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Abstract

The dual-tree complex wavelet transform (CWT) is a rel-
atively recent enhancement of the discrete wavelet trans-
form (DWT) with important additional properties: It is
nearly shift-invariant and directionally selective in two
and higher dimensions. It achieves this with a redundancy
factor of only2d for d-dimensional signals, which is sub-
stantially lower than the undecimated DWT. The multi-
dimensional dual-treeCWT is non-separable but is based
on a computationally efficient, separable filter bank. This
tutorial discusses the theory behind the dual-tree trans-
form, shows how complex wavelets with good properties
can be designed, and illustrates a range of applications in
signal and image processing.

1 Introduction

1.1 The wavelet transform and multiscale
analysis

Since its emergence twenty years ago, thewavelet trans-
form has been exploited with great success across the
gamut of signal processing applications, in the process
often redefining the state-of-the-art of performance [102,
112]. In a nutshell, the discrete wavelet transform (DWT)
replaces the infinitely oscillating sinusoidal basis func-
tions of the Fourier transform with a set oflocally os-
cillating basis functions, calledwavelets. In the classi-
cal setting, the wavelets are stretched and shifted ver-
sions of a fundamental, real-valued bandpass wavelet
ψ(t). When carefully chosen and combined with shifts
of a real-valued lowpassscaling functionφ(t), they form
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an orthonormal basis expansion for one-dimensional (1-
D) real-valued continuous-time signals [27]. That is, any
finite-energy analog signalx(t) can be decomposed in
terms of wavelets and scaling functions via

x(t) =
∞∑

n=−∞
c(n)φ(t− n) + (1)

∞∑
j=0

∞∑
n=−∞

d(j, n) 2−j/2 ψ(2jt− n).

The scaling coefficientsc(n) and wavelet coefficients
d(j, n) are computed via the inner products

c(n) =
∫ ∞

−∞
x(t)φ(t− n) dt, (2)

d(j, n) = 2−j/2

∫ ∞

−∞
x(t)ψ(2jt− n) dt. (3)

They provide atime-frequency analysisof the signal by
measuring its frequency content (controlled by the scale
factorj) at different times (controlled by the time shiftn).

There exists a very efficient,O(N) algorithm to com-
pute the coefficientsc(n) and d(j, n) from a fine-scale
representation of the signal (often simplyN samples) and
vice versa based on two octave-band, discrete-timefilter
banksthat recursively apply a discrete-time lowpass fil-
ter h0(n), a high-pass filterh1(n), and upsampling and
downsampling operations (see Figure 24) [27, 69]. These
filters provide a convenient parametrization for design-
ing wavelets and scaling functions with desirable prop-
erties, such as compact time support and fast frequency
decay (to ensure the analysis is as local as possible in
time-frequency) and orthogonality to low-order polyno-
mials (“vanishing moments”) [27]. See Sidebar A for
more background on wavelets, filter banks, and their de-
sign.

Why have wavelets and multiscale analysis proved so
useful in such a wide range of applications? The primary
reason is because they provide an extremely efficient rep-
resentation for many types of signals that appear often in
practice but are not well matched by the Fourier basis,
which is ideally meant for periodic signals. In particular,
wavelets provide an optimal basis for signals containing
singularities(jumps, spikes, and so forth), the archetypal
example being a piecewise smooth function consisting of
low-order polynomials separated by jump discontinuities.
The wavelet representation is optimallysparsefor such
signals, requiring an order of magnitude fewer coefficients
than the Fourier basis to approximate within the same er-
ror. The key to the sparsity is that since wavelets oscillate
locally, only wavelets overlapping a singularity have large
wavelet coefficients; all other coefficients are small.

The sparsity of the wavelet coefficients of many real-
world signals enables near-optimal signal processing
based on simplethresholding(“keep the large coefficients
and kill the small ones”), the core of a host of powerful
image compression (JPEG2000 [98]), denoising, approxi-
mation, and deterministic, and statistical signal and image
algorithms.

1.2 Trouble in paradise: Four problems
with real wavelets

But this is not the end of the story. In spite of its effi-
cient computational algorithm and sparse representation,
the wavelet transform suffers from four fundamental, in-
tertwined shortcomings.

Problem 1 – Oscillations:Since wavelets are bandpass
functions, the wavelet coefficients tend to oscillate posi-
tive and negative around singularities (see Figures 1 and
2, for example). This considerably complicates wavelet-
based processing, making singularity extraction and sig-
nal modeling in particular very challenging [22]. More-
over, since an oscillating function passes often through
zero, we see that the conventional wisdom that “singulari-
ties yield large wavelet coefficients” is overstated. Indeed,
as we see in Figure 1 it is quite possible for a wavelet over-
lapping a singularity to have a small or even zero wavelet
coefficient.

Problem 2 – Shift variance:A small shift of the signal
greatly perturbs the wavelet coefficient oscillation pattern
around singularities (see Figure 2). Shift variance also
complicates wavelet-domain processing; algorithms must
be made capable of coping with the wide range of possible
wavelet coefficient patterns caused by shifted singularities
[34,55,59,80,83].

To better understand wavelet coefficient oscillations
and shift variance, consider a piecewise smooth signal
x(t− t0) like the step function

u(t) =
{

0 t < 0
1 t ≥ 0

analyzed by a wavelet basis having a sufficient number
of vanishing moments. Its wavelet coefficients consist of
samples of thestep responseof the wavelet.1

d(j, n) ≈ 2−3j/2∆
∫ 2jt0−n

−∞
ψ(t) dt,

where ∆ is the height of the jump. Sinceψ(t) is a
bandpass function that oscillates around zero, so does its
step responsed(j, n) as a function ofn (recall Figure 1).

1This formula is exact for a piecewise constant signal [80,83].
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Figure 1: In the neighborhood of an edge, the real DWT
produces both large and small wavelet coefficients. In con-
trast, the (approximately) analytic CWT produces coefficients
whose magnitudes are more directly related to their proximity
to the edge. Here, the test signal is a step edge at n = no,
x(n) = u(n − no). The figure shows the value of the wavelet
coefficient d(0, 8) (the 8th coefficient at stage 3 in Figure 24) as
a function of no. In the top panel, the real coefficient d(0, 8) is
computed using the conventional real DWT. In the lower panel,
the complex coefficient d(0, 8) is computed using the dual-tree
CWT. (The filters used here are the same as those in Figure 2).

Moreover, the factor2j in the upper limit (j ≥ 0) ampli-
fies the sensitivity ofd(j, n) to the time shiftt0, leading
to strong shift variance.

Problem 3 – Aliasing: The wide spacing of the wavelet
coefficient samples, or equivalently the fact that the
wavelet coefficients are computed via iterated discrete-
time downsampling operations interspersed with non-
ideal lowpass and highpass filters, results in substan-
tial aliasing. The inverse DWT cancels this aliasing, of
course, but only if the wavelet and scaling coefficients are
not changed. Any wavelet coefficient processing (thresh-
olding, filtering, quantization, and so on) upsets the deli-
cate balance between the forward and inverse transforms,
leading to artifacts in the reconstructed signal.

Problem 4 – Lack of directionality: Finally, while
Fourier sinusoids in higher dimensions correspond to
highly directional plane waves, the standard tensor prod-
uct construction of multi-dimensional wavelets produces
a “checkerboard” pattern that is simultaneously oriented
along several directions. This lack ofdirectional selec-
tivity greatly complicates modeling and processing ofge-
ometric image features like ridges and edges. (More on
this in Section 4 below.)

1.3 One solution: Complex wavelets

Fortunately, there is a simple solution to these four DWT
shortcomings. The key is to note that theFourier trans-
form does not suffer from these problems. First, the mag-
nitude of the Fourier transform does not oscillate positive
and negative but rather provides a smooth positive enve-
lope in the Fourier domain. Second, the magnitude of the
Fourier transform is perfectly shift invariant, with a simple
linear phase offset encoding the shift. Third, the Fourier
coefficients are not aliased and do not rely on a compli-
cated aliasing cancellation property to reconstruct the sig-
nal. And fourth, the sinusoids of the multi-dimensional
Fourier basis are highly directional plane waves.

What is the difference? Unlike the DWT, which is
based onreal-valued oscillating wavelets, the Fourier
transform is based oncomplex-valued oscillating sinu-
soids

ejΩt = cos(Ωt) + j sin(Ωt) (4)

with j =
√
−1. The oscillating cosine and sine compo-

nents (the real and imaginary parts, respectively) form a
Hilbert transform pair; that is, they are90◦ out of phase
with each other. Together they constitute ananalytic sig-
nal ejΩt that is supported on only one-half of the fre-
quency axis (Ω > 0). See Sidebar B for more background
on the Hilbert transform and analytic signals.
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Figure 2: The wavelet coefficients of a signal x(n) are very sensitive to translations of the signal. For two impulse signals
x(n) = δ(n− 60) and x(n) = δ(n− 64) (top panel), we plot the wavelet coefficients d(j, n) at a fixed scale j (middle and lower
panels). The middle panel shows the real coefficients computed using the conventional real discrete wavelet transform (DWT, with
Daubechies length-14 filters). The lower panel shows the magnitude of the complex coefficients computed using the dual-tree
complex discrete wavelet transform (CWT with length-14 filters from [58]). For the dual-tree CWT the total energy at scale j is
nearly constant, in contrast to the real DWT.
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Inspired by the Fourier representation, imagine acom-
plex wavelet transform(CWT)2 as in (1)-(3) but with
a complex-valued scaling function and complex-valued
wavelet

ψc(t) = ψr(t) + jψi(t).

Here, by analogy to (4),ψr(t) is real and even andjψi(t)
is imaginary and odd. Moreover, ifψr(t) andψi(t) form a
Hilbert transform pair (90◦ out of phase with each other),
thenψc(t) is an analytic signal and supported on only one-
half of the frequency axis. The complex scaling function
is defined similarly. See Figure 9 for an example of a com-
plex wavelet pair that approximately satisfies these prop-
erties.

Projecting the signal onto2−j/2ψc(2jt − n) as in (3),
we obtain thecomplex wavelet coefficient

dc(j, n) = dr(j, n) + j di(j, n)

with magnitude

|dc(j, n)| =
√

[dr(j, n)]2 + [di(j, n)]2

and phase

∠dc(j, n) = arctan
(
di(j, n)
dr(j, n)

)
when|dc(j, n)| > 0. As with the Fourier transform, com-
plex wavelets can be used to analyze and represent both
real-valued signals (resulting in symmetries in the coef-
ficients) and complex-valued signals. In either case, the
CWT enables newcoherent multiscale signal process-
ing algorithmsthat exploit the complex magnitude and
phase. In particular, as we will see, a large magnitude
indicates the presence of a singularity while the phase
indicates its position within the support of the wavelet
[81,83,113,117].

The theory and practice of discrete complex wavelets
can be broadly classed into two schools. The first seeks
a ψc(t) that forms an orthonormal or biorthogonal basis
[9,11,37,64,108,114]. As we show below in Section 2.3,
this strong constraint disables the resultingCWT from
overcoming most of the four DWT shortcomings outlined
above. The second school seeks aredundantrepresenta-
tion, with bothψr(t) andψi(t) individually forming or-
thonormal or biorthogonal bases. The resultingCWT is
a2× redundanttight frame[26] in 1-D with the power to
overcome the four shortcomings.

2We use the complex number symbolC in CWT to avoid confusion
with the oft-used acronym CWT for the (different) continuous wavelet
transform.

In this paper, we will focus on a particularly natural ap-
proach to the second, redundant type ofCWT — thedual-
tree approach — which is based on two filter bank (FB)
trees and thus two bases [55, 57]. As we will see, any
CWT based on wavelets of compact support cannot ex-
actly possess the Hilbert transform / analytic signal prop-
erties, and this means that any suchCWT will not per-
fectly overcome the four DWT shortcomings. The key
challenge in dual-tree wavelet design is thus the joint de-
sign of its two FBs to yield a complex wavelet and scaling
function that are as close as possible to analytic. From
Figure 9, we see that we can reach quite close to the ideal
even with quite short filters.

As a result, the dual-treeCWT comes very close to
mirroring all the attractive properties of the Fourier rep-
resentation, including a smooth, non-oscillating magni-
tude (see Figure 1); a nearly shift-invariant magnitude
with a simple near-linear phase encoding of signal shifts;
substantially reduced aliasing; and directional wavelets
in higher dimensions. The only cost for all of this is
a moderate redundancy:2× redundancy in 1-D (2d for
d-dimensional signals, in general). This is much less
than thelog2N× redundancy of a perfectly shift-invariant
DWT [23,63], which moreover will not offer the desirable
magnitude/phase interpretation of theCWT, nor the good
directional properties in higher dimensions.

1.4 Paper organization

This paper aims to reach two different audiences. The
first is the wavelet community, many members of which
are unfamiliar with the utility, convenience, and unique
properties of complex wavelets. The second is the broader
class of signal processing folk who work with applications
where the DWT has proved somewhat disappointing, such
as those involving complex or modulated signals (radar,
speech, and music, for example) or higher-dimensional,
geometric data (geophysics and imaging, for example). In
these problems, theCWT can potentially offer significant
performance improvements over the DWT.

Section 2 of the paper describes the challenges in de-
veloping complex wavelet transforms. Section 3 intro-
duces the dual-tree approach, overviews the design issues,
and synthesizes three different solution approaches. Sec-
tion 4 explains how to extend the dual-tree approach to
construct real and complex directional wavelets for multi-
dimensional geometric data. Section 5 deals with the use
of complex wavelets through several real and stylized ap-
plications. While our aim is not to provide an exhaus-
tive treatment of the myriad types ofCWTs, we provide a
brief overview of related techniques in Section 6. Section
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7 closes with conclusions. Finally, two sidebars on the
DWT, the Hilbert transform and analytic signals provide
background information for the development.

2 Complex Wavelet Complexities

The design of complex analytic wavelets raises several
unique and nontrivial challenges that do not arise with the
real DWT. In this section, we overview them and discuss
a straightforward but limited approach to theCWT that
provides a jumping off point for the dual-tree.

2.1 Analyticity vs. finite support

It is often desired in wavelet-based signal processing that
the wavelet be well localized in time. (In many appli-
cations the waveletψ(t) will actually have finite support.)
Finitely supported wavelets are of special interest because
in this case the discrete wavelet transform (DWT) can be
easily implemented with finite impulse response (FIR) fil-
ters. However, a finitely supported function can never
be exactly analytic, because the Fourier transform of a
finitely supported function can never be exactly zero on an
interval [A,B] with B > A (on any set of positive mea-
sure to be exact) let alone on the entire positive or negative
frequency axis [77]. Thus, any exactly analytic wavelet
must have infinite support (and slow decay, in fact).

Thus, if we want finitely supported wavelets, then we
must accept wavelets that are onlyapproximatelyanalytic
and aCWT that is onlyapproximatelymagnitude/phase,
shift-invariant, and free from aliasing.3 The design chal-
lenge will be, of course, to see how close we can get to
analyticity. Unfortunately, the standard approach to de-
signing and implementing wavelet transforms (with FIR
or IIR filters) has basic limitations even forapproximately
analytic wavelets, as we now illustrate.

2.2 Analyticity vs. perfect reconstruction

The question of how to design filtersh0(n) and h1(n)
satisfying the perfect reconstruction conditions so that the
waveletψ(t) has short support and vanishing moments
was answered by Daubechies (see Sidebar A) [25]. Note,
however, that Daubechies’ wavelets are not analytic. Can
we design the filtershi(n) in Figure 24 such that the cor-
responding scaling function and wavelet given by (60) and
(59) are complex and (approximately) analytic?

While complex filters satisfying the perfect reconstruc-
tion (PR) conditions have been developed [11,42,64,123],

3We can relax the finite support condition, but the resulting infinitely
supported wavelets are beyond the scope of this paper.

those solutions do not give analytic wavelets and do not
have the desirable properties of analytic wavelets de-
scribed in the Introduction. (They do, however, have de-
sirable symmetry properties.) It turns out that the design
of a complex (approximately) analytic wavelet basis is
more difficult than the design of a real wavelet basis. If
we follow the standard approach for wavelet design, then
problems arise when we require the wavelet to be analytic.

In order that the dyadic dilations and translations of a
single functionψ(t) (the wavelet) constitute a basis for
signal expansion,ψ(t) must satisfy certain constraints.
Unfortunately, these constraints make it difficult to design
a waveletψ(t) that is also analytic. Specifically, analytic
solutions are not possible because the PR conditions (see
Sidebar A) require that

H0(ej ω) H̃0(ej ω) +H1(ej ω) H̃1(ej ω) = 2

for −π ≤ ω ≤ π. Suppose thath1(n) is (approximately)
analytic. ThenH1(ej ω) ≈ 0 for −π < ω < 0, which in
turn implies thatH0(ej ω) H̃0(ej ω) ≈ 2 for −π < ω < 0.
That is, neitherH0(z) nor H̃0(z) is a reasonable low-
pass filter and consequently the dilation equation does not
have a well defined solution. Therefore, the wavelet cor-
responding to the usual discrete wavelet transform cannot
be approximately analytic.

2.3 CWT via DWT post-processing

A natural and straightforward approach towards an invert-
ible analyticCWT splits each output of the FB in Figure
24(a) into its positive and negative frequency components
using a complex perfect reconstruction (PR) filter bank
acting as a Hilbert transformer [9, 36–39, 108, 109, 114].
But this approach turns out to have a basic limitation.

A complex FB that performs this frequency decomposi-
tion can be derived directly from any real 2-channel low-
pass/highpass FB with filtersh0(n), h1(n) by defining the
“positive frequency” and “negative frequency” filters as

hp(n) = jn h0(n), hn(n) = jn h1(n). (5)

This corresponds to a rotation of both filters in the z-plane
by 90 degrees. Ifh0(n), h1(n) satisfy the PR conditions,
then so willhp(n), hn(n). For example, given the low-
pass/highpass filtersh0(n), h1(n) illustrated in the fre-
quency domain in Figure 25, the complex filtershp(n),
hn(n) are illustrated in the frequency domain in Figure
3. When used by itself, this complex FB can effectively
separate the positive and negative frequency components
of a signal; in a discrete-time sense,hp(n) andhn(n) are
approximately analytic.
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When this complex FB is used to decompose each sub-
band signal of a real discrete wavelet transform, we obtain
the filter bank structure illustrated in Figure 4. Notice that
the transform is critically-sampled — the total data rate
of the subband signals is equal to the input data rate (al-
though the outputs are now complex).

Although this FB structure is perhaps the most natu-
ral approach to developing an approximately analytic dis-
crete wavelet transform, when we examine the overall fre-
quency response of each channel, it becomes apparent that
the structure suffers from a basic limitation.

Usingz-transforms, consider the filter chain producing
the wavelet coefficients at the first level

x(n) −→ H1(z) −→ ↓ 2 −→ Hn(z) −→ ↓ 2 −→ c(n).

Using thenoble identities[107], this is equivalent to

x(n) −→ H1(z)Hn(z2) −→ ↓ 4 −→ c(n).

The frequency response of this channel is thus

Htot(z) = H1(z)Hn(z2)

and in the Fourier domain

Htot(ejω) = H1(ejω)Hn(ej2ω).

If H1(z) andHn(z) have the frequency responses shown
in Figures 25 and 3, thenHtot(z) has the frequency re-
sponse shown in the second panel of Figure 5.

Observe in Figure 5 that even though the frequency re-
sponse of each channel is approximately single sided (and
thus approximately analytic), there is a substantial bump

−1 −0.5 0 0.5 1
0

0.5

1

1.5

|H
1
(ej ω)| (dashed), |H

n
(ej 2 ω)| (solid)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

STAGE 1: H
1
(ej ω) H

n
(ej 2 ω)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

STAGE 2: H
0
(ejω) H

1
(ej2ω) H

n
(ej4ω)

−1 −0.5 0 0.5 1
0

1

2

3

4

ω/π

STAGE 3: H
0
(ejω) H

0
(ej2ω) H

1
(ej4ω) H

n
(ej8ω)

Figure 5: Frequency response for stages 1, 2, and 3 of DWT
filter bank with invertible complex post-filtering as in Figure 4.
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on the opposite side of the frequency axis. In fact, this
bump is unavoidable for the filter bank structure shown
in Figure 4. It is possible to reduce thewidth of the bump
by designingH1(z) andHn(z) so that they have narrower
transitions bands, however, then the impulse responses of
these filters (and thus the wavelets) will grow longer and
they will have a greater degree of ringing. This is con-
trary to one of the primary goals in wavelet design: short
support. Moreover, no matter how long the filters and
wavelets are, theheight of the bump will never dimin-
ish. As a consequence of the PR conditions, the bump
will always have a height of exactly 1 atω = 0.5π no
matter what filters are used. Figure 5 also illustrates that
the problem persists in later FB stages as well.

Even though it has an unavoidable bump on the wrong
side of the frequency axis, theCWT generated by the FB
in Figure 4 may still be useful for some applications —
the frequency response of each channel is largely single
sided, the transform is simple to implement, and no new
filter design is needed.

However, theundecimateddiscrete wavelet transform
can be easily converted into an approximately analytic
wavelet transform by using this approach. By decompos-
ing each subband signal of the undecimated DWT with
the same complex filter bank considered here, the un-
wanted bump can be eliminated.4 The down-sampling
following the real lowpass/highpass filters must be omit-
ted for the bump artifact to be eliminated. (In this case
H0(z2(j−1)

), H1(z2(j−1)
), Hn(z2(j−1)

), andHn(z2(j−1)
)

should be used at stagej, for 1 ≤ j ≤ J .) Although this
approach works with the undecimated DWT, this trans-
form is redundant by a factor ofJ + 1 whereJ is the
number of stages. (AnN -point input signal will lead to
(J + 1)N wavelet coefficients.) An alternative is the use
of the partially decimated wavelet transform (PWT) de-
scribed in [101] to lower the redundancy. The dual-tree
CWT, described below, also avoids the unwanted bump
and is also expansive, but by just a factor of 2 (for 1-D
signals) independent of the number of stages.

2.4 Performing the Hilbert transform first

Another approach to implement an expansive complex
wavelet transform first applies a Hilbert transform to the
data. The real wavelet transform is then applied to both
the original data and the Hilbert transformed data, and
the coefficients of each wavelet transform are combined

4Note that if the critically-sampled DWT is used and only the down-
sampling following the complex positive/negative filters is omitted, then
the frequency responses shown in Figure 4 remain unchanged; that is,
the bumps will remain.

to obtain a complex wavelet transform [3,5,13,14]. How-
ever, note that the ideal Hilbert transform is represented
by an infinitely long impulse response that decays very
slowly. The use of the ideal (or near ideal) Hilbert trans-
form in conjunction with the wavelet transform effectively
increases the support of the wavelets. For the wavelets
to have short support, an approximate Hilbert transform
more localized in time should be used instead. However,
the accuracy of the approximate Hilbert transform should
depend on the scale of the wavelet transform (coarse
scales should be accompanied by a more accurate Hilbert
transform). When the Hilbert transform is applied first to
the data, a single Hilbert transform is applied to wavelet
coefficients at all scales; and hence it cannot be opti-
mized for all scales simultaneously. On the other hand
we shall see that when the Hilbert transform is built into
the wavelet transform as in the dual-tree implementation,
the Hilbert transform scales with the wavelet scale, as de-
sired.

3 The Dual-Tree Complex Wavelet
Transform

As shown in the previous section, the development of an
invertible analytic wavelet transform is not as straightfor-
ward as might be initially expected. In particular, the filter
bank structure illustrated in Figure 24 that is usually used
to implement the real discrete wavelet transform does not
lend itself to analytic wavelet transforms with desirable
characteristics.

3.1 Dual-tree framework

One effective approach for implementing an analytic
wavelet transform, first introduced by Kingsbury in 1998,
is called thedual-treecomplex wavelet transform, or dual-
treeCWT [54, 55, 57]. Like the idea of positive/negative
post-filtering of real subband signals, the idea behind the
dual-tree approach is quite simple. The dual-treeCWT
employs tworeal DWTs; the first real DWT gives the real
part of the transform while the second real DWT gives the
imaginary part. The analysis and synthesis filter banks
used to implement the dual-treeCWT and its inverse are
illustrated in Figures 6 and 7.

The two real wavelet transforms use two different sets
of filters, with each satisfying the perfect reconstruction
conditions. The two sets of filters are jointly designed
so that the overall transform is approximately analytic.
Let h0(n), h1(n) denote the lowpass/highpass filter pair
for the upper filter bank; and letg0(n), g1(n) denote
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Figure 6:Analysis filter bank for the dual-tree discrete complex wavelet transform (CWT).
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10



the lowpass/highpass filter pair for the lower filter bank.
We will denote the two real wavelets associated with
each of the two real wavelet transforms asψh(t) and
ψg(t). In addition to satisfying the perfect reconstruc-
tion conditions, the filters are designed so that the com-
plex waveletψ(t) := ψh(t) + jψg(t) is approximately
analytic. Equivalently, they are designed so thatψg(t) is
approximately the Hilbert transform ofψh(t), [denoted
ψg(t) ≈ H{ψh(t)}].

Note that the filters are themselves real — no complex
arithmetic is required for the implementation of the dual-
treeCWT. Also note that the dual-treeCWT is not a crit-
ically sampled transform — it is two-times expansive in
1-D because the total output data rate is exactly twice the
input data rate.

The inverse of the dual-treeCWT is as simple as the
forward transform. To invert the transform, the real part
and the imaginary part are each inverted — the inverse
of each of the two real DWTs are used — to obtain two
real signals. These two real signals are then averaged to
obtain the final signal. Note that the original signalx(n)
can be recovered from either the real part or the imaginary
part alone; however, such inverse dual-treeCWTs do not
capture all the advantages an analytic wavelet transform
offers.

If the two real DWTs are represented by the square ma-
tricesFh andFg, then the dual-treeCWT can be repre-
sented by the rectangular matrix

F =
[
Fh

Fg

]
.

If the vectorx represents a real signal, thenwh = Fh x
represents the real part andwg = Fg x represents the
imaginary part of the dual-treeCWT. The complex coef-
ficients are given bywh + jwg. A (left) inverse ofF is
then given by

F−1 =
1
2

[
F−1

h F−1
g

]
as we can verify:

F−1 · F =
1
2

[
F−1

h F−1
g

]
·
[
Fh

Fg

]
=

1
2

[
I + I

]
= I.

We can just as well share the factor of one half between
the forward and inverse transforms, to obtain

F :=
1√
2

[
Fh

Fg

]
, F−1 :=

1√
2

[
F−1

h F−1
g

]
. (6)

If the two real DWTs are orthonormal transforms, then
the transpose ofFh is its inverse:Ft

h · Fh = I, and simi-
larly for Fg. In this case, the transpose of the rectangular

matrixF is also a left inverse:Ft ·F = I, where we have
used (6). That is, the inverse of the dual-treeCWT can
be performed using the transpose of the forward dual-tree
CWT — it is “self-inverting” in the terminology of [96].

The dual-tree wavelet transform defined in (6) keeps
the real and imaginary parts of the complex wavelet coef-
ficients separate. However, the complex coefficients can
be explicitly computed using the following form

Fc :=
1
2

[
I j I
I −j I

]
·
[
Fh

Fg

]
, (7)

F−1
c :=

1
2

[
F−1

h F−1
g

]
·
[

I I
−j I j I

]
. (8)

Note that the complex sum/difference matrix in (7) is uni-
tary (its conjugate transpose is its inverse)

1√
2

[
I j I
I −j I

]
· 1√

2

[
I I
−j I j I

]
= I.

(Note that the identity matrix on the RHS is twice the size
of those on the LHS.) Therefore, if the two real DWTs are
orthonormal transforms then the dual-treeCWT satisfies
F∗c · Fc = I, where “∗” denotes conjugate transpose. If[

u
v

]
= Fc · x

then whenx is real we havev = u∗ so v need not be
computed. When the input signalx is complex, thenv 6=
u∗ so bothu andv need to be computed.

When the dual-treeCWT is applied to a real signal,
the output of the upper and lower filter banks in Figure 6
will be the real and imaginary parts of the complex coeffi-
cients, and they can be stored separately, as represented by
(6). However, if the dual-treeCWT is applied to a com-
plex signal, then the output of both the upper and lower
filter banks will be complex, and it is no longer correct to
label them as the real and imaginary parts. For complex
input signals, the form in (7) is more appropriate. For a
realN -point signal, the form in (7) yields2N complex co-
efficients, butN of these coefficients are the complex con-
jugates of the otherN coefficients. For a general complex
N -point signal, the form in (7) yields2N general com-
plex coefficients. Therefore, for both real and complex
input signals, theCWT is two-times expansive.

When the two real DWTs are orthonormal and the
1/
√

2 factor is included as in (6), the dual-treeCWT gains
a Parseval’s energy theorem: the energy of the input signal
is equal to the energy in the wavelet domain∑

j,n

(
|dh(j, n)|2 + |dg(j, n)|2

)
=

∑
n

|x(n)|2.
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The dual-treeCWT is also easy to implement. Be-
cause there is no data flow between the two real DWTs,
they can each be implemented using existing DWT soft-
ware and hardware. Moreover, the transform is naturally
parallelized for efficient hardware implementation. In ad-
dition, because the dual-treeCWT is implemented using
two real wavelet transforms, the use of the dual-treeCWT
can be informed by the existing theory and practice of
real wavelet transforms. For example, criteria for wavelet
design (vanishing moments, etc) and wavelet-based sig-
nal processing algorithms (thresholding of wavelet co-
efficients, and so on) that have been developed for real
wavelet transforms can also be applied to the dual-tree
CWT.

It should be noted, however, that the dual-treeCWT
requires the design of new filters. Primarily, the dual-tree
CWT requires apair of filter sets chosen so that the corre-
sponding wavelets form an approximate Hilbert transform
pair. Existing filters for wavelet transforms should not be
used to implement both trees of the dual-treeCWT. For
example, pairs of Daubechies’ wavelet filters do not sat-
isfy the requirement thatψg(t) ≈ H{ψh(t)}. If the dual-
tree wavelet transform is implemented with filters not sat-
isfying this requirement, then the transform will not pro-
vide the full advantages of analytic wavelets described in
the Introduction.

3.2 The half-sample delay condition

Translating wavelet properties into filter properties trans-
lates the wavelet design problem into a filter design prob-
lem. For example, it is well known that a waveletψ(t)
hasK vanishing moments if the transfer function of the
lowpass filter has the formH0(z) = (1 + z)K Q(z) for
someQ(z).

The dual-treeCWT inspires a new filter design prob-
lem: what property should the two lowpass filtersh0(n)
andg0(n) satisfy so as to ensure that the corresponding
wavelets form an approximate Hilbert transform pair, that
isψg(t) ≈ H{ψh(t)}? Here

ψh(t) =
√

2
∑

n

h1(n)φh(t),

φh(t) =
√

2
∑

n

h0(n)φh(t),

h1(n) = (−1)n h0(d − n); ψg(t), φg(t), andg1(n) are
defined similarly.5 Since the wavelets depend on the scal-
ing functions, and since the scaling functions depend on

5For convenience, we assume here that the wavelet transform is or-
thonormal.

the filters only implicitly, it is not at first obvious how the
filters should be related. However, it turns out that the two
lowpass filters should satisfy a very simple property:one
of them should be approximately a half-sample shift of the
other[87]

g0(n) ≈ h0(n− 0.5) =⇒ ψg(t) ≈ H{ψh(t)}. (9)

Sinceg0(n) andh0(n) are defined only on the integers,
this statement is somewhat informal. However, we can
make the statement rigorous using Fourier transforms.
In [87] it is shown that ifG0(ej ω) = e−j 0.5 ωH0(ej ω)
thenψg(t) = H{ψh(t)}. The converse has been proved
in [76, 122], making the condition necessary and suffi-
cient. The necessary and sufficient conditions for the
biorthogonal case were proved in [121]. To understand
intuitively why the half-sample delay condition leads to a
nearly shift-invariant discrete wavelet transform, note that
the half-sample delay condition is equivalent to uniformly
oversampling the lowpass signal at each scale by 2:1, thus
largely avoiding the aliasing due to the lowpass downsam-
plers [53–55].

It will be useful to rewrite the half-sample delay condi-
tion in terms of the magnitude and phase functions sepa-
rately:

|G0(ej ω)| = |H0(ej ω)|, (10)

∠G0(ej ω) = ∠H0(ej ω)− 0.5ω. (11)

Equivalently,g0(n) could be obtained fromh0(n) by fil-
teringh0(n) with an ideal fractional delay system. How-
ever, such a system is not realizable — its impulse re-
sponse is of infinite length and its transfer function is not
rational. Even if it were realizable it might not give a de-
sirable solution because ifh0(n) is FIR, theng0(n) would
be of infinite length. Indeed, ifψh(t) is a wavelet of finite
support, then its exact Hilbert transform will have infi-
nite support. Therefore, in practical implementations of
the dual-treeCWT, the delay condition (10) and (11) will
be satisfied only approximately; the waveletsψh(t) and
ψg(t) will form only an approximate Hilbert pair; and the
complex waveletψh(t) + jψh(t) will be only approxi-
mately analytic.

A question remains, however: is it possible to satisfy
simultaneously the perfect reconstruction condition (55)
exactly and the half-sample delay condition (10), (11) ap-
proximately withshortfilters? Or does the dual-treeCWT
have some side effect that limits its effectiveness as an an-
alytic wavelet transform (like the bumps in Figure 5) when
short filters are used? The next section describes several
methods for filter design for the dual-treeCWT which
demonstrates that with relatively short filters an effective
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invertible approximately analytic wavelet transform can
indeed be implemented using the dual-tree approach.

3.3 Filter design for the dual-treeCWT

As in the case of filter design for real wavelet transforms,
there are various approaches to the design of filters for the
dual-treeCWT. In the following, we describe methods to
construct filters satisfying the following desired proper-
ties:

1. Approximate half-sample delay property

2. Perfect reconstruction (orthogonal or biorthogonal)

3. Finite support (FIR filters)

4. Vanishing moments/good stopband

5. Linear-phase filters (desired, but not required of a
wavelet transform for it to be approximately ana-
lytic). Moreover, only thecomplexfilter responses
need be linear-phase; this can be achieved by taking
g0(n) = h0(N − 1− n).

One approach to dual-tree filter design is to leth0(n)
be some existing wavelet filter. Then, givenh0(n), we
need to designg0(n) so as to simultaneously satisfy (i)
G0(ej ω) ≈ e−j 0.5 ωH0(ej ω) and (ii ) the perfect recon-
struction conditions. (Algorithms for designing an or-
thonormal wavelet basis to match a specified signal class
are described, for example, in [20].) Unfortunately, this
will sometimes result ing0(n) being substantially longer
than h0(n) (but see [105, 121]). By jointly designing
h0(n) andg0(n), we can obtain a pair of filters of equal
(or near-equal) length, where both are relatively short.
It should be noted however, that filters for the dual-tree
CWT are generally somewhat longer than filters for real
wavelet transforms with similar numbers of vanishing mo-
ments, because of the additional constraints (10)-(11) the
filters must approximately satisfy.

In the following, we describe three methods for FIR
dual-tree filter design. Fast implementations of some of
these filters have been recently described in [1].

3.3.1 Linear-phase biorthogonal solution

The first solution, introduced in [53, 54], setsh0(n) to be
a symmetric odd-length (Type I) FIR filter and setsg0(n)
to be a symmetric even-length (Type II) FIR filter, such
that forN odd:

h0(n) = h0(N − 1− n), (12)

g0(n) = g0(N − n). (13)

This solution must be a biorthogonal solution (the filters
in the synthesis filter bank are not time-reversed versions
of the filters in the analysis filter bank). This is because
real orthonormal FIR two-channel filter banks cannot be
symmetric (except for the Haar solution). Note that if
h0(n) is a symmetricN -point impulse response (sup-
ported on0 ≤ n ≤ N − 1) then∠H0(ej ω) = −0.5 (N −
1)ω. Similarly, if g0(n) is a symmetric(N + 1)-point
impulse response (supported on0 ≤ n ≤ N ) then
∠G0(ej ω) = −0.5N ω. Therefore, for this type of so-
lution, the phase part (11) of the half-sample delay con-
dition is exactly satisfied, but the magnitude part (10) is
not:

|G0(ej ω)| 6= |H0(ej ω)|, (14)

∠G0(ej ω) = ∠H0(ej ω)− 0.5ω. (15)

Therefore,h0(n) andg0(n) should be design so as to ap-
proximately satisfy the magnitude condition (10).

The design of a pair of symmetric perfect reconstruc-
tion (biorthogonal) filters approximately satisfying the
magnitude relation (10) is performed in [53, 54] by an it-
erative error minimization strategy rather similar to that
in [58]. Alternative techniques are given in [105] which
employ even-length Bernstein filter banks (EBFBs) to ob-
tain the matching even length filters.

3.3.2 q-shift solution

The second solution, introduced in [56], sets

g0(n) = h0(N − 1− n) (16)

whereN, now even, is the length ofh0(n), which is sup-
ported on on0 ≤ n ≤ N − 1. In this case, the magnitude
part (10) of the half-sample delay condition is exactly sat-
isfied due to the time-reverse relation between the filters,
but the phase part (11) is not exact:

|G0(ej ω)| = |H0(ej ω)|, (17)

∠G0(ej ω) 6= ∠H0(ej ω)− 0.5ω. (18)

Thus the filters must be designed so that the phase condi-
tion is approximately satisfied.

The q-shift solution has an interesting property that
leads to its name: If you ask thatg0(n) and h0(n) be
related as in (16) and also that they approximately sat-
isfy (11), then it turns out that the frequency response of
h0(n) has approximately linear phase. This is verified by
writing (16) in terms of Fourier transforms:

G0(ej ω) = H0(ej ω) e−j (N−1) ω
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where the overbar represents complex conjugation. This
implies that the phases satisfy

∠G0(ej ω) = −∠H0(ej ω)− (N − 1)ω.

If the two filters satisfy the phase condition (11) approxi-
mately (that is,∠G0(ej ω) ≈ ∠H0(ej ω)− 0.5ω) then

∠H0(ej ω)− 0.5ω ≈ −∠H0(ej ω)− (N − 1)ω

from which we have

∠H0(ej ω) ≈ −0.5 (N − 1)ω + 0.25ω. (19)

That is,h0(n) is an approximately linear-phase filter. This
also says thath0(n) is approximately symmetric around
the pointn = 0.5 (N − 1) − 0.25. Note that this is
one quarter away from the “natural” point of symmetry (if
h0(n) were exactly symmetric), and for this reason solu-
tions of this kind were introduced asquarter-shift(q-shift)
dual-tree filters in [56].

For the q-shift solution, the wavelets are related by

ψg(t) = ψh(N − 1− t).

The imaginary part of the complex wavelet is a time-
reversed version of the real part. Therefore the q-shift so-
lution produces complex wavelets that are exactly linear-
phase (regardless of what filtersh0(n), g0(n) are used).

The q-shift solution calls for the design of a single filter
satisfying simultaneously the perfect reconstruction con-
ditions and the phase condition (19); and true orthonormal
solutions are possible here, because the filters need only
beapproximatelylinear phase and their coefficients do not
need to exhibit symmetry. The same time-reverse condi-
tion then applies between analysis and synthesis filters as
between the dual trees, yielding a surprisingly neat overall
solution from a single filter design. In [56], orthonormal
solutions to this design problem are found by optimiza-
tion over lattice angles, using a lattice parameterization
of orthonormal filter banks. One of these q-shift filters
has only six non-zero coefficients, making it efficient for
implementation. Longer filters have been obtained using
an iterative frequency domain error minimization crite-
rion [58], which is better suited to the design of longer
q-shift filters (typically using 12 or more taps) with im-
proved smoothness and shift-invariance properties.

3.3.3 Common-factor solution

The third solution, introduced in [88], can be used to de-
sign both orthonormal and biorthogonal solutions for the
dual-treeCWT. In this approach we set

h0(n) = f(n) ∗ d(n), (20)

g0(n) = f(n) ∗ d(L− n) (21)

where∗ represents discrete-time convolution and where
d(n) is supported on0 ≤ n ≤ L. Equivalently

H0(z) = F (z)D(z), (22)

G0(z) = F (z) z−LD(1/z). (23)

Like the q-shift solution, for solutions of this kind the
magnitude part (10) of the half-sample delay condition is
exactly satisfied but the phase part (11) is not:

|G0(ej ω)| = |H0(ej ω)|, (24)

∠G0(ej ω) 6= ∠H0(ej ω)− 0.5ω. (25)

The filters must be designed so that the phase condition is
approximately satisfied. From (22)-(23) we have

G0(z) = H0(z)A(z) (26)

where

A(z) :=
z−LD(1/z)

D(z)

is an allpass transfer function — it has the property that
|A(ej ω)| = 1. Therefore, from (26),|G0(ej ω)| =
|H0(ej ω)| and

∠G0(ej ω) = ∠H0(ej ω) + ∠A(ej ω).

If the filtersh0(n) andg0(n) are to satisfy the phase con-
dition (11) approximately, thenD(z) must be chosen so
that

∠A(ej ω) ≈ −0.5ω. (27)

With (27) we find thatA(z) should be a fractional delay
allpass system.

A solution to the dual-tree filter design problem where
the filters are taken to have the form in (20)-(21), can be
found in two steps: First, find an FIRD(z) so thatA(z)
satisfies (27). Second, find an FIRF (z) so thath0(n) and
g0(n) satisfy the perfect reconstruction conditions.

The first step can draw on existing literature. The de-
sign of allpass systems with phase response (27) is al-
ready well studied [61,62,85]. The formula for the maxi-
mally flat-delay all-pass filter, adapted from Thiran’s filter
in [106], is

D(z) = 1 +
L∑

n=1

(
L

n

) [
n−1∏
k=0

τ − L+ k

τ + 1 + k

]
(−z)−n. (28)

With thisD(z), we haveA(ejω) ≈ e−jτω aroundω = 0.
We can useD(z) in (28) with τ = 0.5. The phase of
the maximally flat fractional-delay all-pass systemA(z)
is illustrated in Figure 8 forL = 1, 2, 3. For larger values
of L an improved approximation to0.5ω is obtained. The
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Figure 8:The phase ∠A(ej ω) of the maximally flat fractional-
delay all-pass system with τ = 0.5 and L = 1, 2, 3.

line 0.5ω is indicated in the figure by the dashed line.
Note that the behavior of the phase in the stopband of the
lowpass filterH0(z) is not important, so the deviation of
the phase from0.5ω nearω = π is not relevant. Other
fractional delay allpass filters can also be used; in [38] a
different allpass filter is used.

The second step, findingF (z) so thath0(n) andg0(n)
satisfy the PR conditions, requires only a solution to a lin-
ear system of equations and a spectral factorization. As
described in [88] this design procedure allows for an arbi-
trary number of vanishing wavelet moments to be speci-
fied.

This approach to the dual-tree filter design problem is
exactly analogous to Daubechies’ construction of short or-
thonormal (and biorthogonal) wavelet bases with vanish-
ing moments. Like the Daubechies’ construction, if the
common-factor approach is used to design an orthonormal
wavelet transform, then the filters will not be symmetric.
However, also similar to the Daubechies’ construction, if
this approach is used to design a biorthogonal transform,
then the filterf(n) can be exactly symmetric and the fil-
tersh0(n) andg0(n) will be approximately linear-phase
(becaused(n) has approximately linear phase).

3.3.4 Examples

A q-shift Hilbert pair of wavelets is illustrated in Figure
9. The filters were obtained using the design algorithm
in [58] and are of length 14. The spectrum of the com-
plex waveletψh(t) + jψg(t) is shown in the figure, and it
is clearly nearly analytic (approximately zero on the neg-
ative frequency axis). A common factor Hilbert pair of

wavelets based on a biorthogonal set of filters is illustrated
in Figure 10. The filters were obtained using the design al-
gorithm in [88] and have 2 vanishing moments each. The
analysis lowpass filters are of length 11 and the synthesis
lowpass filters are of length 13.

3.4 Implementation issues

It turns out that the implementation of the dual-treeCWT
requires that the first stage of the dual-tree filter bank be
different from the succeeding stages. If the same perfect
reconstruction filters are used for each stage, as Figure 6
indicates, then the first several stages of the filter bank will
not be approximately analytic; that is, the frequency re-
sponses for these stages will not be approximately single-
sided. In this section, we describe how the filters for the
first stage should be chosen so that the dual-treeCWT is
approximately analytic for every stage.

Note that the half-sample delay condition,g0(n) ≈
h0(n − 0.5), was derived by asking thatψg(t) ≈
H{ψh(t)}. However,ψg(t) andψh(t) are defined on
the real line through Equations (59), (60), and they do not
always accurately reflect the behavior and properties of
the filter bank for the first several stages. These functions
are most useful for understanding the behavior of the filter
bank at stagej asj →∞.

To understand how the filters at each stage of the dual-
tree filter bank should be designed, it is useful to consider
again the half-sample delay condition. It turns out that if
the lowpass filters satisfy the half-sample delay condition,
g0(n) ≈ h0(n− 0.5), then the scaling functions also sat-
isfy a half-sample delay condition:φg(t) ≈ φh(t − 0.5).
The wavelet expansion of a signalx(t) on the real line in
(1) calls for the integer translates of the scaling function
φ(t). Therefore, the conditionφg(t) ≈ φh(t − 0.5) im-
plies that the integer translates ofφg(t) fall midway be-
tween the integer translates ofφh(t). That is, the two
scaling functions satisfy aninterlacingproperty. For the
discrete form of the dual-treeCWT to be (approximately)
analytic at each stagej, it is necessary that the dual-tree
filter bank duplicate this interlacing property.

Instead of using the same filters at each stage of the
dual-tree filter bank, as depicted in Figure 6, let us sup-
pose that at each stage we use a different set of perfect
reconstruction filters. As illustrated in Figure 11, the low-
pass filters used at stagej will be denoted byh(j)

0 (n) and

g
(j)
0 (n). (At each stage, in each tree, the highpass filter

will be determined by the lowpass filter, as usual.)
From the input of the filter bank to the lowpass output

of the upper filter bank at stagej we have (by basic mul-
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Figure 9:q-shift complex wavelet corresponding to a set of orthonormal dual-tree filters of length 14 [58].
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Figure 10:Common factor complex wavelet corresponding to a set of biorthogonal dual-tree filters [88].
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Figure 11:Analysis filter bank for the dual-tree CWT with a different set of filters at each stage.

tirate properties) the system

x(n) −→ h
(j)
tot(n) −→ ↓ 2j −→

whereh(j)
tot(n) is given by

H
(j)
tot(z) = H

(1)
0 (z) H(2)

0 (z2) · · · H(j)
0 (z2j−1

). (29)

We have similar expression forG(j)
tot(z) in the lower filter

bank.
To ensure that the discrete analysis functions of the

dual-treeCWT satisfy the interlacing property, we require
that the filters at each stage,h(j)

0 (n) andg(j)
0 (n), be de-

signed so that the translates ofg(j)
tot(n) by 2j fall midway

between the translates ofh(j)
tot(n) by 2j . At stage 1 for

example, we require that the translates ofg
(1)
tot(n) by 2 fall

midway between the translates ofh(1)
tot(n) by 2. That is,

we require that

g
(1)
tot(n) ≈ h

(1)
tot(n− 1).

At stage 2, we require that the translates ofg
(2)
tot(n) by 4

fall midway between the translates ofh(2)
tot(n) by 4. That

is, we require that

g
(2)
tot(n) ≈ h

(2)
tot(n− 2).

At stage 3, we require that

g
(3)
tot(n) ≈ h

(3)
tot(n− 4),

and so forth.
At stagej = 1, h(1)

tot(n) is just h(1)
0 (n), and we are

asking that
g
(1)
0 (n) ≈ h

(1)
0 (n− 1). (30)

This is different (and easier!) from the half-sample delay
condition discussed above. Dual-tree filters designed so
as to satisfy the half-sample delay condition should not be
used for the first stage. For the first stage, the condition
(30) can be satisfied exactly by using the same set of filters
in each of the two trees; it is necessary only to translate
one set of filters by one sample with respect to the other
set. Moreover, any set of perfect reconstruction filters can
be used for the first stage.

For stagesj > 1 it is more useful to write the require-
ments using the frequency responses of the filters. For
stagej = 2, we require that

G
(2)
tot(e

jω) ≈ e−j2ω H
(2)
tot (e

jω). (31)

Using (29) we can write (31) in terms of the individual
filters as

G
(1)
0 (ejω)G(2)

0 (ej2ω) ≈ e−j2ω H
(1)
0 (ejω)H(2)

0 (ej2ω).
(32)
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We already haveG(1)
0 (ejω) ≈ e−jω H

(1)
0 (ejω) from (30),

and so from (32) we obtain

G
(2)
0 (ej2ω) ≈ e−jω H

(2)
0 (ej2ω)

or equivalently

G
(2)
0 (ejω) ≈ e−j0.5ω H

(2)
0 (ejω) (33)

or g(2)
0 (n) ≈ h

(2)
0 (n− 0.5). This is the half-sample delay

condition we have already encountered.
For stagej = 3, we require that

G
(3)
tot(e

jω) ≈ e−j4ω H
(3)
tot (e

jω). (34)

Using (29) we can write (34) in terms of the individual
filters as

G
(1)
0 (ejω)G(2)

0 (ej2ω)G(3)
0 (ej4ω) ≈ (35)

e−j4ω H
(1)
0 (ejω)H(2)

0 (ej2ω)H(3)
0 (ej4ω).

We already haveG(1)
0 (ejω) ≈ e−jω H

(1)
0 (ejω) from (30)

andG(2)
0 (ejω) ≈ e−j0.5ω H

(2)
0 (ejω) from (33), and so

from (35) we obtain

G
(3)
0 (ej4ω) ≈ e−j2ω H

(3)
0 (ej4ω)

or equivalently

G
(3)
0 (ejω) ≈ e−j0.5ω H

(3)
0 (ejω)

or g(3)
0 (n) ≈ h

(3)
0 (n − 0.5). This is once again the half-

sample delay condition.
Using the same derivation for further stages, it turns

out that for each stage,j > 1, we always obtain the same
condition

g
(j)
0 (n) ≈ h

(j)
0 (n− 0.5).

Therefore, the perfect reconstruction dual-tree filters in-
troduced previously can be used for each stage of the dual-
tree filter bank after the first stage. Only the first stage re-
quires a different set of filters. Moreover, any existing PR
filters can be used for the first stage — it is only required
to offset them from each other by one sample.

Since the first-stage filters do not need to satisfy ap-
proximately the conditions (10)-(11), they can be the same
length as those used for a real wavelet transform (the fil-
ters for the following stages will be somewhat longer).
For a 2-D wavelet transform, these filters consume about
3/4 of the total execution time, and so their length can be
important for implementation efficiency.

Figure 12 illustrates the frequency responses of stages
1 through 4 of the dual-treeCWT. The first stage is
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Figure 12: Frequency responses of the (approximately ana-
lytic) dual-tree CWT for stages 1 through 4. Compare with Fig-
ure 5.
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quite far from being analytic, however, the later stages
are quite close to being analytic. For every stage after
the first stage, the frequency responses of the complex fil-
ters are close to being single-sided and are free of the un-
wanted lobes on the opposite side of the frequency axis
that are present in Figure 5. In this example,h

(1)
0 (n) is a

Daubechies length-10 filter,g(1)
0 (n) = h

(1)
0 (n − 1), and

gi(n), hi(n) are orthonormal solutions of length 12 de-
signed according to the algorithm of Section 3.3.3.

3.4.1 Swapping

We saw above that the filters for the first dual-tree stage
should be different from the filters for the remaining
stages. There is another implementation detail. It was
suggested in [55] that for each stagej > 2 the filters
should be interchanged in the upper and lower filter banks.
That is, the upper filter bank should use the filtersh0(n)
andh1(n) for the even stagesj = 2, 4, 6, . . . and the fil-
tersg0(n) andg1(n) for the odd stagesj = 3, 5, 7, . . . .
Correspondingly, the filters in the lower filter bank should
also alternate. This scheme is illustrated in Figure 13.
By alternating filters from stage to stage (except the first
stage), in the cases when|G0(ejω)| 6= |H0(ejω)|, a more
balanced implementation is obtained. (The delay differ-
ences mustnot be swapped, even when the filters are
swapped, so an extra delay of one sample must be in-
cluded as required to keep the polarity of the half-sample
delay correct at each level.)

We note, however, that use of alternating filters is not
required to achieve analytic behavior in the complex fil-
ters. Hence, this implementation detail is less important
than using a different filter set for the first stage.

4 2-D Dual-Tree Complex Wavelet
Transform

4.1 Oriented wavelets

The multi-dimensional (M-D) dual-treeCWT both main-
tains the attractive properties of the 1-D dual-tree and
gains additional properties that make it particularly effec-
tive for M-D wavelet-based signal processing. In partic-
ular, M-D dual-tree wavelets are not only approximately
analytic but alsoorientedand thus natural for analyzing
and processing oriented singularities like edges in images
and surfaces in 3-D datasets.

Although wavelet bases are optimal in a sense for a
large class of 1-D signals, the 2-D wavelet transform does
not possess these optimality properties for natural images

Figure 14:Typical wavelets associated with the 2-D separable
DWT. Top row illustrates the wavelets in the space domain (LH,
HL, HH); bottom row illustrates the (idealized) support of the
Fourier spectrum of each wavelet in the 2-D frequency domain
(the origin lies at the center). The checkerboard artifact of the
third wavelet is evident.

[33, 112]. The reason for this is that while the separable
2-D wavelet transform represents point-singularities effi-
ciently, it is less efficient for line- and curve-singularities
(edges). Thus, one of the interesting avenues in wavelet-
related research has been the development of 2-D multi-
scale transforms that represent edges more efficiently than
the separable DWT. Examples include steerable pyramids
[41, 96], directional filter banks and pyramids [10, 31],
curvelets [15, 100], and directional wavelet transforms
based on complex filter banks [36,39,55,57]. These trans-
forms isolate edges with different orientations in differ-
ent subbands, and they frequently give superior results in
image processing applications compared to the separable
DWT.

The separable (row-column) implementation of the 2-D
DWT is characterized by three wavelets (see Figure 14):

ψ1(x, y) = φ(x)ψ(y) (LH wavelet), (36)

ψ2(x, y) = ψ(x)φ(y) (HL wavelet), (37)

ψ3(x, y) = ψ(x)ψ(y) (HH wavelet). (38)

The LH wavelet is the product of the lowpass function
φ(·) along the first dimension and the highpass (actually
a bandpass) functionψ(·) along the second dimension.
The HL and HH wavelets are similarly labeled. While the
LH and HL wavelets are oriented vertically and horizon-
tally, the HH wavelet has acheckerboardappearance —
it mixes+45 and−45 degree orientations. Consequently,
the separable DWT fails to isolate these orientations.

One way to understand why the checkerboard artifact
arises in the separable DWT is to look in the frequency
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Figure 13:The dual-tree CWT analysis filter bank with alternating filters for each stage (except the first stage). The synthesis
filter bank has alternating filters to match the analysis filter bank.

domain. Ifψ(x) is a real wavelet and the 2-D separable
wavelet is given byψ(x, y) = ψ(x)ψ(y), then the Fourier
spectrum ofψ(x, y) is illustrated by the following ideal-
ized diagram:

× =

Sinceψ(x) is a real function, its spectrum must be two-
sided, and hence it is unavoidable that the 2-D spectrum
contains passbands in all four corners of the 2-D fre-
quency plane. Therefore, this wavelet will be unable to
distinguish between+45 and−45 degree spectral fea-
tures, and this leads also to the same ambiguity in the
space domain.

4.2 2-D dual-treeCWT

To explain how the dual-treeCWT produces oriented
wavelets, consider the 2-D waveletψ(x, y) = ψ(x)ψ(y)
associated with the row-column implementation of the
wavelet transform, whereψ(x) is a complex (approx-
imately analytic) wavelet given byψ(x) = ψh(x) +

jψg(x). We obtain forψ(x, y) the expression

ψ(x, y) = [ψh(x) + jψg(x)] [ψh(y) + jψg(y)] (39)

= ψh(x)ψh(y)− ψg(x)ψg(y) + (40)

j [ψg(x)ψh(y) + ψh(x)ψg(y)].

The support of the Fourier spectrum of this complex
wavelet is illustrated by the following idealized diagram:

× =

Since the spectrum of the (approximately) analytic 1-D
wavelet is supported on only one side of the frequency
axis, the spectrum of the complex 2-D waveletψ(x, y)
is supported in only one quadrant of the 2-D frequency
plane. For this reason, the complex 2-D wavelet is ori-
ented.

If we take the real part of this complex wavelet, then
we obtain the sum of two separable wavelets

Real Part{ψ(x, y)} = ψh(x)ψh(y)−ψg(x)ψg(y). (41)

Since the spectrum of a real function must be symmetric
with respect to the origin, the spectrum of this real wavelet
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is supported in two quadrants of the 2-D frequency plane,
as illustrated in the following (idealized) diagram:

Real Part{ } =

Unlike the real separable wavelet, the support of the spec-
trum of this real wavelet does not posses the checker-
board artifact and therefore this real wavelet, illustrated
in the second panel of Figure 15, is oriented at−45 de-
grees. Note that this construction depends on the complex
waveletψ(x) = ψh(x) + jψg(x) being (approximately)
analytic or, equivalently, onψg(t) being approximately
the Hilbert transform ofψh(t), [ψg(t) ≈ H{ψh(t)}].

Note that the first term in expression (41),ψh(x)ψh(y),
is the HH wavelet of a separable 2-D real wavelet trans-
form implemented using the filters{h0(n), h1(n)}. The
second term,ψg(x)ψg(y), is also the HH wavelet of a real
separable wavelet transform, but one that is implemented
using the filters{g0(n), g1(n)}.

To obtain a real 2-D wavelet oriented at+45 de-
grees, consider now the complex 2-D waveletψ2(x, y) =
ψ(x)ψ(y) whereψ(y) represents the complex-conjugate
of ψ(y) and, as above,ψ(x) is the approximately analytic
waveletψ(x) = ψh(x) + jψg(x). We obtain forψ2(x, y)
the expression

ψ2(x, y) = [ψh(x) + jψg(x)] [ψh(y) + jψg(y)]
= [ψh(x) + jψg(x)] [ψh(y)− jψg(y)]
= ψh(x)ψh(y) + ψg(x)ψg(y) +

j [ψg(x)ψh(y)− ψh(x)ψg(y)].

The support in the 2-D frequency plane of the spectrum of
this complex wavelet is illustrated by the following ideal-
ized diagram:

× =

As above, the spectrum of the complex 2-D wavelet
ψ2(x, y) is supported in only one quadrant of the 2-D fre-
quency plane. If we take the real part of this complex
wavelet, then we obtain the real wavelet

Real Part{ψ2(x, y)} = ψh(x)ψh(y) + ψg(x)ψg(y),
(42)

the spectrum of which is supported in two quadrants of
the 2-D frequency plane, as illustrated in the following
(idealized) diagram:

Real Part{ } =

Again, neither the spectrum of this real wavelet nor the
wavelet itself possesses the checkerboard artifact. This
real 2-D wavelet is oriented at+45 degrees as illustrated
in the fifth panel of Figure 15.

To obtain four more oriented real 2-D wavelets we
can repeat this procedure on the following complex
2-D wavelets: φ(x)ψ(y), ψ(x)φ(y), φ(x)ψ(y), and
ψ(x)φ(y); whereψ(x) = ψh(x) + jψg(x) andφ(x) =
φh(x) + jφg(x). By taking the real part of each of these
four complex wavelets we obtain four real oriented 2-
D wavelets, in addition to the two already obtained in
(41) and (42). Specifically, we obtain the following six
wavelets:

ψi(x, y) =
1√
2

(ψ1,i(x, y)− ψ2,i(x, y)) , (43)

ψi+3(x, y) =
1√
2

(ψ1,i(x, y) + ψ2,i(x, y)) (44)

for i = 1, 2, 3, where the two separable 2-D wavelet bases
are defined in the usual manner:

ψ1,1(x, y) = φh(x)ψh(y), ψ2,1(x, y) = φg(x)ψg(y),
(45)

ψ1,2(x, y) = ψh(x)φh(y), ψ2,2(x, y) = ψg(x)φg(y),
(46)

ψ1,3(x, y) = ψh(x)ψh(y), ψ2,3(x, y) = ψg(x)ψg(y).
(47)

We have used the normalization1/
√

2 only so that the
sum/difference operation constitutes an orthonormal op-
eration. Figure 15 illustrates the six real oriented wavelets
derived from a pair of typical wavelets satisfyingψg(t) ≈
H{ψh(t)}. Compared with separable wavelets (see Fig-
ure 14), these six wavelets (which are strictly non-
separable) succeed in isolating different orientations —
each of the six wavelets are aligned along a specific direc-
tion and no checkerboard effect appears. Moreover, they
cover more distinct orientations than the separable DWT
wavelets.

In addition, since the sum/difference operation is or-
thonormal, the set of wavelets obtained from integer trans-
lates and their dyadic dilations form aframe (roughly
speaking an “overcomplete” basis) [26]. (If the 1-D
waveletsψg(t) andψh(t) form orthonormal bases, then
the set constitutes atight frame, or aself-invertingtrans-
form.)
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Figure 15:Typical wavelets associated with the real oriented 2-D dual-tree wavelet transform. Top row illustrates the wavelets
in the space domain; bottom row illustrates the (idealized) support of the Fourier spectrum of each wavelet in the 2-D frequency
plane. The absence of the checkerboard phenomenon is observed in both the spatial and frequency domains.

4.3 Realoriented 2-D dual-tree transform

Since the wavelets in (45)–(47) are all separable, a 2-D
wavelet transform based on these six oriented wavelets
can be implemented using two real separable 2-D wavelet
transforms in parallel. We call this thereal oriented 2-D
dual-tree wavelet transform. The implementation is sim-
ple: Use{h0(n), h1(n)} to implement one separable 2-D
wavelet transform; use{g0(n), g1(n)} to implement an-
other. Applying both separable transforms to the same
2-D data gives a total of six subbands: two HL, two LH,
and two HH subbands. To implement the oriented wavelet
transform, take the sum and difference of each pair of sub-
bands. The transform is then two-times expansive and free
of the checkerboard artifact.

To clarify, suppose that the usual 2-D separable DWT
implemented using the filters{h0(n), h1(n)} is repre-
sented by the square matrixFhh, and suppose that
the 2-D separable DWT implemented using the filters
{g0(n), g1(n)} is represented by the square matrixFgg.
(Representing a 2-D transform as a square matrix calls
for organizing the 2-D array of pixels into a 1-D vector,
but this reorganization is not actually performed in the
row-column implementation.) Then the oriented real 2-D
dual-tree wavelet transform is represented by the rectan-
gular matrix

F2D =
1
2

[
I −I
I I

] [
Fhh

Fgg

]
.

A (left) inverse ofFdt is then given by

F−1
2D =

1
2

[
F−1

hh F−1
gg

] [
I I
−I I

]
.

If the two real separable 2-D wavelet transforms are

orthonormal transforms then the transpose ofFhh is its
inverse: Ft

hh · Fhh = I, and similarlyFt
gg · Fgg = I.

Consequently, the transpose ofF2D is also its inverse:
Ft

2D · F2D = I. That is, the inverse of the oriented 2-D
dual-tree wavelet transform can be performed using the
transpose of the forward transform. Therefore, the trans-
form satisfies Parseval’s energy theorem and the oriented
wavelets form a tight frame [26].

Note that this oriented wavelet transform is non-
separable, but it does not have the implementation com-
plexity of a general non-separable transform, nor does it
require a solution to a difficult design problem associated
with a general non-separable transform. Indeed, the im-
plementation requires only the addition and subtraction
of respective subbands of two 2-D separable real wavelet
transforms; and it requires no new filter design beyond
the 1-D filter design problem of the 1-D dual-treeCWT
discussed above.

Like the 1-D dual-treeCWT, the oriented real 2-D
dual-tree wavelet transform is still a “dual-tree” wavelet
transform and is also two-times expansive. However, it is
not in any way a complex transform — the coefficients are
not complex, nor should they be interpreted as the real and
imaginary parts of complex coefficients. Therefore, while
this transform has the benefit of being oriented, it does not
share the benefits of an (analytic) complex wavelet trans-
form outlined in Section 1. In particular it will not be
approximately shift-invariant.

4.4 Oriented 2-D dual-treeCWT

A 2-D wavelet transform that is both oriented and com-
plex (approximately analytic) can also be easily devel-
oped. Theoriented complex2-D dual-tree wavelet trans-
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form is four-times expansive, but it has the benefit of be-
ing both oriented and approximately analytic. It also pos-
sesses the full shift-invariant properties of the constituent
1-D transforms. To develop this transform, consider tak-
ing the imaginary part of (40) to obtain

Imag Part{ψ(x, y)} = ψg(x)ψh(y) + ψh(x)ψg(y).
(48)

The (idealized) support of the spectrum of
Imag Part{ψ(x, y)} in the 2-D frequency plane is the
same as the spectrum of the real part in (41), and there-
fore the real 2-D wavelet in (48) is also oriented at−45
degrees. Note that the first term of (48),ψg(x)ψh(y), is
the HH wavelet of a separable real 2-D wavelet transform
implemented using the filters{g0(n), g1(n)} on therows,
and the filters{h0(n), h1(n)} on the columnsof the
image. Similarly, the second term,ψh(x)ψg(y), is also
the HH wavelet of a real separable wavelet transform,
but one implemented using the filters{h0(n), h1(n)} on
the rows and{g0(n), g1(n)} on thecolumns. Likewise,
we consider also the imaginary parts ofψ(x)ψ(y),
φ(x)ψ(y), ψ(x)φ(y), φ(x)ψ(y), andψ(x)φ(y); where
ψ(x) = ψh(x) + jψg(x) andφ(x) = φh(x) + jφg(x).
We then obtain six oriented wavelets given by:

ψi(x, y) =
1√
2

(ψ3,i(x, y) + ψ4,i(x, y)) , (49)

ψi+3(x, y) =
1√
2

(ψ3,i(x, y)− ψ4,i(x, y)) (50)

for i = 1, 2, 3, where the two separable 2-D wavelet bases
are defined as:

ψ3,1(x, y) = φg(x)ψh(y), ψ4,1(x, y) = φh(x)ψg(y),
(51)

ψ3,2(x, y) = ψg(x)φh(y), ψ4,2(x, y) = ψh(x)φg(y),
(52)

ψ3,3(x, y) = ψg(x)ψh(y), ψ4,3(x, y) = ψh(x)ψg(y).
(53)

The six real-valued wavelets in (49)–(50) are oriented
for the same reason the real-valued wavelets of (43)–(44)
are oriented. However, a set of six complex wavelet can be
formed by using wavelets (43)–(44) as the real parts, and
the wavelets (49)–(50) as the imaginary parts. Figure 16
illustrates a set of six oriented complex wavelets obtained
in this way. The real and imaginary parts of each complex
wavelet are oriented at the same angle, and the magnitude
of each complex wavelet is an approximately circular bell-
shaped function.

The matrix representation of the oriented complex 2-D
dual-tree wavelet transform clarifies the implementation

of the transform. Let the square matrixFgh denote the 2-
D separable wavelet transform implemented usinggi(n)
along the rows andhi(n) along the columns; and letFhg

denote the usage ofhi(n) along the rows andgi(n) along
the columns. Then the oriented complex 2-D dual-tree
wavelet transform is represented by the rectangular matrix

FO2D =
1√
8


I −I
I I

I I
I −I



Fhh

Fgg

Fgh

Fhg

 .
A (left) inverse ofFO2D is then given by

F−1
O2D =

1√
8

[
F−1

hh F−1
gg F−1

gh F−1
hg

] 
I I
−I I

I I
I −I

 .
(54)

If the individual wavelet transforms are orthonormal
transforms then the inverse in (54) is exactly the trans-
pose of the forward transform, and it therefore represents
a tight frame.

If the vectorx represents a real-valued image, then

w1 =
1
2

[
I −I
I I

] [
Fhh

Fgg

]
x

represents the real part of the oriented complex transform
and

w2 =
1
2

[
I I
I −I

] [
Fgh

Fhg

]
x

represents the imaginary part. In this implementation the
real and imaginary parts are stored separately. The com-
plex wavelet coefficients arew1 + jw2.

If the transform is applied to a complex-valued image
then the complex coefficients should be formed explicitly
as follows:

FC2D =
1
4


I j I

I j I
I −j I

I −j I



I −I
I I

I I
I −I



Fhh

Fgg

Fgh

Fhg


and

F−1
C2D =

1
4

[
F−1

hh F−1
gg F−1

gh F−1
hg

]
×

I I
−I I

I I
I −I




I I
I I

−j I j I
−j I j I

 .
Note that the oriented 2-D dual-treeCWT (applied

to real or complex data) requires four separable wavelet

23



Figure 16:Typical wavelets associated with the oriented 2-D dual-tree CWT. Top row illustrates the real part of each complex
wavelet; second row illustrates the imaginary part; and third row illustrates the magnitude.

transforms in parallel, and so it is no longer strictly a
“dual-tree” wavelet transform. However, we still refer to
it as such for convenience and because it is derived from
the 1-D dual-treeCWT. Similarly, while the wavelets are
oriented, approximately analytic, and nonseparable, the
implementation is still very efficient, requiring only the
addition and subtraction of respective subbands of four 2-
D separable wavelet transforms.

4.5 Links with the 2-D Gabor transform

Gabor analysis is frequently used in image processing and
pattern analysis. A 2-DGabor functionis a 2-D Gaussian
window multiplied by a complex sinusoid

f(x, y) = e−((x/σ1)
2+(y/σ2)

2) e−j (ωx x+ωy y).

Gabor functions are optimally concentrated in the space-
frequency plane. Certain image analysis algorithms use
Gabor functions as the impulse response of a set of 2-D
filters [40]. By varying the parametersωx andωy, the ori-
entation of the Gabor function can be adjusted; by varying
σ1 andσ2 the spatial extent and aspect ratio of the func-
tion can be adjusted. Some Gabor-based image process-
ing algorithms are designed to use both magnitude and
phase information of Gabor-filtered images.

The 2-D dual-tree wavelets illustrated in Figure 16 re-
semble 2-D Gabor functions to some degree. However, in
contrast to analysis by Gabor functions, the 2-D dual-tree

CWT is based on FIR filter banks with a fast invertible
implementation. A typical Gabor image analysis is either
expensive to compute, is non-invertible, or both. With the
2-D dual-treeCWT, many ideas and techniques from Ga-
bor analysis can be leveraged into wavelet-based image
processing.

The oriented complex wavelets illustrated in Figure 16
also resemble to some degree the set of 2-D functions
computed by Olshausen and Field [75]. They proposed
that parts of biological visual systems are based on the
efficient representation of natural images by an overcom-
plete set of 2-D functions. They proposed an optimality
criterion based on sparsity, developed an iterative numer-
ical algorithm, and obtained as a solution a remarkable
set of 2-D functions exhibiting interesting properties: the
functions are mostly well oriented and occur at various
scales. Their result confirms to some degree the notion
that oriented wavelet and wavelet-like transforms are nat-
ural for image processing applications.

4.6 Extensions to higher dimensions

The dual-treeCWT can be extended to higher dimensions
than two using the procedure described above. In the
d-dimensional case, the oriented dual-treereal wavelet
transform is expansive by2d−1; the orientedcomplex
wavelet transform is expansive by2d. Importantly, the
checkerboard artifact of the conventional separable DWT
becomes ever more serious in higher dimensions. Cor-
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respondingly, the gain provided by using the oriented
wavelet transform grows with the dimensiond. The 3-
D dual-tree wavelet transforms shows promise for pro-
cessing medical volume data and video sequences [90].
Application of complex and oriented 3-D wavelet trans-
forms to seismic analysis is described in [109]. A higher-
D generalization of theCWT to ahyper-complexwavelet
transform (based on quaternions and octonions) has been
introduced in [17–19].

5 Using the dual-treeCWT

The key advantages of the dual-treeCWT over the DWT
are its shift invariance and directional selectivity. This
means that the squared magnitude of a given complex
wavelet coefficient provides an accurate measure of spec-
tral energy at a particular location in space, scale, and
orientation. It also means thatCWT-based algorithms
will automatically be almost shift-invariant, thus reduc-
ing many of the artifacts of the critically-sampled DWT.
Here we illustrate some additional attractive properties of
theCWT along with some prototypical applications.

5.1 Near shift invariance

One way to illustrate the near shift-invariance of the dual-
treeCWT is to observe how the projection of a signal onto
a certain scale varies as the signal translates. The projec-
tion of a signal onto scalej can be computed by recon-
structing the signal from only the wavelet coefficients in
subbandj. Figure 17 (top-left panel) shows a simple pulse
signal x(n) and its reconstruction from wavelet coeffi-
cients at the 3rd scale level of the critically sampled DWT
and the dual-treeCWT. The top-right panel of the figure
shows the same signal translated by 3 samples and the cor-
responding reconstructions from level 3. Comparing the
left and right panels of Figure 17 we see that the DWT-
reconstructed signal varies significantly with translations
of the signal. However, theCWT-reconstructed signal
maintains its shape, illustrating the near shift-invariance
of the dual-treeCWT. This property of theCWT greatly
simplifies wavelet-based modeling, processing, and other
applications.

The source of the near shift invariance property can be
understood in two different ways. First, since the real and
imaginary wavelets are Hilbert transforms of each other
(90◦ out of phase), the real and imaginary wavelet coef-
ficients interpolate each other. Second, since we use two
trees, the effect of the decimation by two at each scale is
diminished, which greatly reduces the amount of aliasing.

The near shift-invariance of the dual-treeCWT can be
quantified. The measure of shift dependence defined in
Equation (5) of [57] is based on the ratio of the energy of
the aliased components of the transfer function through a
given subband to the energy of the unaliased components.
A truly shift invariant transform has the property that the
signal path through any single subband of the transform
and its inverse may be characterized by a unique z trans-
fer function, which is unaffected by the down and up sam-
pling within the transform.

5.2 Local Hilbert transform

The envelope of a real signal can be computed using the
Hilbert transform to create a complex-valued analytic sig-
nal; the magnitude is the sought envelope. However,
a time- or frequency-based Hilbert transform may pro-
duce undesired behavior around transients of the signal
due to the slow decay of the impulse response of the
ideal Hilbert transformation (61). Alocal Hilbert trans-
form can can be computed in the complex wavelet do-
main simply by multiplying theCWT coefficients byj.
As a bonus, theCWT-based local Hilbert transform can
be efficiently implemented by a continuously running fil-
ter bank. An example is shown in Figure 18. Multidi-
mensionalCWT-based local Hilbert transforms have been
proposed in [109] for seismic data analysis. An interest-
ing feature ofCWT-based Hilbert transforms is that the
transition region around zero frequency may be made ar-
bitrarily sharp by adding additional levels of wavelet de-
composition. This requires a negligible increase in com-
putation cost, but it does add extra delay.

5.3 Near rotation invariance

The directionality of the 2-DCWT renders it nearly rota-
tion invariant in addition to nearly shift invariant. Figure
19 illustrates the image obtained by reconstruction from
only one level of the real DWT and dual-treeCWT for a
test image with a sharp edge on a hyperbolic trajectory.
The ringing and aliasing artifacts in the DWT coefficients
that change with the edge orientation are not present in the
CWT coefficients.

5.4 Image rotation

While there are more direct methods for image rotation
(via image interpolation in the pixel domain) it is interest-
ing to note that it is possible to do this in the wavelet do-
main using the dual-treeCWT. This relies on the unique-
ness of the z transfer functions with shift, mentioned in
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Figure 17:A signal x(n) and its shifted version x(n − 3) (top panels) and its reconstruction from wavelet coefficients at scale
level 3 of the real DWT (middle panels) and dual-tree CWT (lower panels). The CWT is more nearly shift-invariant than the DWT.

(a) test image (b) DWT coefficients (c)CWT coefficients

Figure 19:Near rotation invariance of the CWT. (a) Test image with sharp edge on hyperbolic trajectory. (b) When the test image
is reconstructed from one level of the DWT coefficients, ringing and aliasing effects are apparent. (c) The reconstruction of the
image from one level of the CWT does not exhibit these phenomena.
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Figure 18: The dual-tree CWT provides a way to perform a
local approximate Hilbert transform. The FFT gives similar re-
sults, but it requires overlapped block implementation for real-
time data, whereas the dual-tree CWT can be implemented as a
continuously running filter bank. In each case, the input wave-
form, x(t) = t exp(−0.2t) cos(0.8 t) for t = 0, 1 . . . 40, is
shown as a blue stem plot, and its local Hilbert transform, y(t),
as a green dashed stem plot. The ‘true’ envelope, t exp(−0.2t),
is shown as a cyan dashed line and the envelope extracted by
|x(t) + jy(t)| is shown as a red solid line.

section 5.1, and the resulting interpolability of each sub-
band. By shifting the complex coefficients in each sub-
band independently, we can rotate an image by small an-
gles. This is achieved by a band-limited interpolation
process, in which the complex coefficients (a) are first
de-rotated by the band center-frequency, (b) are then in-
terpolated using the MATLAB commandinterp2 , and
(c) are then re-rotated back up to their original frequency
range. For example, Figure 20 illustrates the Barbara im-
age and a 5.7◦ (0.1 radians) rotated version. Note the blur-
ring effects in the corners where there would be undefined
pixels in a space-domain rotation scheme. This technique
may also be used to achieve other arbitrary smoothly vary-
ing displacements, provided that any rotation components
are small enough that there is little energy transfer be-
tween directional subbands (i.e. less than about 10 de-
grees).

5.5 Estimating image geometrical structure

The shift and rotation invariance properties of theCWT
can also be harnessed to compute accurate and efficient
estimates of the geometrical structure in images, namely
the strength, orientation, and offset of image edges,
ridges, and other singularities.

Consider the edge segment depicted in Figure 21(a) and
fix the scale of theCWT so that the wavelets have roughly
this support size. Then, as the orientationθ and offset
r of the edge change, so do the magnitude and phase of
the CWT coefficients [57, 81, 113]. In particular, as we
see from Figure 21(b) the magnitudes of theCWT coeffi-
cients peak as the edge orientationθ approaches their ori-
entation; we can estimate the edge orientation to within
approximately2◦ error by simply interpolating between
these response curves [81]. Moreover, the edge offsetr
can be estimated directly from the phase of theCWT co-
efficient with largest magnitude. Finally, this same largest
coefficient indicates the strength of the edge. Figure 22
illustrates this procedure on a test image.

The related problem of predicting the phase of a com-
plex coefficient from one scale to the next has been ad-
dressed for 1-D signals in [82,117].

5.6 Estimating local displacement

Local displacement (motion) between two images can be
estimated from the change of phase ofCWT coefficients
from one image to the next. As in the single image case in
Section 5.5, at each position and orientation, the change
∆φd of the phase of a complex wavelet coefficient is ap-
proximately linearly proportional to the displacement in a
direction orthogonal to the subband orientation. From the
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Figure 20: CWT-based image rotation by 5.7◦ by indepen-
dently shifting the complex wavelet coefficients in each sub-
band.
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Figure 21:(a) Image segment with an edge singularity at ori-
entation θ and offset from center r. (b) Magnitude responses of
the CWT coefficients of this segment as a function of θ.
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image segment estimate

Figure 22: At top the Cameraman test image and four seg-
ments with strong edges. Below, zooms of the segments plus
idealized edges formed with the parameters estimated from the
CWT magnitude and phase. (No attempt is made to match the
texture within the segment, only the edge parameters.)

six∆φd values (one for each subband), a best-fit displace-
ment vector and associated confidence ellipse can be esti-
mated. Propagation of vectors from coarse to fine scales
can then provide resilience to aperture problems. Further
details are given in [19,67,81,113]. It is also appropriate
to use more complicated strategies for phase-based dis-
placement estimation with theCWT such as in [47].

5.7 Denoising

Basic wavelet-based image denoising algorithms use the
DWT and hard or soft thresholding. Substantial perfor-
mance improvements can be obtained through other trans-
forms (such as the undecimated DWT [23, 63], steerable
pyramid [95], or curvelet transform [100]) and through
more effective, possibly adaptive, non-linearities based on
statistical models for the wavelet coefficients [24,72,78].

The CWT can give a substantial performance boost
to DWT-noise reduction algorithms. When thresholding
the complex-valued coefficients of theCWT it is typi-
cally more effective to apply the nonlinearity to themag-
nitude rather than to the real and imaginary parts sepa-
rately. Since the coefficient magnitudes are slowly vary-
ing and free of aliasing distortion, this results in a nearly
shift-invariant denoising algorithm. Also, denoising al-
gorithms based on statistical models of wavelet coeffi-
cients can be more effective for theCWT than for the real
DWT because the magnitudes of the coefficients are more
strongly dependent in inter-scale and intra-scale neighbor-
hoods [82,83].

In this example, the512 × 512 8-bit gray-scaleBar-
bara image was corrupted by additive Gaussian noise with
σn = 15. Denoising with the data-driven locally adap-
tive bishrink algorithm of [91] was performed using both
the critically-sampled separable DWT and the dual-tree
CWT. The PSNRs for this noise level are 29.85 dB and
31.27 dB respectively. Cropped portions of the images
are illustrated in Figure 23. The improved performance
from using directionally selective and shift-invariant fil-
ters is clear. The effective performance of several other
denoising algorithms using theCWT have also been de-
scribed [22,83,118].

Volume and video denoising can be performed with a
3-D version of the dual-treeCWT [12,90,93].

5.8 Additional applications

The dual-treeCWT is suitable for numerous other appli-
cations as well, including image segmentation [83, 92],
classification [80], deconvolution [29, 51], image sharp-
ening [94], motion estimation [67], coding [79, 97, 115],
watermarking [35, 66], texture analysis and synthesis
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(a) Noise-free image. (b) Noisy Image.

(a) Denoised using separable real DWT. (b) Denoised using dual-treeCWT.

Figure 23:Denoising example using the locally adaptive bishrink algorithm with the critically-sampled real DWT and the dual-tree
CWT. A cropped section of the images are shown.
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[28, 46, 48], feature extraction [60, 65], seismic imag-
ing [73], and the extraction of evoked potential responses
in EEG signals [16]. Complex wavelet transforms (not
specifically the dual-treeCWT) have been used recently
for measuring image similarity [116].

6 Related Work

There has been substantial work on transforms that are
some combination of: multiscale, directional, complex,
analytic, nearly shift invariant, overcomplete, and so on.
The following gives a brief a brief and non-exhaustive
overview of some of them.

(Approximately) analytic continuous wavelet trans-
forms. In their seminal work on the continuous wavelet
transform, Grossman and Morlet emphasized complex an-
alytic (exact and approximate) wavelets [45]. Indeed, the
Morlet wavelet is complex-valued and approximately an-
alytic. This work in continuous wavelet transforms was
continued by Antoine [6,7] and used for the development
of directional wavelets by Vandergheynst et al. [110]. An-
alytic wavelet transforms and discrete implementations
were also used by Abry and Flandrin [3–5] for turbulence
analysis, where the quadrature properties of the wavelets
were exploited.

Complex filter banks. Complex forms of the discrete
wavelet transform were mentioned by Daubechies [27],
and complex Daubechies wavelets were studied in depth
by Lina [11, 64]. Other complex-valued filter banks have
been developed by Gao, Nguyen, and Strang [42, 123].
However, while these solutions are complex-valued, they
are not approximately analytic, as noted in Section 2.3.

Directional transforms. Bamberger, Smith, Hong, and
Rosiles have developed critically sampled directional 2-D
filter banks [10, 49, 84]. Do and Vetterli have developed
thecontourlettransform which can be critically-sampled
or slightly over-complete [30–32]. Thecurvelet trans-
form, developed by Candes and Donoho, is an overcom-
plete directional multiscale transform that is very effective
for representing edges in images [15,100]

Generalizations of the dual-treeCWT. Chaux et. al.
have developed theM -band dual-treeCWT, generalizing
the delay condition for the Hilbert pair property in [21].
Gopinath introduced thephaselet transform[43], where
more than two critically-sampled DWTs are used together.
In this transform, each ofM lowpass filters are offset from
each other by increments of1/M samples, a generaliza-
tion of the half-sample delay condition. Another gener-
alization is the double-density dual-treeCWT [89] where
two over-sampled (double-density [86]) DWTs are used
together. This is further generalized in [44] and [2]. An-

other type of generalization in higher dimensions is the
hyper-complex wavelet transform [17–19]. A recently de-
veloped complex wavelet transform is also theRI-spline
[52].

Approximately analytic complex directional trans-
forms. The closest alternative to the dual-treeCWT is
probably the complex (approximately) analytic form of
the steerable pyramid[95, 96]. Simoncelli has used this
transform for image denoising and texture analysis and
synthesis. Malvar has described complex lapped trans-
forms [70,71]. Similar transforms have been used for mo-
tion estimation [119,120].

Other recent research activity in the development of
complex directional multiscale transforms has focused on
the development of critically sampled (non-redundant)
implementations, for example by Ates and Orchard, Hua,
Spaendonck, and Fernandez et. al. [8, 9, 39, 50, 108, 109].
In a critically-sampled transform, it is difficult to achieve
the near shift-invariance of the dual-treeCWT. However,
such transforms are promising for image compression.

7 Conclusions

The dual-tree complex wavelet transform (CWT) is a
valuable enhancement of the traditional real wavelet trans-
form that is nearly shift invariant and, in higher dimen-
sions, directionally selective. Since the real and imagi-
nary parts of the dual-treeCWT are, in fact, conventional
real wavelet transforms, theCWT can benefit from the
vast theoretical, practical, and computational resources
that have been developed for the standard DWT. For ex-
ample, software and hardware developed for implementa-
tion of the real DWT can be used directly for theCWT.
But, in addition, the magnitude and phase ofCWT coeffi-
cients can be exploited to develop new effective wavelet-
based algorithms, especially for applications for which the
DWT is unsuited or underperforms.

MATLAB software for the dual-tree complex
wavelet transform (and related algorithms) is
available at the following locations on the web:
http://taco.poly.edu/WaveletSoftware/, http://www-
sigproc.eng.cam.ac.uk/∼ngk/, and http://dsp.rice.edu/.
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A Sidebar: Real-valued Discrete
Wavelet Transform and Filter
Banks

The discrete wavelet transform (DWT) of (1)-(3) is inti-
mately intertwined with the iterated two-band filter bank
(FB) tree structures of Figure 24 [68]. The forward
DWT, implemented with the analysis FB of Figure 24(a),
computes the scaling and wavelet coefficientsc(n) and
d(j, n). The input signal is the uniformly spaced samples
of a continuous-time signalxa(t) [x(n) = xa(nT )] or a
prefiltered version of them [104]. In many (perhaps most)
applications,x(n) is the discrete data itself. For the in-
verse DWT, the scaling and wavelet coefficients are input
to the synthesis FB of Figure 24(b) to produce the signal
y(n). The wavelet coefficientsd(j, n) in Figure 24 are la-
beled so that the coarsest scale is denoted byj = 0 andj
increases for finer scales. In the continuous-time limiting
case, the scale indexj increase to infinity.

Here we denote the analysis filters byh0(n) andh1(n),
and the synthesis filters bỹh0(n) andh̃1(n). For the anal-
ysis and synthesis filter banks to represent a forward and
inverse wavelet transform, it is necessary that theperfect
reconstruction(PR) condition be satisfied:y(n) = x(n),
or more generallyy(n) = x(n− no).

Assuming the analysis and synthesis filters are real FIR
filters, the perfect reconstruction condition can be satisfied
if h0(n) ∗ h̃0(n) is a lowpasshalfbandfilter [74,99,111].
Specifically, if we define the product filter

p(n) := h0(n) ∗ h̃0(n)

then for perfect reconstruction (with a delay ofno sam-
ples) it is necessary that

p(2n+ no) = δ(n) =
{

1 n = 0
0 n 6= 0 (55)

where the two highpass filters are given by

h1(n) = (−1)n+d h̃0(n− d), (56)

h̃1(n) = −(−1)n+d h0(n+ d) (57)

andd is an even (or odd) integer whenno is an odd (or
even) integer. Whenno is odd,d can be zero, which sim-
plifies the expressions for the highpass filters.
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Figure 25: Magnitude frequency responses |H0(e
jω)| (solid)

and |H1(e
jω)| (dashed) of the real Daubechies lowpass and high-

pass filters of length 10.

Taking the discrete-time Fourier transform (DTFT), an
equivalent condition in terms of the filter frequency re-
sponses is

|H0(ejω)|2 + |H1(ejω)|2 = 2. (58)

Figure 25 illustrates|H0(ejω)| and |H1(ejω)| of the low-
pass and highpass Daubechies filters of length 10 [27].

Since the analysis FB does not expand the total data
rate, we say that it iscritically sampled. Consequently, for
finite length input data, the analysis FB can be viewed as
a linear transformation with a square real matrixF taking
the vectorx of signal samples to the vectorw of scaling
and wavelet coefficients viaw = Fx. When the trans-
form is perfect reconstruction, we havex = F−1w

For an orthonormal wavelet transform,6 the transform
matrixF satisfiesF · Ft = Ft · F = I; that is, the trans-
pose ofF is also its inverse. It can be shown that the
analysis and synthesis filter bank represent an orthonor-
mal transform if the synthesis filters are the time-reversed
versions of the analysis filters:̃h0(n) = h0(L − n) and
h̃1(n) = h1(L− n) for someL. In this case, the product
filter p(n) is the autocorrelation ofh0(n).

Additional constraints on the filters can force orthog-
onality to low-order polynomials —vanishing moment
conditions [27] — which is useful for representing smooth
and piecewise smooth signals, andfinite time support, that
is, that the wavelet equals zero outside of some time inter-
val. Finite support is extremely useful for wavelet-based
signal processing, since it limits the extent to which a sig-
nal feature can affect the wavelet coefficients.

6WhenF is complex, then it represents a unitary transform withF ·
F∗ = F∗ · F = I whereF∗ is the conjugate (hermitian) transpose of
F.
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Figure 24:Filter bank trees implementing the (a) forward (analysis) and (b) inverse (synthesis) discrete wavelet transform (DWT).

The (analysis) waveletψ(t) associated with these filters
is given by

ψ(t) =
√

2
∑

n

h1(n)φ(2 t− n) (59)

whereφ(t) is called the scaling function and is givenim-
plicitly by

φ(t) =
√

2
∑

n

h0(n)φ(2 t− n). (60)

The synthesis wavelet and scaling functions,ψ̃(t) and
φ̃(t), are given by the same equations, but usingh̃i(n)
instead ofhi(n). In the orthonormal case, the synthe-
sis wavelet is the time-reversed version of the analysis
wavelet. Equation (60), called thedilation equation, is
a central equation in the theory of wavelet bases and has
been studied extensively since the advent of wavelet trans-
forms [103]. We note here that a well defined solution to
the dilation equation exists only whenh0(n) is a lowpass
filter with H0(z = −1) = 0. From equations (59) and
(60), the wavelets are fully determined by the filtersh0(n)
andh1(n), so therefore, the design of a waveletψ(t) sat-
isfying specific properties is equivalent to the design of
filters hi(n) satisfying specific properties. For example,
if the filters have finite support, then so do the wavelet

and scaling function. And, if the filters have vanishing
moments, then so do the wavelet and scaling function.

B Sidebar: The Hilbert Transform
and Analytic Signal

A fundamental problem appearing in many signal pro-
cessing and communications applications is that of ex-
tracting theamplitudea(t) and instantaneousphaseρ(t)
of a real, modulated signal

x(t) = a(t) cos(ρ(t)).

Retrieval ofa(t) is ill-posed whencos(ρ(t)) ≈ 0. A
clever solution sidesteps this problem by making the real
signalx(t) complex through theHilbert transform[77]

(Hx)(t) =
1
π

∫ ∞

−∞

x(τ)
t− τ

dτ. (61)

Note that the impulse response of the Hilbert transform is

hH(t) =
1
π t

which decays slowly. If the underlying amplitude func-
tion a(t) is assumed to be relatively narrowband com-
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pared withx(t), then theanalytic signal,

xa(t) = x(t) + j (Hx)(t),

wherej =
√
−1, becomes

xa(t) = a(t) cos(ρ(t)) + j a(t) sin(ρ(t)) = a(t) ejρ(t).

Estimation of the magnitudea(t) is now well-posed and
straightforward via

|a(t)| = |xa(t)|.

The Hilbert transform has several useful and interesting
properties. First,x(t) and(Hx)(t) have the same magni-
tude functiona(t) but phases that are shifted by90◦. Sec-
ond, the frequency response of the filter corresponding to
(61) is

HH(Ω) =

 −j, Ω > 0
0, Ω = 0
j, Ω < 0.

(62)

Thus, the overall filter corresponding to the transforma-
tion x(t) → xa(t) suppresses negative frequencies

Ha(Ω) = 1 + jHH(Ω) =

 2, Ω > 0
1, Ω = 0
0, Ω < 0.

(63)

Sincex(t) is real, its Fourier transformX(Ω) has con-
jugate symmetry; the filterHa(Ω) producesXa(Ω) =
2X(Ω) for Ω > 0 and setsXa(Ω) = 0 for Ω < 0. Note
that due to the discontinuity ofHH(Ω) atΩ = 0 a transi-
tion band must be allowed in practice.

Third, when the phase function is linear such that
ρ(t) = Ω0 t, a time shift of the real signal manifests it-
self as a time shift of the amplitude and a phase shift of
the phase. That is, ify(t) = x(t− t0), then

ya(t) = xa(t− t0) = a(t− t0) ejρ(t) e−jΩ0t0 .

The definitions of Hilbert transform and analytic signal
are similar for discrete-time signals.
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