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ABSTRACT

We present a novel approach to detect multiscale keypoints
using the Dual Tree Complex Wavelet Transform (DTCWT).
We show that it is a well-suited basis for this problem as it
is directionally selective, smoothly shift invariant, optimally
decimated at coarse scales and invertible (no loss of informa-
tion). Our detection scheme is fast because of the decimated
nature of the DTCWT and yet provides accurate and robust
keypoint localisation, thanks to the use of the “accumulated
energy map”. The regularity of this map is used to introduce
a new mechanism for robust keypoint scale selection. Key-
points of different nature and size can be detected with limited
redundancy, in a way which is consistent with our visual per-
ception. Furthermore results show better robustness against
rotation compared to the SIFT detector.

1. INTRODUCTION

We are interested in the problem of keypoint detection in im-
ages. By keypoints, we mean typically blobs, corners and
junctions. These features have been also referred to as interest
or salient points in the literature. In human vision, these lo-
calised features, along with edges, are perceived as privileged
cues for recognising shapes and objects and are widely used
in computer vision for various applications including object
recognition, stereo matching, content-based image retrieval,
mosaicing, motion tracking.

Various methods have been proposed for keypoint detec-
tion. The Harris corner detector [1] is not designed to be mul-
tiscale. Differences of Gaussian or “DoG” (as used in SIFT
[2]) act as isotropic filters and therefore require an extra step
to distinguish between keypoints and edges.

Wavelet theory provides a powerful framework to decom-
pose images into different scales and orientations, which is
coherent with the human perception. Wavelet transforms which
are non-redundant (i.e. which produce no more coefficients
than the original number of pixels) and invertible (i.e. the
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exact image content can be reproduced just from the wavelet
coefficients), such as the Discrete Wavelet Transform (DWT),
proved to be very powerful for image compression as in JPEG
2000.

The DWT has been used by Loupias et al [3] for salient
point extraction. However, the DWT is not robust to shift and
is poorly directionally selective [4], which is a major obstacle
for keypoint detection. Gabor wavelets have been designed
to be directionally selective. They are robust to shift, since
they are non-decimated, but they are therefore highly over-
complete and hence highly computationally expensive. More
recently, the DTCWT [4] was proposed and was shown to be
a particularly suitable tool for image analysis as it is direc-
tionally selective (see figure 1), approximately shift invariant
and has limited redundancy. We will show that these unique
advantages over other multiscale decompositions make the
DTCWT an ideal candidate formultiscale, robust and com-
putationally efficient keypoint detection, which are desirable
properties for visual recognition tasks.

In our approach, the keypoint energies measured from the
decimated DTCWT coefficients at different scales are accu-
mulated into a single smooth energy map. This “accumulated
map” plays a key role since its peaks define the keypoint lo-
cations and its gradient is used to derive the keypoint scales.

In section 2, we introduce the wavelet-based keypoint en-
ergy measure. The generation of the accumulated map from
multiscale keypoints energies and the keypoint localisation
scheme are explained in section 3. The scale selection scheme
is presented in section 4. In section 5, we will compare our
approach with the SIFT detector according to their robustness
to rotation and noise transformations. We will conclude in
section 6.

2. DETERMINING THE KEYPOINT ENERGIES
FROM THE DTCWT COEFFICIENTS

The DTCWT decomposition of anw × h image results in
a decimated dyadic decomposition intos = 1, ...,m scales,
where each scale is of sizew/2s × h/2s. At each deci-
mated location of each scale, we have a setC of 6 com-



plex coefficients, denoted asC = {ρ1e
iθ1 , ..., ρ6e

iθ6}, corre-
sponding to responses to the 6 subband orientations, namely:
15◦, 45◦, 75◦, 105◦, 135◦, 165◦. The directional information

Fig. 1. The real and imaginary impulse responses of the DTCWT.
The DTCWT provides 6 directionally selective filters.

provided by the DTCWT is useful to design a keypoint energy
measure that emphasises the presence of a keypoint (blob,
corner, junction) while ignoring edges and uniform areas. This
is an advantage over the Difference of Gaussian detector which
requires an extra step to suppress edge responses. The follow-
ing keypoint energy measure that we propose is based on the
product of all six subbands magnitudes:

E(C) = αs

(
6∏

b=1

ρb

)β

(1)

Parametersα andβ control the relative weight of scales in
the accumulated map (see below). Setting low values forα
andβ will emphasise fine scales and improve the localisation
and detection of fine scale features, but will make the detector
more sensitive to noise. In our experiments, we foundα = 1
and β = 1/4 to give the best results on different types of
images. We producem decimated energy mapsM1, ...,Mm

by calculatingE(C) for all the coefficients at each scale of the
DTCWT decomposition. The number of scales is determined
so that the coarsest map is at least7 × 7 (e.g. m = 5 for a
256× 256 image).

3. LOCALISING KEYPOINTS IN THE
ACCUMULATED ENERGY MAP

We created a test image (figure 2, left) which comprises vari-
ous salient features (corners, blobs and a square) of different
sizes. Note that a small blob is nested within the large blob,
in the lower right part of the image. Since its content is basic,
it is easy to judge the relevance of the detection based on our
perception.

Them energy maps{Ms} previously obtained are deci-
mated by respective factors2s. If we detect maxima in these
decimated maps (as in [3] with the DWT keypoints), we will
obtain keypoints which are poorly localised in the original
image space. In SIFT, each local maximum is interpolated
using its neighbour values by fitting a quadratic surface and
considering its peak location.

Fig. 2. Left: the input test image with features of different size and
nature. Right: the 15 maxima detected from the accumulated map.

We introduce a rather different method to obtain accurate
keypoint localisation from the decimated maps{Ms}. Given
a mapMs, we denote asfs(Ms) the 2D gaussian kernel in-
terpolation up to the original image size (i.e. upsampling by
a factor of2s). In an interpolated mapfs(Ms), a high en-
ergy keypoint produces a high gaussian peak whose variance
and inverse curvature are proportional to the scale factor2s

squared. We define theaccumulated energy mapof the image
as the sum of the interpolated maps from scales1 to m :

A =
m∑

i=1

fs(Ms). (2)

As a result, the accumulated map is a mixture of gaussians
centered about each saliency. The accumulated map corre-
sponding to the figure 2 test image is shown in figure 3 as a
surface plot.

Fig. 3. The accumulated map shown as a surface plot, obtained
from energy maps from scales 1 to 5. Its regularity guarantees ro-
bust keypoint detection. A high peak indicates that a feature is very
salient and/or present at multiple scales. A wide peak indicates the
presence of a coarse feature.

Now we define the keypoint locations as the peak loca-
tions inA, by simply detecting where energy values inA are
maximal on a3×3 neighbourhood. Thanks to the gaussian in-
terpolation in the construction ofA, keypoints are accurately
detected at the original pixel resolution. Figure 2 shows the 15
detected maxima on the test image. All the detected locations



do correspond to the perceived saliencies of the image con-
tent. This simple maximum detection mechanism is fast but
sensitive to noise. To reduce the number of false maxima, we
denoise the DTCWT coefficients by the Bivariate Shrinkage
Denoising technique [5], before the computation of keypoint
energies. This operation results in a smoother accumulated
map.

4. ROBUST SCALE SELECTION

Determining the precise scale of a keypoint is important to de-
fine the support region from which an appearance-based de-
scriptor can be extracted for higher level application.

The challenge we address here is the robust selection of
keypoint scales from the few scales given by the dyadic de-
composition. By comparison, SIFT requires three times as
many scales. Interpolating energies across a few scales (typ-
ically 5 or 6) and picking the maxima to define the scale of a
keypoint is not robust with the dyadic decomposition.

Instead, we exploit the regularity of the accumulated map
A and define the scale of a keypoint from the minima of the
gradient ofA in its vicinity.

Let g(x, y) ∈ R2 denote the gradient vector ofA at(x, y).
For a keypointk, we consider the eight projectionspi=1,...,8

of g(x, y) along the following directions aroundk: 0o, 45o, ...,
315o up to a distanceR fromk (the radiusR is set to 30 pixels
here). As a result, given0 ≤ j ≤ R, pi(j) gives the gradient
value along directioni at j pixels away fromk. Since a key-
point is located at a peak ofA, pi(j) will be negative for the
low values ofj and become positive if another keypoint exists
in its vicinity. To ignore the interaction from neighbour key-
points, we truncate the gradient projections by setting them
to zero from the point they become positive. Note that an
isotropic keypoint, such as a blob, will yield similar projec-
tions with a strong minimum. A strong feature will yield a
strong minimum. Figure 4 shows the eight projections corre-
sponding to the two nested blobs (at the bottom right of the
test image). The presence of two blobs (a small and a big one)
yields two lobes. The key idea is to define the keypoint scales
as the loci where most projections have minima. In presence
of noise or complex keypoints, the projections may differ and
we need a robust scheme to detect minima which are consis-
tent with all eight projections.

We fuse the eight projections by simply taking their sum
and refer to it as thegradient profile. The robust detection
of its minima is achieved by a flood-filling operation between
its maxima: the keypoint scales are defined as the loci that
equally split the filled area into two equal areas (see figure
4). The filled area indicates the strength of the keypoint and
areas below a thresholdτgp are ignored. In figure 4, the two
valid scales are indicated by the dashed lines. The small blob
and the big one are assigned scales4.4 and19.8, respectively.
This scheme naturally allows us to detect the presence of two
or more keypoints at the same location which have different

scales.

Fig. 4. Scale detection based on the gradient profile and projections
determined around the center location of the two nested blobs. Two
keypoints of different scales (4.4 and19.8) are detected here.

5. RESULTS

The performance of our technique was compared against the
recent and widely used DoG-based SIFT detector [2].

Perceptual observations:Figure 5 (left) shows the 16 fi-
nal detected points for the test image as purple circles, from
the 16 detected locations (see figure 2). The circle radius in-
dicates the keypoint scale. We observe that all detected key-
points are coherent in scale and position. The scale selection
scheme created one extra keypoint for the nested blobs. For

Fig. 5. Detected keypoints with our method (left) and SIFT (right).
Circle sizes indicate the keypoint scales. With 16 detected keypoints
our method picks the various features, while the 71 detected SIFT
keypoints miss some corners.

comparison, SIFT descriptors are shown in figure 5 (right).
The arrow lengths indicate the keypoint scale. It detects 71
keypoints total. Figure 6 shows another example of detected
keypoints on the standard “cameraman” picture. More gen-
erally on different images, we observed that SIFT produces
much more keypoints and many often refer to the same fea-
ture. It often fails to detect coarse corners. Our detector
usually detects one keypoint per salient feature, which avoids
producing too many redundant keypoints. This is a desirable



property as keypoint matching techniques tend to be compu-
tationally demanding.

Robustness to rotation:

Fig. 6. 72 keypoints detected on
the “cameraman” picture.

To assess the robustness of
our keypoint detector against
SIFT, we ran both algorithms
on rotated versions of the
test image from1 to 360
degrees. SIFT detected key-
points on the blobs with great
accuracy and robustness but
much less on corners. Our
method proved to be very
robust and accurate for all
keypoints at all orientations.
To quantify this robustness,
we measured the overlap

between all detected keypoints at orientation360o and key-
points detected at all orientationsθo ofter “derotating” their
coordinates by−θo. The overlap between two keypoints is
given by the ratio of twice intersection keypoints discs (whose
radius is the scale) by the union of the discs. The total over-
lap between two images is normalised by the number of key-
point pairs which had an overlap greater than0.5. Figure 7
shows the plot of this measure for both detectors. This mea-
sure remains closer to one across orientations for our detector,
indicating a better robustness.

Fig. 7. Repeatability against rotation. The keypoint overlap for our
detector remains closer to1 across orientations than SIFT, which
indicates a better robustness to rotation.

Robustness to noise:Noise is a critical issue for gen-
eral keypoint detection since a noisy pixel can be easily inter-
preted as a fine salient feature. Our denoising scheme (sec-
tion 3) reduces the fine scale energies to provide a smoother
accumulated map. As a result, in presence of strong noise,
only coarsest features will be detected. On contrary, as fig-
ure 8 shows, SIFT detects more keypoints as the noise factor
increases.

Speed:Our (unoptimised) code runs in Matlab on a 3GHz

Fig. 8. Number of keypoints detected in presence of noise. In pres-
ence of strong noise, our algorithm detects only coarse features while
SIFT detects more keypoints.

PC. On a natural512 × 512 image, the multiscale keypoint
detection takes on average 7s. For comparison, the SIFT [2]
program (C++ code, version 41) takes 4.5s for detection and
description of keypoints.

6. CONCLUSION

We presented a novel method to perform robust multiscale
keypoint detection based on the DTCWT transform. Both lo-
calisation and scale selection operations are based on the ac-
cumulated map of keypoint energies. Local saliencies of an
image are detected and their scale gives their support region.
In comparison with the SIFT detector, results showed our key-
point localisation is more robust to rotation. We obtain about
the same order of magnitude in speed. Detected keypoints are
less numerous and less redundant (one feature yields no more
than one keypoint). Our first results show that the detected
keypoints are perceptually consistent with the visual content
of the image.

Our future work will focus on the design of multiscale
descriptors for these keypoints using the DTCWT.
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