figure 3 (b) illustrates the masks ob-
tained for figure 3 (a), where each of the four classes is represented
by a distinct colour (excluding white).

4. MODELS

4.1. DT-CWT HMT Models for Texture

The complex wavelet coefficients of real world images possess the
following important statistical properties:

Non-Gaussian Distribution The frequency distribution of the co-
efficients tends to be peaky and heavy tailed.

PersistenceThe size of the coefficients tends to propagate through
dependent branches of the wavelet tree tree, so that, for ex-
ample, if a coefficient is large in value then it is likely that
its children will also be large.

These properties are also reflected in the coefficient magnitudes,
ωi. Both of these properties can be captured by using HMT models
of the distribution of the wavelet coefficient magnitudes. The first
property results from modelling the marginal distribution of each
wavelet coefficient magnitude as a2-component mixture. The
mixture model is realised in its turn by endowing each coeffi-
cient with a state taking one of two values,L (large) orS (small),
and treating the mixture as the joint distribution for the coefficient
magnitude and its state marginalised over the state. The second
property results from modelling dependencies between the hidden
states at different scales. In graphical terms, the distribution is il-
lustrated in figure 1. The black nodes represent wavelet coefficient
magnitudes, while the white nodes represent the hidden states.
Edges in the graph represent dependencies. Note that we assume
that each coefficient’s magnitude is independent of all other vari-
ables given its state, while each state depends only on the states of
its parent and its children. We first describe the dependency struc-
ture of the hidden states, and then the conditional distributions of
the coefficient magnitudes given their states.

4.1.1. Dependency structure of the hidden states

We can describe the distribution simply by giving the conditional
probability of the state of a child given the state of its parent. There
will be one of these matrices for each edge in figure 1. In addition,
we must give the distribution of the root node of the tree. The
parameters for the distribution of states are thus the following:

• p0(m), the probability that the state of the root nodeS0 =
m.
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Fig. 2. A histogram of wavelet coefficient magnitudes is displayed
in the light blue with the2 components of the Rayleigh mixture
displayed separately in red and green. The full mixture distribution
is shown in black.

• εm,n
i,ρ(i) = P (Si = m|Sρ(i) = n), the conditional probabil-

ity that the state of nodei is m, given that the state of its
parent,ρ(i), is n. This is a matrix for eachi:

εi,ρ(i) =

[
εSS εLS

εSL εLL

]
i,ρ(i)

(1)

where the persistence property leads us to expect thatεSS �
εLS andεLL � εSL.

In order to enforce translation invariance, the parameters at differ-
ent positions within one subband are assumed to be the same.

4.1.2. Conditional distribution of coefficient magnitudes

Having described the dependency structure of the hidden states,
we can now be more specific about the distributions of the coef-
ficient magnitudes given their states. Since these magnitudes are
independent given the states, it suffices to describe their individual
distributions. These will be modelled using a Rayleigh distribu-
tion,

P (ωi) =
ωi

σ2
i,Si

exp

(
−ω2

i

2σ2
i,Si

)
, (2)

where the value ofσi,Si depends on the stateSi of coefficienti and
on the particular coefficienti considered, although againσi = σj

if i andj lie in the same subband.
The use of a Rayleigh distribution is equivalent to assuming

that the real and imaginary parts of each coefficient are distributed
as i.i.d. zero-mean Gaussians. They are zero mean because each
wavelet filter response integrates to zero, and the Gaussian as-
sumption is reasonable in the context of a HMT mixture model.
Complex wavelet coefficients can be modelled by pairs of indepen-
dent Gaussians, since the real and imaginary wavelet bases are ap-
proximately in quadrature (i.e. they form an approximate Hilbert
pair) and hence are approximately orthogonal to each other. The
Rayleigh model gives a simpler model than the pairs of Gaussians
with a shared state variable used by Romberget al.[5], and is quite
straightforward to include in the HMT probability expressions.

The marginalised distribution of each coefficient magnitude is
now given by a2-component mixture of Rayleigh distributions.
Figure 2 shows a typical histogram of wavelet coefficient magni-
tudes and shows how such a2-component mixture model captures
the distribution.

4.1.3. Why the DT-CWT?

The Dual-Tree Complex Wavelet Transform (DT-CWT) [2] em-
ploys a dual-tree of real-valued wavelet filters to generate the real

and imaginary parts of complex wavelet coefficients. The trans-
form produces 6 subbands which are strongly oriented at angles of
{±15◦,±75◦,±45◦}.

Any method used to characterize texture should be as close to
translation-invariant as possible, since the texture may present it-
self in the image under any translation. This poses a problem for
many wavelet-based approaches to texture, since it is well-known
that the discrete wavelet transform is not translation-invariant, even
when applied to continuous signals. Thus a small shift in the in-
put texture can cause a quite radical change in the structure of the
wavelet coefficients, rendering recognition of the texture quite dif-
ficult. In contrast to the DWT, the DT-CWT coefficient magnitudes
are approximately invariant to translation, which is one reason we
choose to use it.

The second reason is that the DT-CWT possesses much better
directional resolution than a standard DWT. It is intuitively clear
that an important property of many textures is their directionality.
The DT-CWT is able to detect this, as it possesses six directional
subbands rather than three. This is because the complex filters
are able to separate positive and negative frequencies in 1-D, and
hence separate adjacent quadrants in 2-D frequency space.

4.1.4. Training

The DT-CWT is computed on theL channel of theL∗a∗b∗ repre-
sentation of the image. Each of the6 directional subbands of the
DT-CWT is modelled using an HMT as described above. These
trees are assumed independent. The parameters of the models must
be trained: they are taken to be the maximum likelihood estimates.
These can be computed using the EM algorithm, where the E step
uses a forward-backward algorithm. The algorithm is described in
full in [1].

4.2. Colour Modelling

Colour information is very important for producing meaningful re-
sults in any general image segmentation technique. Rather than
use the wavelet coefficients to model the colour information in the
image, it seems more sensible to use the scaling function coeffi-
cients: the averaged colour of a region is likely to be more infor-
mative than its variation.

The scaling function coefficients are assumed to be mutually
independent. They are vector-valued, with three dimensions, one
for each of the components in theL∗a∗b∗ colour space. Each co-
efficient is modelled using a Gaussian distribution with a diagonal
covariance. The (vector-valued) mean and covariance of the Gaus-
sians are taken to be constant within each level for a given class.

Training in this case is simple, since there are no mixture mod-
els and the maximum likelihood estimates are found analytically
to be given by the mean and covariance of the data.

5. CLASSIFICATION

Given an image, we compute its DT-CWT, apply MSI and then
for each resulting class, train six HMT models, one for each direc-
tional subband, and one Gaussian model for each scaling function
coefficient. The product of these models provides the probability
distribution of an image of that class. It also allows us to compute,
for any node in the HMT tree of the image, the likelihood of the
wavelet and scaling function coefficients at and below that node
given that they belong to a particular class. We can thus compute
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the maximum likelihood class for every node in the tree. The re-
sulting initial estimates are then refined using a cross-scale data
fusion technique described in detail in [2].

6. RESULTS

We present results using images from two separate data-bases: the
Bridgeman Art Library (BAL) collection containing images of mu-
seum paintings and the Corel Image Database depicting natural
scenes. Due to the lack of simple ground truth data for these data-
bases, it is not easy to evaluate the scheme in an ‘objective’ man-
ner. An attempt to overcome this problem is presented in [6].

(a) Original Image (b) Regions produced by MSI

(c) Segmentation based on Colour information only.

(d) Segmentation using only a Texture model.

(e) Overall joint colour-texture segmentation.

Fig. 3. The image in (a) is segmented based solely on; colour in
(c); texture in (d); and jointly on colour and texture in (e).

The ‘zebra’ image, figure 3 (a), was deemed to contain four
classes by the MSI procedure. Each class had an associated train-
ing mask, depicted in figure 3(b) by highlighting each class with
a separate colour. These masks were then used to isolate relevant
regions of the original image when training the texture and colour
models for each class. Figure 3 (c) contains the segmentation of
the original image using only the colour model. Each of the four
classes are displayed in a separate image, from left to right. A
pixel which isnotclassified as part of a particular class is coloured
in red, so as to contrast sharply with the pixels which are deemed
most likely to belong to a particular class.

The colour model incorrectly separates the zebra into two dif-
ferent classes. This contrasts with the results obtained using only
the texture model, figure 3 (d), where the textured nature of the
zebra is captured correctly but the2nd and4th models fail to cap-
ture any significant semantic content. However, in figure 3 (e), we

(a) (b)

(c) (d)

Fig. 4. Typical segmentation results: 2 from the NAT database (a)
& (b); and 2 from the BAL collection (c) & (d) (c© Bridgeman Art
Library).

see an improved performance when segmenting based upon joint
colour-texture information.

To provide further examples of the capabilities of our scheme,
figures 4 (a),(b),(c) and (d) contain original images and their re-
spective segmentation maps.

7. CONCLUSIONS

A segmentation scheme must be unsupervised to render it use-
ful in the context of CBIR. We have presented a technique that
uses HMT models of complex wavelet coefficient magnitudes to
describe texture, and Gaussian models of scaling function coef-
ficients to describe colour. Due to the MSI procedure, the algo-
rithm operates without human input, and combines both colour
and texture information to improve segmentation and retrieval per-
formance. We are currently integrating the algorithm into a CBIR
system. The system has the ability to search based on image con-
tent using the colour and texture models learned through the seg-
mentation process.
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