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Abstract 1 Introduction

1.1 The wavelet transform and multiscale
analysis

The dual-tree complex wavelet transfor@WT) is a rel-
atively recent enhancement of the discrete wavelet tra@éace its emergence twenty years ago, wavelet trans-
form (DWT) with important additional properties: It isform has been exploited with great success across the
nearly shift-invariant and directionally selective in twgamut of signal processing applications, in the process
and higher dimensions. It achieves this with a redundarayen redefining the state-of-the-art of performance [102,
factor of only2? for d-dimensional signals, which is sub412]. In a nutshell, the discrete wavelet transform (DWT)
stantially lower than the undecimated DWT. The multireplaces the infinitely oscillating sinusoidal basis func-
dimensional dual-tre€WT is non-separable but is basetions of the Fourier transform with a set tufcally os-
on a computationally efficient, separable filter bank. Thidllating basis functions, calletavelets In the classi-
tutorial discusses the theory behind the dual-tree trawgsl setting, the wavelets are stretched and shifted ver-
form, shows how complex wavelets with good propertistons of a fundamental, real-valued bandpass wavelet
can be designed, and illustrates a range of applicationg/ift). When carefully chosen and combined with shifts
signal and image processing. of a real-valued lowpasscaling functions(t), they form



an orthonormal basis expansion for one-dimensional (1-The sparsity of the wavelet coefficients of many real-
D) real-valued continuous-time signals [27]. That is, arworld signals enables near-optimal signal processing
finite-energy analog signat(t) can be decomposed inbased on simplehresholding“keep the large coefficients

terms of wavelets and scaling functions via and kill the small ones”), the core of a host of powerful
oo image compression (JPEG2000 [98]), denoising, approxi-
x(t) = Z c(n) ¢(t —n) + (1) mation, and deterministic, and statistical signal and image
n=—oo algorithms.
. —i/2 1 . .
>3 d(m) 272 (27t —n). 1.2 Trouble in paradise: Four problems

j=0n=—o0

with real wavelets
The scaling coefficientg(n) and wavelet coefficients

d(j, n) are computed via the inner products But this is not the end of the story. In spite of its effi-

cient computational algorithm and sparse representation,
e(n) = /DO () ¢t — n) dt, @) the wavelet transform suffers from four fundamental, in-
o tertwined shortcomings.
. 0 ) Problem 1 — Oscillations: Since wavelets are bandpass
d(j,n) = 27j/2/ z(t) (2t —n)dt.  (3) functions, the wavelet coefficients tend to oscillate posi-
- tive and negative around singularities (see Figures 1 and
They provide aime-frequency analysisf the signal by 2 for example). This considerably complicates wavelet-
measuring its frequency content (controlled by the sc@jgsed processing, making singularity extraction and sig-
factor;) at different times (controlled by the time shiff. 3| modeling in particular very challenging [22]. More-
There exists a very efficienf)(IV) algorithm to com- gyer, since an oscillating function passes often through
pute the coefficients(n) and d(j,n) from a fine-scale zero, we see that the conventional wisdom that “singulari-
representation of the signal (often simplysamples) and tjes yield large wavelet coefficients” is overstated. Indeed,
vice versa based on two octave-band, discrete-filte® 55 we see in Figure 1 it is quite possible for a wavelet over-
banksthat recursively apply a discrete-time lowpass filapping a singularity to have a small or even zero wavelet
ter ho(n), a high-pass filteh; (n), and upsampling and cgefficient.
downsampling operations (see Figure 24) [27,69]. Thesepygplem 2 — Shift variance: A small shift of the signal
filters provide a convenient parametrization for desiggreatly perturbs the wavelet coefficient oscillation pattern
ing wavelets and scaling functions with desirable proground singularities (see Figure 2). Shift variance also
erties, such as compact time support and fast frequeggynplicates wavelet-domain processing; algorithms must
decay (to ensure the analysis is as local as possible,d\made capable of coping with the wide range of possible
time-frequency) and orthogonality to low-order polyngyavelet coefficient patterns caused by shifted singularities
mials (“vanishing moments”) [27]. See Sidebar A fof34 55 59 80,83].
more background on wavelets, filter banks, and their de-ro better understand wavelet coefficient oscillations

sign. _ _ and shift variance, consider a piecewise smooth signal
Why have wavelets and multiscale analysis proved $0 — t,) like the step function

useful in such a wide range of applications? The primary
reason is because they provide an extremely efficient rep- u(t) = 0 t<0
resentation for many types of signals that appear often in 11 t>0

practice but are not well matched by the Fourier basis, ) ) -
which is ideally meant for periodic signals. In particula@Nalyzed by a wavelet basis having a sufficient number

wavelets provide an optimal basis for signals containir‘?é vanishing moments. Its wavelet coefficients consist of
singularities(jumps, spikes, and so forth), the archetypafMples of thetep responsef the wavelet

example being a piecewise smooth function consisting of 2to—n

low-order polynomials separated by jump discontinuities. d(j,n) ~ 273j/2A/ W(t)dt,

The wavelet representation is optima#iparsefor such —0

signals, requiring an order of magnitude fewer coefficienvtv%ere A

than the Fourier basis to approximate within the same gr- 1S the. height of t.he jump.  Since(t) is a .
e i . aandpass function that oscillates around zero, so does its
ror. The key to the sparsity is that since wavelets oscilla

locally, only wavelets overlapping a singularity have IargSeFep response(j, n) as a function o, (recall Figure 1).

wavelet coefficients; all other coefficients are small. 1This formula is exact for a piecewise constant signal [80, 83].
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Figure 1: In the neighborhood of an edge, the real DWT
produces both large and small wavelet coefficients. In con-
trast, the (approximately) analytic CWT produces coefficients
whose magnitudes are more directly related to their proximity
to the edge. Here, the test signal is a step edge at n = n,,
z(n) = u(n — no). The figure shows the value of the wavelet
coefficient d(0, 8) (the 8th coefficient at stage 3 in Figure 24) as
a function of n,. In the top panel, the real coefficient d(0, 8) is
computed using the conventional real DWT. In the lower panel,
the complex coefficient d(0, 8) is computed using the dual-tree
CWT. (The filters used here are the same as those in Figure 2).

Moreover, the facto®’ in the upper limit { > 0) ampli-
fies the sensitivity ofi(j, n) to the time shiftty, leading
to strong shift variance.

Problem 3 — Aliasing: The wide spacing of the wavelet
coefficient samples, or equivalently the fact that the
wavelet coefficients are computed via iterated discrete-
time downsampling operations interspersed with non-
ideal lowpass and highpass filters, results in substan-
tial aliasing The inverse DWT cancels this aliasing, of
course, but only if the wavelet and scaling coefficients are
not changed. Any wavelet coefficient processing (thresh-
olding, filtering, quantization, and so on) upsets the deli-
cate balance between the forward and inverse transforms,
leading to artifacts in the reconstructed signal.

Problem 4 — Lack of directionality: Finally, while
Fourier sinusoids in higher dimensions correspond to
highly directional plane waves, the standard tensor prod-
uct construction of multi-dimensional wavelets produces
a “checkerboard” pattern that is simultaneously oriented
along several directions. This lack directional selec-
tivity greatly complicates modeling and processingef
ometricimage features like ridges and edges. (More on
this in Section 4 below.)

1.3 One solution: Complex wavelets

Fortunately, there is a simple solution to these four DWT
shortcomings. The key is to note that theurier trans-
form does not suffer from these problems. First, the mag-
nitude of the Fourier transform does not oscillate positive
and negative but rather provides a smooth positive enve-
lope in the Fourier domain. Second, the magnitude of the
Fourier transform is perfectly shift invariant, with a simple
linear phase offset encoding the shift. Third, the Fourier
coefficients are not aliased and do not rely on a compli-
cated aliasing cancellation property to reconstruct the sig-
nal. And fourth, the sinusoids of the multi-dimensional
Fourier basis are highly directional plane waves.

What is the difference? Unlike the DWT, which is
based onreal-valued oscillating wavelets, the Fourier
transform is based ooomplexvalued oscillating sinu-
soids

e = cos(Qt) + j sin(Q1) 4
with j = v/—1. The oscillating cosine and sine compo-
nents (the real and imaginary parts, respectively) form a
Hilbert transform pair that is, they ar@0° out of phase
with each other. Together they constituteaaralytic sig-

nal ¢i* that is supported on only one-half of the fre-
quency axisQ > 0). See Sidebar B for more background
on the Hilbert transform and analytic signals.
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Figure 2: The wavelet coefficients of a signal x(n) are very sensitive to translations of the signal. For two impulse signals
z(n) = 0(n — 60) and z(n) = §(n — 64) (top panel), we plot the wavelet coefficients d(j, n) at a fixed scale j (middle and lower
panels). The middle panel shows the real coefficients computed using the conventional real discrete wavelet transform (DWT, with
Daubechies length-14 filters). The lower panel shows the magnitude of the complex coefficients computed using the dual-tree
complex discrete wavelet transform (CWT with length-14 filters from [58]). For the dual-tree CWT the total energy at scale j is
nearly constant, in contrast to the real DW'T.



Inspired by the Fourier representation, imaginman- In this paper, we will focus on a particularly natural ap-
plex wavelet transforrfCWT)? as in (1)-(3) but with proach to the second, redundant typ&w¥T — thedual-
a complex-valued scaling function and complex-valuge approach — which is based on two filter bank (FB)
wavelet trees and thus two bases [55,57]. As we will see, any
Ye(t) = e (t) +jabi(t). CWT based on wavelets of compact support cannot ex-
actly possess the Hilbert transform / analytic signal prop-
Here, by analogy to (4)):(t) is real and even andi(t) erties, and this means that any su@WT will not per-
is imaginary and odd. Moreover,if.() andy;(t) forma fectly overcome the four DWT shortcomings. The key
Hilbert transform pair0° out of phase with each other)challenge in dual-tree wavelet design is thus the joint de-
theny(¢) is an analytic signal and supported on only ongign of its two FBs to yield a complex wavelet and scaling
half of the frequency axis. The complex scaling functiofunction that are as close as possible to analytic. From

is defined similarly. See Figure 9 for an example of a corpigure 9, we see that we can reach quite close to the ideal
plex wavelet pair that approximately satisfies these pragren with quite short filters.

erties. A } As a result, the dual-treEWT comes very close to
Projecting the signal ont®™7/%¢.(27t — n) asin (3), mirroring all the attractive properties of the Fourier rep-
we obtain thecomplex wavelet coefficient resentation, including a smooth, non-oscillating magni-
o tude (see Figure 1); a nearly shift-invariant magnitude
de(j,n) = dr(j,n) +jdi(j;n) with a simple near-linear phase encoding of signal shifts;

substantially reduced aliasing; and directional wavelets

in higher dimensions. The only cost for all of this is

] . . a moderate redundancyx redundancy in 1-DQ? for

[de(5,n) = v/[de (4, )] + [di (5, )2 d-dimensional signals, in general). This is much less
than thdog, N x redundancy of a perfectly shift-invariant
DWT [23,63], which moreover will not offer the desirable

) magnitude/phase interpretation of td&vVT, nor the good

with magnitude

and phase

Zd.(j,n) = arctan(di(j’ n) directional properties in higher dimensions.

dx(j,n)

when|d.(j,n)| > 0. As with the Fourier transform, com- 4
plex wavelets can be used to analyze and represent both

real-valued signals (resulting in symmetries in the coefhjs paper aims to reach two different audiences. The
ficients) and complex-valued signals. In either case, th&t is the wavelet community, many members of which
CWT enables newcoherent multiscale signal processyre ynfamiliar with the utility, convenience, and unique
ing algorithmsthat exploit the complex magnitude angyoperties of complex wavelets. The second is the broader
phase. In particular, as we will see, a large magnituggiss of signal processing folk who work with applications
indicates the presence of a singularity while the phag@ere the DWT has proved somewhat disappointing, such
indicates its position within the support of the wavelgjs those involving complex or modulated signals (radar,
[81,83,113,117]. speech, and music, for example) or higher-dimensional,
The theory and practice of discrete complex wavele§gometric data (geophysics and imaging, for example). In
can be broadly classed into two schools. The first seekgse problems, tHeWT can potentially offer significant
a ¢C(t) that forms an orthonormal or biorthogonal bas.ﬁerformance improvements over the DWT.
[9,11,37,64,108,114]. As we show below in Section 2.3, gection 2 of the paper describes the challenges in de-
this strong constraint disables the resultil@VT from yejoping complex wavelet transforms. Section 3 intro-
overcoming most of the four DWT shortcomings outlinegyces the dual-tree approach, overviews the design issues,
above. The second school seekedundantrepresenta- ang synthesizes three different solution approaches. Sec-
tion, with both+,() and+;(t) individually forming or- ion 4 explains how to extend the dual-tree approach to
thonormal or biorthogonal bases. The result/T is  construct real and complex directional wavelets for multi-
a2x redundantight frame[26] in 1-D with the power {0 gimensional geometric data. Section 5 deals with the use
overcome the four shortcomings. of complex wavelets through several real and stylized ap-
2We use the complex number symigdin CWT to avoid confusion plications.  While our aim is not to provide an exhaus-

with the oft-used acronym CWT for the (different) continuous wavekl,;ivle treatm_ent of the myriad tYPeS @ﬁNTS, we provide a
transform. brief overview of related techniques in Section 6. Section

Paper organization




7 closes with conclusions. Finally, two sidebars on tliBose solutions do not give analytic wavelets and do not
DWT, the Hilbert transform and analytic signals provideave the desirable properties of analytic wavelets de-
background information for the development. scribed in the Introduction. (They do, however, have de-
sirable symmetry properties.) It turns out that the design
.- of a complex (approximately) analytic wavelet basis is
2 Complex Wavelet ComplexitieS  more difficult than the design of a real wavelet basis. If
. . _ we follow the standard approach for wavelet design, then
The design of complex analytic wavelets raises sevefaliems arise when we require the wavelet to be analytic.
unique and nontrivial challenges that do notarise with the|, o ger that the dyadic dilations and translations of a
real DWT. In this section, we overview them and d|scu§§ng|e functiony(t) (the wavelet) constitute a basis for
a straightforward but limited approach to tiWT that gjgna| expansionss(t) must satisfy certain constraints.
provides a jumping off point for the dual-tree. Unfortunately, these constraints make it difficult to design
a wavelety(t) that is also analytic. Specifically, analytic
2.1 Analyticity vs. finite support solutions are not possible because the PR conditions (see

Sidebar A) require that
It is often desired in wavelet-based signal processing that ) req

the wavelet be well localized in time. (In many appli- Ho(ejw) ﬁo(eJW) + Hl(ejw) ﬁl(eJW) —9
cations the wavelapb(t) will actually have finite support.)

Finitely supported wavelets are of special interest becage —» < w < 7. Suppose thah, (n) is (approximately)
in this case the discrete wavelet transform (DWT) can Bgalytic. ThenH, (el*) ~ 0 for -7 < w < 0, which in
easily implemented with finite impulse response (FIR) fifyrn implies thatfl, (e/«) Hy(el*) ~ 2 for —r < w < 0.
ters. However, a finitely supported function can Nevey,at is, neitherf, 7

. ) (z) nor Hy(z) is a reasonable low-
be exactly analytic, because the Fourier transform of g fiiter and consequently the dilation equation does not

finitely supported function can never be exactly zero on g8« 5 well defined solution. Therefore, the wavelet cor-

interval [A, B] with B > A (on any set of positive mea-yoq0nding to the usual discrete wavelet transform cannot
sure to be exact) let alone on the entire positive or negatﬁ’@approximately analytic.

frequency axis [77]. Thus, any exactly analytic wavelet

must have infinite support (and slow decay, in fact). ) ]
Thus, if we want finitely supported wavelets, then wd.3 CWT via DWT post-processing

must accept wavelets that are oalyproximatelyanalytic

and aCWT that is onlyapproximatelymagnitude /phase,A natural and straightforward approach towards an invert-

shift-invariant, and free from aliasingThe design chal- ible ar_lalyt_lcCWT _sphts each ogtput of the FB in Figure
%g(a) into its positive and negative frequency components

lenge will be, of course, to see how close we can get fo. | f . filter bank
analyticity. Unfortunately, the standard approach to dgaind @ comprex per ect reconstruction (PR) filter ban
: ' cting as a Hilbert transformer [9, 36—-39, 108, 109, 114].

signing and implementing wavelet transforms (with Fi ut this approach turns out to have a basic limitation.

orlIR f|lters) has basic I|m|tat|qns even fapproximately A complex FB that performs this frequency decomposi-
analytic wavelets, as we now illustrate. . . .
tion can be derived directly from any real 2-channel low-
o ) pass/highpass FB with filtetg (n), h1(n) by defining the
2.2 Analyticity vs. perfect reconstruction  “positive frequency” and “negative frequency” filters as

The question of how to design filtefg(n) and hy(n) g b g 5
satisfying the perfect reconstruction conditions so that the p(n) =" ho(n), n(n) =" ha(n). )
wavelets)(t) has short support and vanishing momenig,is corresponds to a rotation of both filters in the z-plane
was answered by Daub_echles (see Sidebar A) [25]. Nq59,90 degrees. lfig(n), h1(n) satisfy the PR conditions,
however, that Daubechies’ wavelets are not analytic. Calan so Will (1), hy(n). For example, given the low-

we design the filters, (n) in Figure 24 such that the cor-yass/highpass filterso(n), hy(n) illustrated in the fre-
responding scaling function aqd waveletglven by (60) aﬁ@lency domain in Figure 25, the complex filtérs(n),

(59) are complex and (approximately) analytic? ha(n) are illustrated in the frequency domain in Figure

~ While complex filters satisfying the perfect reconstrug \yhen used by itself, this complex FB can effectively
tion (PR) conditions have been developed [11,42,64,12gbnarate the positive and negative frequency components

3\We can relax the finite support condition, but the resulting infinitef @ Sig.nal; ina discr_ete'time sengg,(n) andh,(n) are
supported wavelets are beyond the scope of this paper. approxmately analytlc.
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responding to (5). H, () approximates H,(w) in (63), while
H, (e*) approximates Ha(—w) 15
l .
When this complex FB is used to decompose each sub-
band signal of a real discrete wavelet transform, we obtain osl |
the filter bank structure illustrated in Figure 4. Notice that ™
the transform is critically-sampled — the total data rate
of the subband signals is equal to the input data rate (al-  ; o5 o 05 1

though the outputs are now complex).

Although this FB structure is perhaps the most natu-
ral approach to developing an approximately analytic dis-
crete wavelet transform, when we examine the overall fre-
guency response of each channel, it becomes apparent that25¢
the structure suffers from a basic limitation.

Using z-transforms, consider the filter chain producing

3
2 L
the wavelet coefficients at the first level 151
l -
05}
Using thenoble identitie§107], this is equivalent to ‘ ‘
-0.5 0 0.5

) — [ ] — 7] — to)

The frequency response of this channel is thus 4

Hio(2) = Hi(2) Hn(ZQ) 3l (\

and in the Fourier domain

STAGE 2: H(€) H (¢) H (€")

STAGE 3: H(€") H (€ H (") H (¢*)

Hyo () = Hi () Hy (e2%).

If H,(z) andH,(z) have the frequency responses shown
in Figures 25 and 3, theH;,:(z) has the frequency re- ‘ ‘
sponse shown in the second panel of Figure 5. 91 05 0 05 1
Observe in Figure 5 that even though the frequency re- win
sponse of each channel is approximately single sided (and
thus approximately analytic), there is a substantial burfyure 5: Frequency response for stages 1, 2, and 3 of DWT
filter bank with invertible complex post-filtering as in Figure 4.
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Figure 4: Analysis filter bank for the discrete wavelet transform with invertible complex post-filtering.



on the opposite side of the frequency axis. In fact, this obtain a complex wavelet transform [3,5,13,14]. How-
bump is unavoidable for the filter bank structure shovever, note that the ideal Hilbert transform is represented
in Figure 4. It is possible to reduce thédth of the bump by an infinitely long impulse response that decays very
by designingH; (z) andH,,(z) so that they have narrowerslowly. The use of the ideal (or near ideal) Hilbert trans-
transitions bands, however, then the impulse responsefooim in conjunction with the wavelet transform effectively
these filters (and thus the wavelets) will grow longer arngcreases the support of the wavelets. For the wavelets
they will have a greater degree of ringing. This is cote have short support, an approximate Hilbert transform
trary to one of the primary goals in wavelet design: shartore localized in time should be used instead. However,
support. Moreover, no matter how long the filters arttie accuracy of the approximate Hilbert transform should
wavelets are, théeight of the bump will never dimin- depend on the scale of the wavelet transform (coarse
ish. As a consequence of the PR conditions, the buisgales should be accompanied by a more accurate Hilbert
will always have a height of exactly 1 at = 0.57 no transform). When the Hilbert transform is applied first to
matter what filters are used. Figure 5 also illustrates thhé data, a single Hilbert transform is applied to wavelet
the problem persists in later FB stages as well. coefficients at all scales; and hence it cannot be opti-

Even though it has an unavoidable bump on the wrongzed for all scales simultaneously. On the other hand
side of the frequency axis, tH&WT generated by the FBwe shall see that when the Hilbert transform is built into
in Figure 4 may still be useful for some applications -the wavelet transform as in the dual-tree implementation,
the frequency response of each channel is largely sintjle Hilbert transform scales with the wavelet scale, as de-
sided, the transform is simple to implement, and no nesived.
filter design is needed.

However, theundecimatedliscrete wavelet transform
can be easily converted into an approximately analy@® 1he Dual-Tree Complex Wavelet
wavelet transform by using this approach. By decompos-
ing each subband signal of the undecimated DWT with Transform

the same complex filter bank considered here, the Wi shown in the previous section, the development of an

wanted bump can be eliminatéd.The down-sampling invertible analytic wavelet transform is not as straightfor-

following the real lowpass/highpass filters must be om{fa1q a5 might be initially expected. In particular, the filter
ted for the bump artifact to be eliminated. (In this ca

o A ha Lo C3ank structure illustrated in Figure 24 that is usually used
Ho(z=" "), Hi(z*" "), Ho(2*" ), andHn(2*" ) to implement the real discrete wavelet transform does not

should be used at stagefor 1 < j < J.) Although this |end itself to analytic wavelet transforms with desirable
approach works with the undecimated DWT, this trangpgracteristics.
form is redundant by a factor of + 1 where J is the
number of stages. (AfV-point input signal will lead to
(J 4+ 1) N wavelet coefficients.) An alternative is the us8.-1  Dual-tree framework
of the partially decimated wavelet transform (PWT) debne effective approach for implementing an analvtic
scribed in [101] to lower the redundancy. The dual-tree pproact P g . y
. . wavelet transform, first introduced by Kingsbury in 1998,
CWT, described below, also avoids the unwanted bum
. . . called thedual-treecomplex wavelet transform, or dual-
and is also expansive, but by just a factor of 2 (for 1- . . . )
signals) independent of the number of stages. ree(C_VVT_[54, 55,57]. Like the_ldea of posltlve/neg_atlve
post-filtering of real subband signals, the idea behind the
dual-tree approach is quite simple. The dual-t(B&T
2.4 Performing the Hilbert transform first employs twareal DWTS; the first real DWT gives the real
part of the transform while the second real DWT gives the
Another approach to implement an expansive compleRaginary part. The analysis and synthesis filter banks
wavelet transform first applies a Hilbert transform to thesed to implement the dual-tréNT and its inverse are
data. The real wavelet transform is then applied to batlustrated in Figures 6 and 7.
the original data and the Hilbert transformed data, andThe two real wavelet transforms use two different sets
the coefficients of each wavelet transform are combinefifilters, with each satisfying the perfect reconstruction
conditions. The two sets of filters are jointly designed

7 - — ) . . ! ; -
Note that if the critically-sampled DWT is used and only the downsy 1hat the overall transform is approximately analytic.
sampling following the complex positive/negative filters is omitted, then

the frequency responses shown in Figure 4 remain unchanged; that-&t 70(n), hl(n) denote the lowpass/highpass filter pair
the bumps will remain. for the upper filter bank; and lejy(n), ¢1(n) denote
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the lowpass/highpass filter pair for the lower filter banknatrix F is also a left inverseF? - F = I, where we have
We will denote the two real wavelets associated witlsed (6). That is, the inverse of the dual-t@&/T can
each of the two real wavelet transforms @ég(t) and be performed using the transpose of the forward dual-tree
14(t). In addition to satisfying the perfect reconstruc€WT — it is “self-inverting” in the terminology of [96].
tion conditions, the filters are designed so that the com-The dual-tree wavelet transform defined in (6) keeps
plex wavelety(t) := ¥, (t) + jie(t) is approximately the real and imaginary parts of the complex wavelet coef-
analytic. Equivalently, they are designed so thatt) is ficients separate. However, the complex coefficients can
approximately the Hilbert transform afy,(¢), [denoted be explicitly computed using the following form
g (1) ~ H{wn (£)}]. ,

Note that the filters are themselves real — no complex F, = % {I jI ] _ |:Fh:| 7

arithmetic is required for the implementation of the dual- I 1] |F,

treeCWT. Also note that the dual-tre@WT is not a crit-

ically sampled transform — it is two-times expansive in F-1.— 1 [F;l F—l] . { I _I] ) (8)
1-D because the total output data rate is exactly twice the ‘ 2 7 -l

input data rate. Note that the complex sum/difference matrix in (7) is uni-

The inverse of the dual-treEWT is as simple as thetary (its conjugate transpose is its inverse)
forward transform. To invert the transform, the real part
and the imaginary part are each inverted — the inverse 1 [I I } 1 [ 1 _I} _
of each of the two real DWTs are used — to obtain two ve I =it 2 [T I
to . . . . . .
?Note that the identity matrix on the RHS is twice the size

real signals. These two real signals are then average
hose on the LHS.) Therefore, if the two real DWTs are

obtain the final signal. Note that the original signéh)
can be recovered from either the real part or the imagin L
orthonormal transforms then the dual-t@@&/T satisfies
« = I, where %” denotes conjugate transpose. If

part alone; however, such inverse dual-t8&Ts do not - F
capture all the advantages an analytic wavelet transfofm’

offers.
[u

If the two real DWTSs are represented by the square ma- v

tricesF;, andF, then the dual-tre€WT can be repre-
sented by the rectangular matrix then whenx is real we haver = u* sov need not be
F computed. When the input signalis complex, theny £
F = [ h} .

}:Fdx

F u* so bothu andv need to be computed.

When the dual-tre€WT is applied to a real signal,

If the vectorx represents a real signal, then, = F;, x the output of the upper and lower filter banks in Figure 6
represents the real part and, = F,x represents the will be the real and imaginary parts of the complex coeffi-
imaginary part of the dual-tre@WT. The complex coef- cients, and they can be stored separately, as represented by
ficients are given by, + jw,. A (left) inverse ofF is (6). However, if the dual-tre€WT is applied to a com-

g

then given by plex signal, then the output of both the upper and lower
filter banks will be complex, and it is no longer correct to
F 1= 1 [F,jl Fg_l] !abel them as the real a_md im.aginary parts. Eor complex
2 input signals, the form in (7) is more appropriate. For a
as we can verify: real N-point signal, the formin (7) yield&N complex co-

efficients, butV of these coefficients are the complex con-
[F;l F—l] . [Fh:| _ 1 [I+I] _ 1. Jugates of the otheN coefficients. For a general complex
g 2 N-point signal, the form in (7) yield@ N general com-
gwx coefficients. Therefore, for both real and complex
Input signals, th&€WT is two-times expansive.
When the two real DWTs are orthonormal and the
P 1 [Fh} F-l._ 1 FOF-1. (6) 1/+/2 factor is included as in (6), the dual-tr€®VT gains
T ’ T h g 1 a Parseval's energy theorem: the energy of the input signal

V2 [Fy V2 _ : _
is equal to the energy in the wavelet domain
If the two real DWTs are orthonormal transforms, then

the transpose dfy, is its inverse:Ffl -F;, =1, and simi- E : |dn (j 2 ; 2\ _ E : 2
larly for F,. In this case, the transpose of the rectangular ( ! ) -

1
F ' F=_
2

We can just as well share the factor of one half betwe
the forward and inverse transforms, to obtain

Jin
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The dual-treeCWT is also easy to implement. Be-he filters only implicitly, it is not at first obvious how the
cause there is no data flow between the two real DWTiters should be related. However, it turns out that the two
they can each be implemented using existing DWT softwpass filters should satisfy a very simple propedge
ware and hardware. Moreover, the transform is naturatifthem should be approximately a half-sample shift of the
parallelized for efficient hardware implementation. In adther[87]
dition, because the dual-tré&NT is implemented using
two real wavelet transforms, the use of the dual-@®¢T  go(n) ~ ho(n —0.5) == y(t) = H{vwn(t)}. (9)
can be informed by the existing theory and practice of ] )
real wavelet transforms. For example, criteria for wavel&iNc€go(n) andho(n) are defined only on the integers,
design (vanishing moments, etc) and wavelet-based $fj$ Statement is somewhat informal. However, we can
nal processing algorithms (thresholding of wavelet chlake the_ statement rigorous using Fourier transforms.
efficients, and so on) that have been developed for réaIl87] it is shown that ifGo (/) = e™%°“Hy(el)

wavelet transforms can also be applied to the dual-ti€N ¥y (1) = H{vn(t)}. The converse has been proved
CWT. in [76, 122], making the condition necessary and suffi-

It should be noted, however, that the dual-t@&/T cient. The necessary and sufficient conditions for the

requires the design of new filters. Primarily, the dual-trédorthogonal case were proved in [121]. To understand
CWT requires apair of filter sets chosen so that the corréntuitively why the half-sample delay condition leads to a
sponding wavelets form an approximate Hilbert transforfif@rly shift-invariant discrete wavelet transform, note that
pair. Existing filters for wavelet transforms should not f€ half-sample delay condition is equivalent to uniformly
used to implement both trees of the dual-t@&/T. For oversamph.ng the Iowpas; signal at each scale by 2:1, thus
example, pairs of Daubechies’ wavelet filters do not sagely avoiding the aliasing due to the lowpass downsam-
isfy the requirement that, (t) ~ H{y(t)}. If the dual- Plers [53-55]. _ _
tree wavelet transform is implemented with filters not sat- It Will be useful to rewrite the half-sample delay condi-
isfying this requirement, then the transform will not prdion in terms of the magnitude and phase functions sepa-
vide the full advantages of analytic wavelets described@€!y:

the Introduction. IGo(1*)] = [Ho(é®)], (10)

. Jjw _ jwy
3.2 The half-sample delay condition £Go(e”) = ZHo(e™) = 05w. (11)
Translating wavelet properties into filter properties tran§auivalently,go(n) could be obtained fromy(n) by fil-
lates the wavelet design problem into a filter design proi§fing/o(n) with an ideal fractional delay system. How-
lem. For example, it is well known that a wavelgtt) €Ver, such a system is not realizable — its impulse re-
hasK vanishing moments if the transfer function of thEPONSe is of infinite length and its transfer function is not
lowpass filter has the fornily(z) = (1 + 2)% Q(z) for rational. Even if it were realizable it might not give a de-
someQ(z). sirable solution becausefify(n) is FIR, thengy (n) would
The dual-treeCWT inspires a new filter design prob-be of infinite length. Indeed, ify, () is a wavelet of finite
lem: what property should the two lowpass filtég(n) support, then its exact Hilbert transform will have infi-
and go(n) satisfy so as to ensure that the correspondiﬁt}e support. Therefore, in pract!gal |mplementat|on§ of
wavelets form an approximate Hilbert transform pair, thit€ dual-tre€CWT, the delay condition (10) and (11) will

is 1, (t) ~ H{un(t)}? Here be satis_fied only approximate_ly; the _vvavelet§(t) and
1,4 () will form only an approximate Hilbert pair; and the
bn(t) = V2 Zhl (n) ¢ (8), complex wavgletzph(t) + jun(t) will be only approxi-
— mately analytic.

A question remains, however: is it possible to satisfy

on(t) = V2 Z ho(n) én(t), simultaneously the perfect reconstruct!qn condition (55)

m exactly and the half-sample delay condition (10), (11) ap-

B " (d _ q proximately withshortfilters? Or does the dual-tré&NT

1(n) = (=1)" ho(d — n); (1), ¢4(t), @ndgs(n) A€ pave some side effect that limits its effectiveness as an an-

Qef|?ed §|m|larl)5.dS|r)ce thﬁ Wavelllets ;jepe.nd or:jthe Sgag[{tic wavelet transform (like the bumps in Figure 5) when
Ing functions, and since the scaling functions depend o), + fiiters are used? The next section describes several

5For convenience, we assume here that the wavelet transform istgethods for filter de.Sign fO!’ the dual't.r@BNT which _
thonormal. demonstrates that with relatively short filters an effective
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invertible approximately analytic wavelet transform cahhis solution must be a biorthogonal solution (the filters
indeed be implemented using the dual-tree approach. in the synthesis filter bank are not time-reversed versions
of the filters in the analysis filter bank). This is because
3.3 Filter design for the dual-treeCWT real orthonormal FIR two-channel filter banks cannot be
symmetric (except for the Haar solution). Note that if
As in the case of filter design for real wavelet transformsg (n) is a symmetricN-point impulse response (sup-
there are various approaches to the design of filters for fferted or0 < n < N — 1) thenZH,(e“) = —0.5 (N —
dual-treeCWT. In the following, we describe methods ta) w. Similarly, if go(n) is a symmetric( N + 1)-point
construct filters satisfying the following desired propeimpulse response (supported 6n < n < N) then
ties: /Go(e¥) = —0.5 N w. Therefore, for this type of so-
lution, the phase part (11) of the half-sample delay con-
dition is exactly satisfied, but the magnitude part (10) is

2. Perfect reconstruction (orthogonal or biorthogonalfot:

1. Approximate half-sample delay property

3. Finite support (FIR filters) |Go(e“)| # |Ho(¥)], (14)
4. Vanishing moments/good stopband ZGo(¥) = ZHp(d%) = 0.5w. (15)
5. Linear-phase filters (desired, but not required of Thereforeip(n) andgy(n) should be design so as to ap-

wavelet transform for it to be approximately angproximately satisfy the magnitude condition (10).

lytic). Moreover, only thecomplexfilter responses The design of a pair of symmetric perfect reconstruc-
need be linear-phase; this can be achieved by takimgn (biorthogonal) filters approximately satisfying the

go(n) = ho(N — 1 —n). magnitude relation (10) is performed in [53, 54] by an it-
erative error minimization strategy rather similar to that
in [58]. Alternative techniques are given in [105] which

employ even-length Bernstein filter banks (EBFBs) to ob-
tain the matching even length filters.

One approach to dual-tree filter design is to/lgtn)
be some existing wavelet filter. Then, givép(n), we
need to desigmyy(n) so as to simultaneously satisfi) (
Go(e¥) =~ e 195« Hy(el*) and (i) the perfect recon-
struction conditions. (Algorithms for designing an or- ) )
thonormal wavelet basis to match a specified signal clasd-2 d-shift solution
are described, for example, in [20].) Unfortunately, this,a second solution, introduced in [56], sets
will sometimes result iy (n) being substantially longer
than ho(n) (but see [105, 121]). By jointly designing go(n) = ho(N =1 —n) (16)
ho(n) andgg(n), we can obtain a pair of filters of equal
(or near-equal) length, where both are relatively showhere N, now even, is the length dfy(n), which is sup-

It should be noted however, that filters for the dual-trg@rted on ord < n < N — 1. In this case, the magnitude
CWT are generally somewhat longer than filters for rephrt (10) of the half-sample delay condition is exactly sat-
wavelet transforms with similar numbers of vanishing mésfied due to the time-reverse relation between the filters,
ments, because of the additional constraints (10)-(11) the the phase part (11) is not exact:

filters must approximately satisfy. _ _

In the following, we describe three methods for FIR |Go(e'®)| = |Ho ('), @an
dual—tr(_ee filter design. Fast implementatiqns of some of LGo(é%) £ ZHy(%) — 0.5w. (18)
these filters have been recently described in [1].

Thus the filters must be designed so that the phase condi-
3.3.1 Linear-phase biorthogonal solution tion is approximately satisfied.

The g-shift solution has an interesting property that
leads to its name: If you ask thgh(n) and ho(n) be
elated as in (16) and also that they approximately sat-

fy (11), then it turns out that the frequency response of

The first solution, introduced in [53, 54], sétg(n) to be
a symmetric odd-length (Type ) FIR filter and set$n)
to be a symmetric even-length (Type Il) FIR filter, suc

that for I odd: ho(n) has approximately linear phase. This is verified by
ho(n) = ho(N — 1 —n) (12) writing (16) in terms of Fourier transforms:
g()(n) = gO(N — n) (13) Go(ejw) _ Ho(ejw)e—j(N—l)w
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where the overbar represents complex conjugation. Thikerex represents discrete-time convolution and where

implies that the phases satisfy d(n) is supported o < n < L. Equivalently
LGo(&¥) = —LHo(d) = (N = 1) w. Ho(2) = F(2) D(2), 22)
If the two filters satisfy the phase condition (11) approxi- Go(2) = F(z) 5L D(1/z). (23)

mately (that is /G (e/*) ~ ZHy(el*) — 0.5w) then
JHo (@ o JH (¥ N Like the g-shift solution, for solutions of this kind the
o(¢'”) = 05w —ZHp(e) = (N~ Dw magnitude part (10) of the half-sample delay condition is

from which we have exactly satisfied but the phase part (11) is not:
ZHo(é*) =~ —0.5(N —1)w+025w.  (19) 1Go(é%)] = |Ho(¥)], (24)
Thatis,h(n) is an approximately linear-phase filter. This ZGo(%) # LHp(¥) — 0.5w. (25)

also says that(n) is approximately symmetric around
the pointn = 0.5(N — 1) — 0.25. Note that this is The filters must be designed so that the phase condition is

one quarter away from the “natural” point of symmetry (RPProximately satisfied. From (22)-(23) we have
ho(n) were exactly symmetric), and for this reason solu-

tions of this kind were introduced gsiarter-shift(g-shift) Go(2) = Ho(z) A(2) (26)
dual-tree filters in [56]. where
For the g-shift solution, the wavelets are related by A(2) 2 LD(1/z)
Z)i=m= ———Y
Pa(t) = (N —1—1). D(z)

The imaginary part of the complex wavelet is a tim%:?‘ an allpass transfer function — it has the property that

reversed version of the real part. Therefore the g-shift é(ewﬂ = 1. Therefore, from (26),Go(e'”)| =

lution produces complex wavelets that are exactly line Ho(ejw” and
phase (regardless of what filtgtg(n), go(n) are used). LGo(é%) = LHo(6%) + LA(S%).

The g-shift solution calls for the design of a single filter
satisfying simultaneously the perfect reconstruction cofthe filters ho(n) andgo(n) are to satisfy the phase con-
ditions and the phase condition (19); and true orthonornggdion (11) approximately, the®(z) must be chosen so
solutions are possible here, because the filters need qRit
beapproximateljinear phase and their coefficients do not LA(EY) = —0.5w. 27)
need to exhibit symmetry. The same time-reverse condi- i )
tion then applies between analysis and synthesis filters '§h (27) we find that4(z) should be a fractional delay

between the dual trees, yielding a surprisingly neat over%lllpassI system. he dual filter desi bl h
solution from a single filter design. In [56], orthonormal A solution to the dual-tree filter design problem where

solutions to this design problem are found by optimizﬂ;ﬁ filters are taker.1 to ha\?—:‘ the form in (20)'£]21)' can be
tion over lattice angles, using a lattice parameterizati nd in two steps: First, find an FIR(z) so thatA(z)

of orthonormal filter banks. One of these g-shift firerdatisfies (27). Second, find an FIR ) so thatho(n) and

has only six non-zero coefficients, making it efficient fgfo (") Satisfy the perfect reconstruction conditions.
The first step can draw on existing literature. The de-

implementation. Longer filters have been obtained usin% ¢ all ih oh 27 is al
an iterative frequency domain error minimization crite29" O allpass systems with phase response (27) is al-

rion [58], which is better suited to the design of Iongerfeady well studied [61, 62, 85]. The formula for the maxi-

g-shift filters (typically using 12 or more taps) with im__mally flat-delay all-pass filter, adapted from Thiran’s filter

proved smoothness and shift-invariance properties. " [106], is
L n—1
. L T—L+k
3. - D(z) =1 —— | (—2)™. (2
3.3.3 Common-factor solution (2) +ng_1 <n> kl;[O iR AT (@8

The third solution, introduced in [88], can be used to de-
sign both orthonormal and biorthogonal solutions for th&ith this D(z), we haveA () ~ e~I™ aroundw = 0.
dual-treeCWT. In this approach we set We can useD(z) in (28) with 7 = 0.5. The phase of
_ the maximally flat fractional-delay all-pass systeftk)
ho(n) = f(n) = d(n), (20) is illustrated in Figure 8 fol. = 1, 2, 3. For larger values
go(n) = f(n) *d(L —n) (21) of Lan improved approximation t@5 w is obtained. The
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wavelets based on a biorthogonal set of filters is illustrated

0.5 >
=3/ in Figure 10. The filters were obtained using the design al-
,/ gorithm in [88] and have 2 vanishing moments each. The
0.4y e | analysis lowpass filters are of length 11 and the synthesis
L=1 / ’ lowpass filters are of length 13.
g'i 0.3} ’
\CI_J,
< 02 3.4 Implementation issues
|
L=2 It turns out that the implementation of the dual-t@&/T
01 requires that the first stage of the dual-tree filter bank be
different from the succeeding stages. If the same perfect
reconstruction filters are used for each stage, as Figure 6
0 : : : : indicates, then the first several stages of the filter bank will
0 0.2 0.4 WHO'G 0.8 1 not be approximately analytic; that is, the frequency re-

sponses for these stages will not be approximately single-
Figure 8:The phase Z A(el“) of the maximally flat fractional- ?Ided' In thl;’ S?(;:tlljon, I\_:ve descrlbhe hOP:N t(;]e fll|terSTf_0r the
delay all-pass system withT = 0.5 and L = 1,2, 3. Irst sta_ge shou ¢ _C osen so that the dual@ree is
approximately analytic for every stage.

Note that the half-sample delay conditiogy(n) ~
line 0.5w is indicated in the figure by the dashed ling,;(n — 0.5), was derived by asking that,(t) =~
Note that the behavior of the phase in the stopband of they, (¢)}. However,,(t) andy,(t) are defined on
lowpass filterH, (z) is not important, so the deviation ofthe real line through Equations (59), (60), and they do not
the phase fronf.5w nearw = ~ is not relevant. Other always accurately reflect the behavior and properties of
fractional delay allpass filters can also be used; in [38}ige filter bank for the first several stages. These functions
different allpass filter is used. are most useful for understanding the behavior of the filter
The second step, finding(z) so thatho(n) andge(n) bank at stagg asj — oo.
satisfy the PR conditions, requires only a solution to a lin- T ynderstand how the filters at each stage of the dual-
ear system of equations and a spectral factorization. e filter bank should be designed, it is useful to consider
described in [88] this design procedure allows for an arkjyain the half-sample delay condition. It turns out that if
trary number of vanishing wavelet moments to be spegie |owpass filters satisfy the half-sample delay condition,
fied. go(n) = ho(n — 0.5), then the scaling functions also sat-
This approach to the dual-tree filter design problemiigy g half-sample delay conditiort, () ~ ¢p(t — 0.5).
exactly analogous to Daubechies’ construction of short §ihe wavelet expansion of a signdli) on the real line in
thonormal (and biorthogonal) wavelet bases with vanisfy) calls for the integer translates of the scaling function
ing moments. Like the Daubechies’ construction, if thﬁ(t). Therefore, the condition, (t) ~ ¢ (t — 0.5) im-
common-factor approach is used to design an orthonorfds that the integer translates of (t) fall midway be-
wavelet transform, then the filters will not be symmetrigyeen the integer translates of,(¢). That is, the two
However, also similar to the Daubechies’ construction, dtaling functions satisfy aimterlacing property. For the
this approach is used to design a biorthogonal transforgiscrete form of the dual-tréBWT to be (approximately)
then the filter/(n) can be exactly symmetric and the filanalytic at each stagg it is necessary that the dual-tree
tershg(n) andgo(n) will be approximately linear-phaseijter bank duplicate this interlacing property.
(becausel(n) has approximately linear phase). Instead of using the same filters at each stage of the
dual-tree filter bank, as depicted in Figure 6, let us sup-
3.3.4 Examples pose that at each stage we use a different set of perfect

A g-shift Hilbert pair of wavelets is illustrated in FigurereconstrUCtlon fiters. As |I!ustrated n F|gur(? -)11' the low-
ers used at stagevill be denoted byy’’ (n) and

9. The filters were obtained using the design algorithﬁ’j‘,)S filt _ _ _
in [58] and are of length 14. The spectrum of the congs’’(n). (At each stage, in each tree, the highpass filter
plex wavelet)y, () + ji,(t) is shown in the figure, and itwill be determined by the lowpass filter, as usual.)

is clearly nearly analytic (approximately zero on the neg- From the input of the filter bank to the lowpass output
ative frequency axis). A common factor Hilbert pair obf the upper filter bank at stagewe have (by basic mul-
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Figure 10:Common factor complex wavelet corresponding to a set of biorthogonal dual-tree filters [88].
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Figure 11:Analysis filter bank for the dual-tree CWT with a different set of filters at each stage.

tirate properties) the system

B0)
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—>—>

whereh?) (n) is given by
() = HM (2) HP () -

We have similar expression f(ﬁg)t(z) in the lower filter

bank.

To ensure that the discrete analysis functions of tA&
dual-treeCWT satisfy the interlacing property,

that the filters at each stage{’ (n) andg{’’(n), be de-
signed so that the translatesgﬁﬁ(n) by 27 fall midway
between the translates bff))t(n) by 27. At stage 1 for
example, we require that the translategt(éf (n) by 2 fall

midway between the translates l@ﬁfcl)i(n) by 2. That is,

we require that

1 1
gial(n) ~ At (n — 1).

At stage 2, we require that the translatesyéﬁ(n) by 4
fall midway between the translates /mﬁﬁz(n) by 4. That

is, we require that

2 2
9ol (n) = b}

HY 2.

At stage 3, we require that
Giot (n) = hig)(n — 4),
and so forth.
At stagej = 1, h{Y)(n) is just A{" (n), and we are
asking that
g5 (n) = b (n — 1) (30)
This is different (and easier!) from the half-sample delay

condition discussed above. Dual-tree filters designed so
to satisfy the half-sample delay condition should not be

we requiré‘sed for the first stage. For the first stage, the condition

(30) can be satisfied exactly by using the same set of filters
in each of the two trees; it is necessary only to translate
one set of filters by one sample with respect to the other
set. Moreover, any set of perfect reconstruction filters can
be used for the first stage.
For stageg > 1 it is more useful to write the require-

ments using the frequency responses of the filters. For
stagej = 2, we require that

GOE) ~ 732 HE) (). (31)

Using (29) we can write (31) in terms of the individual
filters as

G(()l)(ejw) G(()2)(ej2w) ~ o i2w Hél)(ejw)H(g?)(eﬂwz. |
32
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We already haverl" (i) ~ e HV (%) from (30),
and so from (32) we obtain

Gé2)(ej2“’) ~e v HéQ)(eJQ‘”)
or equivalently
G(()2) (ejw) ~ 105w H(()2)(6jw) (33)

or g8 (n) ~ h{¥ (n — 0.5). This is the half-sample delay
condition we have already encountered.
For stagej = 3, we require that

GOl () ~ e 3 HE) (). (34)

Using (29) we can write (34) in terms of the individual
filters as

G§Y () G (62) G () ~ (35)
e H () H? () Hy? (1),

We already have&" (e) ~ e~ H{" (ei) from (30)
and G{P (é%) =~ =195 g () from (33), and so
from (35) we obtain
GE)S) (ej4cu) ~ o i2w Hé3) (ej4w)
or equivalently
G83)(ejw) ~ 105w H(()3)(ejw)
or g (n) ~ (¥ (n — 0.5). This is once again the half-
sample delay condition.
Using the same derivation for further stages, it turns
out that for each stagg,> 1, we always obtain the same

condition ‘ ‘
géj)(n) ~ h(gj)(n —0.5).

Therefore, the perfect reconstruction dual-tree filters in-
troduced previously can be used for each stage of the dual-
tree filter bank after the first stage. Only the first stage re-
quires a different set of filters. Moreover, any existing PR
filters can be used for the first stage — it is only required
to offset them from each other by one sample.

Since the first-stage filters do not need to satisfy ap-
proximately the conditions (10)-(11), they can be the same
length as those used for a real wavelet transform (the fil-
ters for the following stages will be somewhat longer).
For a 2-D wavelet transform, these filters consume about
3/4 of the total execution time, and so their length can be
important for implementation efficiency.

Figure 12 illustrates the frequency responses of stages

STAGE 1

25}
2
1.5¢}
1 L
0.5
0
-1 -0.5 0
STAGE 2
4 T
3 L
2 L
1 -
0 .
-1 -0.5 0 0.5 1
STAGE 3
6 T
5 L
4t
3 -
2 -
l -
0 . — e~
-1 -0.5 0 0.5 1
STAGE 4
8 .
6 L
4 L
2 L
-1 -0.5 0 0.5 1
/Tt

1 through 4 of the dual-tre€WT. The first stage is Figure 12: Frequency responses of the (approximately ana-
Iytic) dual-tree CWT for stages 1 through 4. Compare with Fig-
ure 5.
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quite far from being analytic, however, the later stages
are quite close to being analytic. For every stage afte
the first stage, the frequency responses of the complex fil
ters are close to being single-sided and are free of the un
wanted lobes on the opposite side of the frequency axi
that are present in Figure 5. In this exampﬂél,) (n)isa
Daubechies length-10 filteg\" (n) = n{"(n — 1), and
gi(n), h;(n) are orthonormal solutions of length 12 de-
signed according to the algorithm of Section 3.3.3.

3.4.1 Swapping

We saw above that the filters for the first dual-tree stage
should be different from the filters for the remainingigure 14:Typical wavelets associated with the 2-D separable
stages. There is another implementation detail. It wWB3VT. Top row illustrates the wavelets in the space domain (LH,
suggested in [55] that for each stage> 2 the filters HL, HH); bottom row illustrates the (idealized) support of the
should be interchanged in the upper and lower filter bankgurier spectrum of each wavelet in the 2-D frequency domain
That is, the upper filter bank should use the filteg$n) (th'e origin lie.s at ?he center). The checkerboard artifact of the
andh (n) for the even stageg = 2, 4,6, ... and the fil- hird waveletis evident.
tersgo(n) andg; (n) for the odd stageg = 3,5,7,....
Correspondingly, the filters in the lower filter bank shoul3, 112]. The reason for this is that while the separable
also alternate. This scheme is illustrated in Figure 12D wavelet transform represents point-singularities effi-
By alternating filters from stage to stage (except the figently, it is less efficient for line- and curve-singularities
stage), in the cases Whéfio(e/)| # |Ho(e")|, a more (edges). Thus, one of the interesting avenues in wavelet-
balanced implementation is obtained. (The delay diffeielated research has been the development of 2-D multi-
ences mushot be swapped, even when the filters argcale transforms that represent edges more efficiently than
swapped, so an extra delay of one sample must be tife separable DWT. Examples include steerable pyramids
cluded as required to keep the polarity of the half-samglel, 96], directional filter banks and pyramids [10, 31],
delay correct at each level.) curvelets [15, 100], and directional wavelet transforms
We note, however, that use of alternating filters is npased on complex filter banks [36,39,55,57]. These trans-
required to achieve analytic behavior in the complex filorms isolate edges with different orientations in differ-
ters. Hence, this implementation detail is less importagt subbands, and they frequently give superior results in
than using a different filter set for the first stage. image processing applications compared to the separable
DWT.

The separable (row-column) implementation of the 2-D
4 2-D Dual-Tree Complex Wavelet pwr is characterized by three wavelets (see Figure 14):

Transform Gi(w,y) = 6()v(y)  (Hwavelety  (36)

4.1 Oriented wavelets Va(m,y) = ¥(z)oly)  (HLwavele)  (37)

o _ _ Vs(z,y) =v(@)d(y)  (HHwavelet)  (38)

The multi-dimensional (M-D) dual-treEWT both main-
tains the attractive properties of the 1-D dual-tree afithe LH wavelet is the product of the lowpass function
gains additional properties that make it particularly effegy-) along the first dimension and the highpass (actually
tive for M-D wavelet-based signal processing. In partie: bandpass) functiog(-) along the second dimension.
ular, M-D dual-tree wavelets are not only approximateljphe HL and HH wavelets are similarly labeled. While the
analytic but alsmrientedand thus natural for analyzingLH and HL wavelets are oriented vertically and horizon-
and processing oriented singularities like edges in imagely, the HH wavelet has aheckerboarcappearance —
and surfaces in 3-D datasets. it mixes+45 and—45 degree orientations. Consequently,

Although wavelet bases are optimal in a sense fortlee separable DWT fails to isolate these orientations.
large class of 1-D signals, the 2-D wavelet transform doesOne way to understand why the checkerboard artifact
not possess these optimality properties for natural imageises in the separable DWT is to look in the frequency
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Figure 13: The dual-tree CWT analysis filter bank with alternating filters for each stage (except the first stage). The synthesis
filter bank has alternating filters to match the analysis filter bank.

domain. Ify(z) is a real wavelet and the 2-D separabley,(x). We obtain fory(z, y) the expression
waveletis given by)(z,y) = ¢ (x) ¢ (y), then the Fourier _ _
spectrum ofii(z, ) is illustrated by the following ideal- ~ ¥(2,y) = [¥n(z) +ivg(2)] [¥n(y) +ive(y)]  (39)

ized diagram: = Un (@) Yn(y) — g (@) the(y) + (40)
(g (@) Y (y) + ¥n(x) v (y)]-

The support of the Fourier spectrum of this complex

x = wavelet is illustrated by the following idealized diagram:
Sincewy(x) is a real function, its spectrum must be two- X =
sided, and hence it is unavoidable that the 2-D spectru

contains passbands in all four corners of the 2-D fre-
quency plane. Therefore, this wavelet will be unable &ince the spectrum of the (approximately) analytic 1-D
distinguish between+-45 and —45 degree spectral fea-wavelet is supported on only one side of the frequency
tures, and this leads also to the same ambiguity in t&is, the spectrum of the complex 2-D wavelgtr, y)

space domain. is supported in only one quadrant of the 2-D frequency
plane. For this reason, the complex 2-D wavelet is ori-
ented.

4.2 2-D dual-treeCWT If we take the real part of this complex wavelet, then

. . we obtain the sum of two separable wavelets
To explain how the dual-tre€WT produces oriented P

wavelets, consider the 2-D Wavelzp_(x,y) = 1p(.r_) ¥(y)  Real Pafy)(z,y)} = vn(z) U (y)—bg () 1y (y). (41)
associated with the row-column implementation of the

wavelet transform, where(z) is a complex (approx- Since the spectrum of a real function must be symmetric
imately analytic) wavelet given by (z) = ¢n(z) + withrespectto the origin, the spectrum of this real wavelet
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is supported in two quadrants of the 2-D frequency plane,
as illustrated in the following (idealized) diagram:

Real Part{ } =

Real Par = . . .
{ } Again, neither the spectrum of this real wavelet nor the

wavelet itself possesses the checkerboard artifact. This

i real 2-D wavelet is oriented at45 degrees as illustrated
Unlike the real separable wavelet, the support of the SPEfhe fifth panel of Figure 15.

trum of this real wavelet does not posses the checker, i 0 0k more oriented real 2-D wavelets we

board artifact and therefore this real wavelet, iIIustrat%gm repeat this procedure on the following complex

in the second panel of Figure 15, is oriented-dt de- D lets: d
grees. Note that this construction depends on the comp% >§;)%Pf Sv;ei(izg(@¢fé§; (i(% é()x;ﬁéi)('x?rl
l - g -

wavelety(x) = ¥n() +j9y(x) being (approximately) , v ¢,(x). By taking the real part of each of these
analy_t|c or, equivalently, om,(t) being approximately four complex wavelets we obtain four real oriented 2-
the Hilbert transform oty (1), [1,(t) ~ H{vn(t)}. D wavelets, in addition to the two already obtained in

_ Note that the first term in expression (44),(z) ¢ (y), 41) and (42). Specifically, we obtain the following six

is the HH wavelet of a separable 2-D real wavelet tra avelets:

form implemented using the filtefsy(n), h1(n)}. The '

second termy,, (z) 1, (y), is also the HH wavelet of a real 4 o o

separable wavelet transform, but one that is implemented vilz,y) = (1@, y) = vai(@,y)), (43)

using the filterggo(n), g1(n)}.
To obtain a real 2-D wavelet oriented at45 de- birs(z,y) = NG Wri(z,y) +424(z.y))  (44)

grees, consider now the complex 2-D wavetetx, y) =

¥(x) 1 (y) wherei(y) represents the complex-conjugatéor i = 1,2, 3, where the two separable 2-D wavelet bases

of ¢(y) and, as above)(x) is the approximately analyticare defined in the usual manner:

wavelety(x) = ¥, (x) + jiby(x). We obtain fors(z, y)

-

the expression V1,1(2,y) = o (@) Yn(y), Y21(z,y) = ¢4(w) %((32)5,)
ba(@,y) = [Yn(x) + g ()] [¥n(y) + g (y)] br2(@,y) = Yn(@) n(y),  P22(,y) = 1by(2) Gg(v),
= [Un(z) +¥e(2)] [¥n(y) — e (y)] (46)
= () Yn(y) + () Yy (y) + V1,3(2,y) = Yn(@) Yn(y), Y23(,y) = thg(x) 1hy(y).
i () Yu(y) — Yn(z) Py ()] (47)

The support in the 2-D frequency plane of the spectrumyle have used the normalizatidn/+/2 only so that the
this complex wavelet is illustrated by the following idealsum/difference operation constitutes an orthonormal op-
ized diagram: eration. Figure 15 illustrates the six real oriented wavelets
derived from a pair of typical wavelets satisfyifig(t) ~
H{Yn(t)}. Compared with separable wavelets (see Fig-
X = ure 14), these six wavelets (which are strictly non-
separable) succeed in isolating different orientations —
each of the six wavelets are aligned along a specific direc-
As above, the spectrum of the complex 2-D wavellpn and no checkerboard effect appears. Moreover, they
¥ (2, y) is supported in only one quadrant of the 2-D frecover more distinct orientations than the separable DWT

quency plane. If we take the real part of this complei@velets. _ _ o
wavelet, then we obtain the real wavelet In addition, since the sum/difference operation is or-

thonormal, the set of wavelets obtained from integer trans-
Real Parfyo(z,y)} = ¥n(z) Yn(y) + ¢Yg(x) y(y),  lates and their dyadic dilations form feame (roughly
(42) speaking an “overcomplete” basis) [26]. (If the 1-D
the spectrum of which is supported in two quadrants whveletsy,(t) andy,(t) form orthonormal bases, then
the 2-D frequency plane, as illustrated in the followinthe set constitutes tgght frame or aself-invertingtrans-
(idealized) diagram: form.)

21



Figure 15: Typical wavelets associated with the real oriented 2-D dual-tree wavelet transform. Top row illustrates the wavelets
in the space domain; bottom row illustrates the (idealized) support of the Fourier spectrum of each wavelet in the 2-D frequency
plane. The absence of the checkerboard phenomenon is observed in both the spatial and frequency domains.

4.3 Realoriented 2-D dual-tree transform  orthonormal transforms then the transposérgf, is its
erse: F};, - Fy, = 1, and similarlyF? - F,, = L.
nsequently, the transpose Bf, is also its inverse:
F,, = I. That is, the inverse of the oriented 2-D
tree wavelet transform can be performed using the
transpose of the forward transform. Therefore, the trans-
form satisfies Parseval’s energy theorem and the oriented
I?/vavelets form a tight frame [26].

Note that this oriented wavelet transform is non-
gparable, but it does not have the implementation com-
lexity of a general non-separable transform, nor does it
huire a solution to a difficult design problem associated
ith a general non-separable transform. Indeed, the im-

. [)Efgmentation requires only the addition and subtraction
of the chgckerboard artifact. respective subbands of two 2-D separable real wavelet

To clarify, suppose that the usual 2-D separable D ansforms; and it requires no new filter design beyond

implemented using the filter$fo(n), 11 (n)} is repre- o 4 p fier design problem of the 1-D dual-tréa/T
sented by the square matrik;;, and suppose thatdiscussed above

the 2-D separ_able DWT tlrrsz:)errlﬁnted using tl?ln'? fiers | je the 1-D dual-treeCWT, the oriented real 2-D
{90(n), g1(n)} is represented by the square maffly,. . 1 iree wavelet transform is still a “dual-tree” wavelet

(Representing a 2-D transform as a square matrix 3 &nsform and is also two-times expansive. However, it is

for organizing the 2-D array of pixels into a 1-D vectornot in any way a complex transform — the coefficients are

but this reor.gamzanon IS not actually pe.rformed n t ot complex, nor should they be interpreted as the real and
row-column implementation.) Then the oriented real 2-

dual-t let t ¢ ' ted by th ; aginary parts of complex coefficients. Therefore, while
ual-tree wavelet transform 1S represented by the reciyfs yransform has the benefit of being oriented, it does not

Since the wavelets in (45)—(47) are all separable, a 2'5%
wavelet transform based on these six oriented wavelgts
can be implemented using two real separable 2-D wave é‘:’:ﬂ
transforms in parallel. We call this theal oriented 2-D

dual-tree wavelet transformThe implementation is sim-
ple: Use{hy(n), hi(n)} to implement one separable 2-
wavelet transform; usé€go(n), g1(n)} to implement an-
other. Applying both separable transforms to the sa
2-D data gives a total of six subbands: two HL, two L

and two HH subbands. To implement the oriented wave
transform, take the sum and difference of each pair of s
bands. The transform is then two-times expansive and f

gular matrix share the benefits of an (analytic) complex wavelet trans-
11 —1I| [Fpu, form outlined in Section 1. In particular it will not be
Fop = 2 I I||Fyl- approximately shift-invariant.

A (left) inverse ofFy, is then given by 4.4 Oriented 2-D dual-treeCWT
1

_ I I . .
Fol =3 [Foi Fl {—I I] : A 2-D wavelet transform that is both oriented and com-
plex (approximately analytic) can also be easily devel-
If the two real separable 2-D wavelet transforms aoped. Theoriented comple®-D dual-tree wavelet trans-
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form is four-times expansive, but it has the benefit of bef the transform. Let the square math,;, denote the 2-
ing both oriented and approximately analytic. It also poB- separable wavelet transform implemented usin@)
sesses the full shift-invariant properties of the constitueaibng the rows and,;(n) along the columns; and &,

1-D transforms. To develop this transform, consider talenote the usage éf (n) along the rows ang;(n) along

ing the imaginary part of (40) to obtain the columns. Then the oriented complex 2-D dual-tree

wavelet transform is represented by the rectangular matrix
Imag Parfy(z, y)} = g (x) Yn(y) + n(x) Yge(y).

(48) I I Fpp

The (idealized) support of the spectrum of po_ 1T 1 Fgg
. . 02D —

Imag Parfy)(z,y)} in the 2-D frequency plane is the V8 I 1| |Fg

same as the spectrum of the real part in (41), and there- I I [Fyy

fore the real 2-D wavelet in (48) is also oriented-at5
degrees. Note that the first term of (48),(x) ¥n(y), is
the HH wavelet of a separable real 2-D wavelet transform I I
implemented using the filtegjo(n), g1(n)} on therows, | 1 71] I I

A (left) inverse ofF,, is then given by

_ -1 p-1 -1
and the filters{ho(n), h1(n)} on the columnsof the Tow = NG [Frn Foq Fon Frg I I
image. Similarly, the second termgy, (x) 14(y), is also I —-I
the HH wavelet of a real separable wavelet transform, (54)

but one implemented using the filtefso(n), h1(n)} on If the individual wavelet transforms are orthonormal
the rows and {go(n), 91(n)} on thecolumns Likewise, transforms then the inverse in (54) is exactly the trans-
we consider also the imaginary parts 6f(z)(y), pose of the forward transform, and it therefore represents

o(x) Y(y), ¥(x) d(y), (=) Y(y), andy(x) ¢(y); where a tight frame.

Y(x) = Yn(x) +jibg(x) andg(x) = ¢n(x) +jdg(x).  If the vectorx represents a real-valued image, then
We then obtain six oriented wavelets given by:
1 [T -1] [Fpn
1 WIZ5 01 1| |F,|~
%‘(% y) = ﬁ (1/13,1'(1', y) + 1/14,1(35, y)) ) (49) 99
1 represents the real part of the oriented complex transform

Yiys(w,y) = NG (3,62, y) — Yai(z,y)) (50) and

1 [I I } {th]
Wo = — X
fori = 1,2, 3, where the two separable 2-D wavelet bases 2 (I —1] [Fag
are defined as: represents the imaginary part. In this implementation the
real and imaginary parts are stored separately. The com-
P31(x,y) = dg() Yn(y), Yaa(z,y) = on(x)1Pe(y), plex wavelet coefficients ane; + j wo.
(51) If the transform is applied to a complex-valued image
V32(z,y) = Vg () dn(y), Vaa(z,y) = Un(x) dy(y), then the complex coefficients should be formed explicitly
(52) as follows:

VY33(7,y) = Vg (2) Yu(y), Va3(x,y) = Yn(x) y(y)- I jI I I Fpp
(53) p _1 I Tl 1 Fy,

VR | —I I I Fg,

The six real-valued wavelets in (49)—(50) are oriented I I I 1| |Fy,

for the same reason the real-valued wavelets of (43)—(44)
are oriented. However, a set of six complex wavelet can ®@d
formed by using wavelets (43)—(44) as the real parts, and 1

imagi - Foo=~ [Fh F,b F, F,|x
the wavelets (49)—(50) as the imaginary parts. Figure 16 fco = 4 [Fhh Tgg gh hg
illustrates a set of six oriented complex wavelets obtained I I I I

in this way. The real and imaginary parts of each complex I I I I
wavelet are oriented at the same angle, and the magnitude I 1 I i
of each complex wavelet is an approximately circular bell- I -1 I il

shaped function.
The matrix representation of the oriented complex 2-D Note that the oriented 2-D dual-trééWT (applied
dual-tree wavelet transform clarifies the implementatida real or complex data) requires four separable wavelet
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Figure 16: Typical wavelets associated with the oriented 2-D dual-tree CWT. Top row illustrates the real part of each complex
wavelet; second row illustrates the imaginary part; and third row illustrates the magnitude.

transforms in parallel, and so it is no longer strictly &WT is based on FIR filter banks with a fast invertible
“dual-tree” wavelet transform. However, we still refer timplementation. A typical Gabor image analysis is either
it as such for convenience and because it is derived frexpensive to compute, is non-invertible, or both. With the
the 1-D dual-treCWT. Similarly, while the wavelets are2-D dual-treeCWT, many ideas and techniques from Ga-
oriented, approximately analytic, and nonseparable, thar analysis can be leveraged into wavelet-based image
implementation is still very efficient, requiring only therocessing.
addition and subtraction of respective subbands of four 2-The oriented complex wavelets illustrated in Figure 16
D separable wavelet transforms. also resemble to some degree the set of 2-D functions
computed by Olshausen and Field [75]. They proposed
4.5 Links with the 2-D Gabor transform tha}t.parts of biologipal visual sys_tems are based on the
efficient representation of natural images by an overcom-
Gabor analysis is frequently used in image processing giete set of 2-D functions. They proposed an optimality
pattern analysis. A 2-Babor functionis a 2-D Gaussian criterion based on sparsity, developed an iterative numer-

window multiplied by a complex sinusoid ical algorithm, and obtained as a solution a remarkable
, . set of 2-D functions exhibiting interesting properties: the
f(x,y) = e”(@/01)"+W/02)7) o=i(Wa atwy y) functions are mostly well oriented and occur at various

scales. Their result confirms to some degree the notion

Gabor functions are optimally concentrated in the spagRat oriented wavelet and wavelet-like transforms are nat-
frequency plane. Certain image analysis algorithms ugel for image processing applications.
Gabor functions as the impulse response of a set of 2-D
filters [40]. By varying the parameteis, andwy, the ofi- 4 g Eyiansions to higher dimensions
entation of the Gabor function can be adjusted; by varying
o1 andoy the spatial extent and aspect ratio of the fun@he dual-treeCWT can be extended to higher dimensions
tion can be adjusted. Some Gabor-based image procéisan two using the procedure described above. In the
ing algorithms are designed to use both magnitude afxdimensional case, the oriented dual-treal wavelet
phase information of Gabor-filtered images. transform is expansive bg?~!; the orientedcomplex

The 2-D dual-tree wavelets illustrated in Figure 16 revavelet transform is expansive 1. Importantly, the
semble 2-D Gabor functions to some degree. Howevergineckerboard artifact of the conventional separable DWT
contrast to analysis by Gabor functions, the 2-D dual-trbecomes ever more serious in higher dimensions. Cor-
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respondingly, the gain provided by using the oriented The near shift-invariance of the dual-tr€®VT can be
wavelet transform grows with the dimensidnh The 3- quantified. The measure of shift dependence defined in
D dual-tree wavelet transforms shows promise for prquation (5) of [57] is based on the ratio of the energy of
cessing medical volume data and video sequences [90¢ aliased components of the transfer function through a
Application of complex and oriented 3-D wavelet trangtiven subband to the energy of the unaliased components.
forms to seismic analysis is described in [109]. A higheA truly shift invariant transform has the property that the
D generalization of th€WT to ahyper-complexvavelet signal path through any single subband of the transform
transform (based on quaternions and octonions) has baed its inverse may be characterized by a unique z trans-
introduced in [17-19]. fer function, which is unaffected by the down and up sam-
pling within the transform.

5 Using the dual-treeCWT 5.2 Local Hilbert transform

The key advantages of the dual-t€&/T over the DWT The envelope of a real signal can be computed using the
are its shift invariance and directional selectivity. Thillilbert transform to create a complex-valued analytic sig-
means that the squared magnitude of a given comphed; the magnitude is the sought envelope. However,
wavelet coefficient provides an accurate measure of spaaime- or frequency-based Hilbert transform may pro-
tral energy at a particular location in space, scale, addce undesired behavior around transients of the signal
orientation. It also means th&WT-based algorithms due to the slow decay of the impulse response of the
will automatically be almost shift-invariant, thus reduddeal Hilbert transformation (61). Aocal Hilbert trans-
ing many of the artifacts of the critically-sampled DWTiorm can can be computed in the complex wavelet do-
Here we illustrate some additional attractive properties wfain simply by multiplying theCWT coefficients byj.
the CWT along with some prototypical applications.  As a bonus, th& WT-based local Hilbert transform can
be efficiently implemented by a continuously running fil-
L . ter bank. An example is shown in Figure 18. Multidi-
5.1 Near shift invariance mensionalCWT-based local Hilbert transforms have been
Eﬂ_roposed in [109] for seismic data analysis. An interest-

One way FO llustrate the near shlft_lnvgnance O.f the du Ing feature of CWT-based Hilbert transforms is that the
treeCWT is to observe how the projection of a signal ont i .

. . . ransition region around zero frequency may be made ar-
a certain scale varies as the signal translates. The pro

ec- . : "

. : . Jofranly sharp by adding additional levels of wavelet de-

tion of a signal onto scalg¢ can be computed by recon- o . ; L .
. . - .composition. This requires a negligible increase in com-

structing the signal from only the wavelet coefficients i, . .

subband. Figure 17 (top-left panel) shows a simple puls%Utatlon cost, but it does add extra delay.

signal z(n) and its reconstruction from wavelet coeffi-

cients at the 3rd scale level of the critically sampled DWHF.3  Near rotation invariance

and the dual-tre€WT. The top-right panel of the figure

shows the same signal translated by 3 samples and the 5 directionality of the 2-OCWT renders it nearly rota-

responding reconstructions from level 3. Comparing tHen invariant in addition to nearly shift invariant. Figure

left and right panels of Figure 17 we see that the DW¥9 illustrates the image obtained by reconstruction from

reconstructed signal varies significantly with translatio®§ly one level of the real DWT and dual-tréWT for a

of the signal. However, th€WT-reconstructed signaltest image with a sharp edge on a hyperbolic trajectory.

maintains its shape, illustrating the near shift-invariandde ringing and aliasing artifacts in the DWT coefficients

of the dual-treeCWT. This property of theCWT greatly that change with the edge orientation are not present in the

simplifies wavelet-based modeling, processing, and otfaf/ T coefficients.

applications.

The source of thg near shift invar_iance_ property can g<_a4 Image rotation

understood in two different ways. First, since the real and

imaginary wavelets are Hilbert transforms of each oth@rhile there are more direct methods for image rotation

(90° out of phase), the real and imaginary wavelet codf+a image interpolation in the pixel domain) it is interest-

ficients interpolate each other. Second, since we use twg to note that it is possible to do this in the wavelet do-

trees, the effect of the decimation by two at each scalamgin using the dual-treEWT. This relies on the unique-

diminished, which greatly reduces the amount of aliasingess of the z transfer functions with shift, mentioned in
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TEST SIGNAL, x(n)

TEST SIGNAL, x(n-3)

15 15
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PROJECTION ON TO SCALE 3 (REAL DWT) PROJECTION ON TO SCALE 3 (REAL DWT)
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Figure 17: A signal x(n) and its shifted version x(n — 3) (top panels) and its reconstruction from wavelet coefficients at scale
level 3 of the real DWT (middle panels) and dual-tree CWT (lower panels). The CWT is more nearly shift-invariant than the DWT.

(a) test image

(b) DWT coefficients (OWT coefficients

Figure 19:Near rotation invariance of the CWT. (a) Test image with sharp edge on hyperbolic trajectory. (b) When the test image
is reconstructed from one level of the DWT coefficients, ringing and aliasing effects are apparent. (c) The reconstruction of the
image from one level of the CWT does not exhibit these phenomena.
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ENVELOPE COMPUTED USING CWT
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ENVELOPE COMPUTED USING FFT
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Figure 18: The dual-tree CWT provides a way to perform a
local approximate Hilbert transform. The FFT gives similar re-
sults, but it requires overlapped block implementation for real-
time data, whereas the dual-tree CWT can be implemented as a
continuously running filter bank. In each case, the input wave-
form, x(t) = texp(—0.2t)cos(0.8¢) fort = 0,1...40, is
shown as a blue stem plot, and its local Hilbert transform, y(t),
as a green dashed stem plot. The ‘true’ envelope, t exp(—0.2t),
is shown as a cyan dashed line and the envelope extracted by
|z(t) + jy(t)| is shown as a red solid line.

section 5.1, and the resulting interpolability of each sub-
band. By shifting the complex coefficients in each sub-
band independently, we can rotate an image by small an-
gles. This is achieved by a band-limited interpolation
process, in which the complex coefficients (a) are first
de-rotated by the band center-frequency, (b) are then in-
terpolated using the MATLAB commaridterp2 , and

(c) are then re-rotated back up to their original frequency
range. For example, Figure 20 illustrates the Barbara im-
age and a 5%7(0.1 radians) rotated version. Note the blur-
ring effects in the corners where there would be undefined
pixels in a space-domain rotation scheme. This technique
may also be used to achieve other arbitrary smoothly vary-
ing displacements, provided that any rotation components
are small enough that there is little energy transfer be-
tween directional subbands (i.e. less than about 10 de-
grees).

5.5 Estimating image geometrical structure

The shift and rotation invariance properties of th&/T

can also be harnessed to compute accurate and efficient
estimates of the geometrical structure in images, namely
the strength, orientation, and offset of image edges,
ridges, and other singularities.

Consider the edge segment depicted in Figure 21(a) and
fix the scale of th&€WT so that the wavelets have roughly
this support size. Then, as the orientatiband offset
r of the edge change, so do the magnitude and phase of
the CWT coefficients [57, 81, 113]. In particular, as we
see from Figure 21(b) the magnitudes of /T coeffi-
cients peak as the edge orientatibapproaches their ori-
entation; we can estimate the edge orientation to within
approximately2° error by simply interpolating between
these response curves [81]. Moreover, the edge offset
can be estimated directly from the phase of ®WT co-
efficient with largest magnitude. Finally, this same largest
coefficient indicates the strength of the edge. Figure 22
illustrates this procedure on a test image.

The related problem of predicting the phase of a com-
plex coefficient from one scale to the next has been ad-
dressed for 1-D signals in [82,117].

5.6 Estimating local displacement

Local displacement (motion) between two images can be
estimated from the change of phaseGWT coefficients
from one image to the next. As in the single image case in
Section 5.5, at each position and orientation, the change
Ag¢y of the phase of a complex wavelet coefficient is ap-
proximately linearly proportional to the displacement in a
direction orthogonal to the subband orientation. From the
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Figure 20: CWT-based image rotation by 5.7° by indepen-
dently shifting the complex wavelet coefficients in each sub-
band.
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Figure 21:(a) Image segment with an edge singularity at ori-
entation 0 and offset from center r. (b) Magnitude responses of
the CWT coefficients of this segment as a function of 6.



image segment estimate

Figure 22: At top the Cameraman test image and four seg-
ments with strong edges. Below, zooms of the segments plus
idealized edges formed with the parameters estimated from the
CWT magnitude and phase. (No attempt is made to match the
texture within the segment, only the edge parameters.)

six A¢gy values (one for each subband), a best-fit displace-
ment vector and associated confidence ellipse can be esti-
mated. Propagation of vectors from coarse to fine scales
can then provide resilience to aperture problems. Further
details are given in [19,67,81,113]. Itis also appropriate
to use more complicated strategies for phase-based dis-
placement estimation with tH@WT such as in [47].

5.7 Denoising

Basic wavelet-based image denoising algorithms use the
DWT and hard or soft thresholding. Substantial perfor-
mance improvements can be obtained through other trans-
forms (such as the undecimated DWT [23, 63], steerable
pyramid [95], or curvelet transform [100]) and through
more effective, possibly adaptive, non-linearities based on
statistical models for the wavelet coefficients [24, 72, 78].

The CWT can give a substantial performance boost
to DWT-noise reduction algorithms. When thresholding
the complex-valued coefficients of tH@WT it is typi-
cally more effective to apply the nonlinearity to theag-
nitude rather than to the real and imaginary parts sepa-
rately. Since the coefficient magnitudes are slowly vary-
ing and free of aliasing distortion, this results in a nearly
shift-invariant denoising algorithm. Also, denoising al-
gorithms based on statistical models of wavelet coeffi-
cients can be more effective for tT than for the real
DWT because the magnitudes of the coefficients are more
strongly dependent in inter-scale and intra-scale neighbor-
hoods [82, 83].

In this example, thé12 x 512 8-bit gray-scaleBar-
baraimage was corrupted by additive Gaussian noise with
o, = 15. Denoising with the data-driven locally adap-
tive bishrink algorithm of [91] was performed using both
the critically-sampled separable DWT and the dual-tree
CWT. The PSNRs for this noise level are 29.85 dB and
31.27 dB respectively. Cropped portions of the images
are illustrated in Figure 23. The improved performance
from using directionally selective and shift-invariant fil-
ters is clear. The effective performance of several other
denoising algorithms using tHéWT have also been de-
scribed [22,83,118].

Volume and video denoising can be performed with a
3-D version of the dual-treEWT [12, 90, 93].

5.8 Additional applications

The dual-treeCWT is suitable for numerous other appli-
cations as well, including image segmentation [83, 92],
classification [80], deconvolution [29, 51], image sharp-
ening [94], motion estimation [67], coding [79, 97, 115],
watermarking [35, 66], texture analysis and synthesis
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(b) Noisy Image.

(a) Denoised using separable real DWT. (b) Denoised using duaCwee

Figure 23:Denoising example using the locally adaptive bishrink algorithm with the critically-sampled real DWT and the dual-tree
CWT. A cropped section of the images are shown.
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[28, 46, 48], feature extraction [60, 65], seismic imagther type of generalization in higher dimensions is the
ing [73], and the extraction of evoked potential responsiegper-complex wavelet transform [17-19]. A recently de-
in EEG signals [16]. Complex wavelet transforms (natloped complex wavelet transform is also Respline
specifically the dual-tre€WT) have been used recently52].
for measuring image similarity [116]. Approximately analytic complex directional trans-
forms. The closest alternative to the dual-tr€®VT is
probably the complex (approximately) analytic form of
6 Related Work the steerable pyramid95, 96]. Simoncelli has used this
transform for image denoising and texture analysis and
There has been substantial work on transforms that 8{thesis. Malvar has described complex lapped trans-
some combination of: multiscale, directional, complexgrms [70,71]. Similar transforms have been used for mo-
analytic, nearly shift invariant, overcomplete, and so Ofjgn estimation [119,120].
The following gives a brief a brief and non-exhaustive other recent research activity in the development of
overview of some of them. complex directional multiscale transforms has focused on
(Approximately) analytic continuous wavelet trans- the development of critically sampled (non-redundant)
forms. In their seminal work on the continuous WaVe'QanIementations, for example by Ates and Orchard, Hua,
transform, Grossman and Morlet emphasized complex &haendonck, and Fernandez et. al. [8, 9, 39, 50, 108, 109].
alytic (exact and approximate) wavelets [45]. Indeed, th¢ 3 critically-sampled transform, it is difficult to achieve
Morlet wavelet is complex-valued and approximately aghe near shift-invariance of the dual-tr€&VT. However,

alytic. This work in continuous wavelet transforms wagych transforms are promising for image compression.
continued by Antoine [6, 7] and used for the development

of directional wavelets by Vandergheynst et al. [110]. An-

alytic wavelet transforms and discrete implementation Conclusions

were also used by Abry and Flandrin [3-5] for turbulence

analysis, where the quadrature properties of the wavelgtie dual-tree complex wavelet transfor@WT) is a

were exploited. valuable enhancement of the traditional real wavelet trans-
Complex filter banks. Complex forms of the discreteform that is nearly shift invariant and, in higher dimen-

wavelet transform were mentioned by Daubechies [28]ons, directionally selective. Since the real and imagi-

and complex Daubechies wavelets were studied in dep#ry parts of the dual-treéWT are, in fact, conventional

by Lina [11,64]. Other complex-valued filter banks haveal wavelet transforms, thEWT can benefit from the

been developed by Gao, Nguyen, and Strang [42, 12#st theoretical, practical, and computational resources

However, while these solutions are complex-valued, thgiyat have been developed for the standard DWT. For ex-

are not approximately analytic, as noted in Section 2.3.ample, software and hardware developed for implementa-
Directional transforms. Bamberger, Smith, Hong, andiion of the real DWT can be used directly for tiEaVvT.

Rosiles have developed critically sampled directional 2ut, in addition, the magnitude and phaseld¥ T coeffi-

filter banks [10, 49, 84]. Do and Vetterli have developeaslents can be exploited to develop new effective wavelet-

the contourlettransform which can be critically-sampledhased algorithms, especially for applications for which the

or slightly over-complete [30-32]. Theurvelettrans- DWT is unsuited or underperforms.

form, developed by Candes and Donoho, is an overcomMATLAB software for the dual-tree complex

plete directional multiscale transform that is very effectivgavelet transform (and related algorithms) is

for representing edges in images [15, 100] available at the following locations on the web:
Generalizations of the dual-treeCWT. Chaux et. al. http://taco.poly.edu/WaveletSoftware/, http://www-

have developed th&/-band dual-tre€WT, generalizing sigproc.eng.cam.ac.ukhgk/, and http:/dsp.rice.edul.
the delay condition for the Hilbert pair property in [21].

Gopinath introduced thphaselet transfornf43], where

more than two critically-sampled DWTs are used togeth@.  Acknowledgments

In this transform, each a¥/ lowpass filters are offset from

each other by increments of M/ samples, a generaliza-Thanks to Justin Romberg and Michael Wakin for provid-

tion of the half-sample delay condition. Another genemng Figures 19, 21, and 22. IS thanks ONR for support of
alization is the double-density dual-tr€&VT [89] where this work under grant NO0014—-03-1-0217. RGB thanks
two over-sampled (double-density [86]) DWTs are usédiSF grant FMF 04-520, ONR grant NO0014-02—-1-0353,
together. This is further generalized in [44] and [2]. APAFOSR grant FA9550—-04—-1-0148, and the Texas Instru-

31



ments Leadership University Program. NGK thanks Trin- LOWPASS AND HIGHPASS FILTERS
ity College Cambridge, the UK EPSRC, the UK DTCon 15 ‘ ‘ ‘
Data and Information Fusion, and EU projects MOUMIR
and MUSCLE.

o — iy,

A Sidebar: Real-valued Discrete
Wavelet Transform and Filter 05
Banks

The discrete wavelet transform (DWT) of (1)-(3) is inti- -1 —05 0 0.5 1
mately intertwined with the iterated two-band filter bank
(FB) tree structures of Figure 24 [68]. The forward. . - )
DWT, implemented with the analysis FB of Figure 24(af;/9Uré 25: Magnitude frequency responses |Ho(e')| (solid)
computes the scaling and wavelet coefficien(is) and and |H1(€*)| (dashed) of the real Daubechies lowpass and high-
d(j,m). The input signal is the uniformly spaced samplé’sass filters of length 10.

of a continuous-time signal, (t) [z(n) = z,(nT)] or a

prefiltered version of them [104]. In many (perhaps most) Taking the discrete-time Fourier transform (DTFT), an

applications,z(n) is the discrete data itself. For the ingquivalent condition in terms of the filter frequency re-
verse DWT, the scaling and wavelet coefficients are inp4onses is

to the synthesis FB of Figure 24(b) to produce the signal

y(n). The wavelet coefficientd(j, n) in Figure 24 are la- |Ho(e)|? + |H1(e))? = 2. (58)

beled so that the coarsest scale is denoted £y0 and

increases for finer scales. In the continuous-time limitifiggure 25 illustrates$Hy (ei)| and |H, (e)| of the low-

case, the scale indgxincrease to infinity. pass and highpass Daubechies filters of length 10 [27].
Here we denote the analysis filtersiy(n) andhq (n), Since the analysis FB does not expand the total data

and the synthesis filters by, (n) andh, (n). For the anal- rate, we say that it isritically sampled Consequently, for

ysis and synthesis filter banks to represent a forward dite length input data, the analysis FB can be viewed as

inverse wavelet transform, it is necessary thatghgect a linear transformation with a square real makixaking

reconstruction(PR) condition be satisfiedi(n) = x(n), the vectorx of signal samples to the vecter of scaling

or more generally(n) = z(n — n,). and wavelet coefficients viw = Fx. When the trans-
Assuming the analysis and synthesis filters are real Fi®m is perfect reconstruction, we haxe= F~'w

filters, the perfect reconstruction condition can be satisfied=or an orthonormal wavelet transfofhthe transform

if hio(n) * ho(n) is a lowpassalfoandfilter [74,99,111]. MatrixF satisfiesF - F* = F* - F = I; that is, the trans-

Specifically, if we define the product filter pose ofF is also its inverse. It can be shown that the
N analysis and synthesis filter bank represent an orthonor-
p(n) := ho(n) * ho(n) mal transform if the synthesis filters are the time-reversed

versions of the analysis filtersiy(n) = ho(L — n) and
hi(n) = hy(L — n) for someL. In this case, the product
filter p(n) is the autocorrelation dfy(n).

then for perfect reconstruction (with a delayaf sam-
ples) it is necessary that

1 n=0 Additional constraints on the filters can force orthog-
p(2n+n,) =d(n) = { 0 n#0 (55) onality to low-order polynomials —vanishing moment
conditions [27] — which is useful for representing smooth
where the two highpass filters are given by and piecewise smooth signals, dimdte time supportthat
~ is, that the wavelet equals zero outside of some time inter-
hi(n) = (=1)"*" ho(n — d), (56) val. Finite support is extremely useful for wavelet-based
hi(n) = —(=1)" ho(n + d) (57) Signal processing, since it limits the extent to which a sig-

nal feature can affect the wavelet coefficients.

andd I.S an even (or qu) integer when, is an Qdd (_Or SWhenF is complex, then it represents a unitary transform vith
even) integer. When, is odd,d can be zero, which Sim-g« — g+ . F — [ whereF* is the conjugate (hermitian) transpose of

plifies the expressions for the highpass filters. F.
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ho(n)

? %

ho(n) hi(n)

z(n) hi(n) —F@—" d(1,n)
hi(n) —>@—> d(2,n)

(a) DWT analysis filter bank

d(0,n)

c(n) ho(n)

~O- :
~O-

d(0,n) h1(n) ho(n)

d(1,n) —{ :>—> ha(n) y(n)
d(2,n) —>@—> hi(n)

(b) DWT synthesis filter bank

Figure 24:Filter bank trees implementing the (a) forward (analysis) and (b) inverse (synthesis) discrete wavelet transform (DWT).

The (analysis) wavelet(t) associated with these filtersand scaling function. And, if the filters have vanishing
is given by moments, then so do the wavelet and scaling function.

= \[ hl n —-n 59 . 1
) 227; (o2t =n) ) B Sidebar: The Hilbert Transform

wherea(t) is called the scaling function and is givan- and Analytic Signal
plicitly by
A fundamental problem appearing in many signal pro-
o(t) = V2 Zho(n) #(2t —n). (60) cessing and communications applications is that of ex-
n tracting theamplitudea(t) and instantaneoyshasep(t)
~ of a real, modulated signal
The synthesis wavelet and scaling functioggs) and
(), are given by the same equations, but usiptn) z(t) = a(t) cos(p(t)).
instead ofh;(n). In the orthonormal case, the syntheé .
etrieval ofa

sis wavelet is the time-reversed version of the analy%'lséver solutioglt)sigeIs”t-epossfr?iswrrlgglceori(%(t)r)naiinO. thpé real
wavelet. Equation (60), called thdilation equation is P P y 9

a central equation in the theory of wavelet bases and ﬁ,é%nalx(t) complex through thétilbert transform(77]

been studied extensively since the advent of wavelet trans- 1 [ x(r)

forms [103]. We note here that a well defined solution to (Hz)(t) = p / o dr. (61)

the dilation equation exists only whén(n) is a lowpass -

filter with Hyo(z = —1) = 0. From equations (59) andNote that the impulse response of the Hilbert transform is
(60), the wavelets are fully determined by the filtes$n) 1

andh, (n), so therefore, the design of a wavejet) sat- hy(t) = -

isfying specific properties is equivalent to the design of
filters h;(n) satisfying specific properties. For examplayhich decays slowly. If the underlying amplitude func-
if the filters have finite support, then so do the wavelgbn a(t) is assumed to be relatively narrowband com-
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pared withz (), then theanalytic signa)
za(t) = x(t) +j (Ha)(1),
wherej = /—1, becomes

2a(t) = a(t) cos(p(t)) +] a(t) sin(p(t)) = a(t) V.

Estimation of the magnitude(t) is now well-posed and

straightforward via

la(t)] = |za(t)]-

The Hilbert transform has several useful and interesting,

properties. Firstz(¢) and(Hz)(t) have the same mag
tude functioru(¢) but phases that are shifted #§°. Sec

ond, the frequency response of the filter corresponding to

(61) is

Q>0
Q=0
Q<0.

Hy(Q) =

7j7
0,
b

Thus, the overall filter corresponding to the transforma-

tion z(t) — x,(t) suppresses negative frequencies

ni-

(62)

2, Q>0
Ha(Q) =1 +JHH(Q) = 1a Q=0 (63)
0, Q<0.

Sincex(t) is real, its Fourier transfornX (2) has con-

jugate symmetry; the filteH, () producesX,(Q2) =

2X(Q) for 2 > 0 and setsX,(2) = 0 for Q < 0. Note

that due to the discontinuity df,,(£2) atQ = 0 a transi
tion band must be allowed in practice.

Third, when the phase function is linear such tha
p(t) = Qo t, a time shift of the real signal manifests it-
self as a time shift of the amplitude and a phase shift of

the phase. That s, #(t) = z(t — to), then

Ya(t) = ma(t —to) = a(t — to) cP(t) o—iS0to

The definitions of Hilbert transform and analytic signal

are similar for discrete-time signals.
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