
Revision Notes on Linear Algebra for

Undergraduate Engineers

Pete Bunch

Lent Term 2012

1 Introduction

A matrix is more than just a grid full of numbers. Whatever sort of engineering
you specialise in, a basic grounding in linear algebra is likely to be useful. Lets
look at some examples of how matrix equations arise.

Add examples from structures (truss), electrical (resistor grid), mechanics
(kinematics), fluids (some sort of pressure, height, velocity-square problem)

All of these problems lead us to the same equation,

Ax = b (1)

We can think of x as a position vectors in an “input space” or “solution
space” and b as the corresponding position vector in the “output space” or
“constraint space” respectively. The coordinates in these spaces are just the
values of the individual components of x and b. A is the linear transformation
that takes us from one space to the other.

2 Fundamental Matrix Sub-Spaces

Consider an m × n matrix A, which maps a point x in the “input space” to y
in the “output space”. i.e.

y = Ax (2)

What can we say about the input and output spaces? Firstly, x must be
n× 1 so the input space is n-dimensional (nD). y must be m× 1 so the output
space is m-dimensional (mD).

2.1 Output Side

Let’s consider the output space. We can write A as a set of column vectors.

A =
[
c1 c2 . . . cn

]
(3)

Now when we multiply A by x, we can write it as,

y = Ax = x1c1 + x2c2 + · · ·+ xncn. (4)

1

So the output, y, is just a weighted sum of the columns of A. This set
of column vectors defines a new vector subspace, the “column space”, which
contains all the valid y’s for the equation y = Ax.

The output space is always mD, but the column space won’t always “fill”
the whole of it. If there are only r independent columns of A, then the column
space is an rD subspace. For example, if the matrix has 3 rows, but the three
column vectors are co-planar, then the column space is a plane in a 3D space.
r is called the rank of the matrix.

Note that r cannot be larger than n (i.e. if all the columns are independent),
so if n is smaller than m, then the column space will definitely not fill the entire
output space. In the parlance of simultaneous equations, this is because you
have more equations than variables.

If the column space doesn’t fill the whole output space, what happens in the
rest of it? We can split our output point up into a component in the column
space and a perpendicular component that isn’t,

y = yC + yLN (5)

The perpendicular component lies in the orthogonal subspace to the column
space. This is called the “left-nullspace”. (Its got to be orthogonal or we could
write it (or part of it) in terms of column space vectors, which would mean that
it (or part of it) was actually in the column space.) If we’re in an mD output
space, and the column space is rD, then there are m−r directions perpendicular
to the column space, so the left-nullspace is (m− r)D.

So, for our equation y = Ax to have a solution, we must have yLN = 0.
What does this mean? Well, for our structures example, a component in the
left-nullspace represents a violation of the geometry constraints, i.e. one of the
bars must have changed length. In the electric example, it means that Kirchoff’s
laws have been broken, and in the mechanics example it means Newton’s laws
have been broken. Left-nullspace outputs are impossible.

2.2 Input Side

For the input space, we’re going to expand A in a different way, in terms of its
rows.

A =


rT1
rT2
...

rTm

 (6)

Now we can write the multiplication like this,

y = Ax =


r1 · x
r2 · x

...
rm · x

 . (7)

Taking the dot product of the input point with each of the row vectors gives
us the “contribution” of that point in each of the row directions. This defines
another interesting subspace, the “row space”, which contains all the useful

2

inputs which have an effect on our system. As before, we can write each input
point in terms of a component in the row space and a perpendicular component,

x = xR + xN (8)

Now, there’s nothing wrong with having an xN component. We’re talking
about the input to the system here, and we can choose that to be whatever we
damn-well please. However, if xN is perpendicular to the row space component,
then it must also be perpendicular to all the individual rows of A. Perpendicular
means that the dot product is zero, which leads us to the fact that,

AxN = 0. (9)

We call this orthogonal subspace the “nullspace”. As we can see, an input
(or a part of it) in the nullspace has no effect on the output.

The input space is always nD, but the row space won’t always fill the whole of
it. The number of row space dimensions is given by the number of independent
row vectors. Curiously, this is always r (i.e. the rank, the same as the column
space). We’ll see why when we do LU decompositions. The nullspace then has
(n− r) dimensions.

2.3 Transposing

If we transpose the matrix, then everything flips around. The row space of A is
the column space of AT, and vice-versa. The nullspace of A is the left-nullspace
of AT and vice-versa. This should be pretty obvious, because the transpose
operation turns the rows into columns and the columns into rows. It also gives
us a nice way to define the left-nullspace, as the nullspace of AT. This means
that ATyLN = 0.

2.4 Summary

y = Ax (10)

• x is in the input space, which is divided into the row space and the
nullspace. The nullspace maps onto 0 in the output space. The row
space maps onto the column space.

• y is in the output space, which is divided into the column space and the
left-nullspace. If y is in the column space then there is a solution for x
(in the row space). If y has a component in the left-nullspace, there is no
solution for x.

3 Solving Matrix Equations

We’re now going to consider solving equations of the form,

y = Ax (11)

where A and y are known and fixed and we want to find x. Back in the
simple land of scalars, there was always 1 solution to this equation (unless A

3

was 0). Here in multi-dimensional space there could be one, zero, or an infinite
number of solution. We’ve already considered when no solution exists — its
when yLN 6= 0.

It turns out that there will be one solution if r = n, and many (infinite) if
r < n. To see why, lets think about the nullspace. If r < n, then the matrix has
a nullspace (because it has n−r > 0 dimensions), and it’s defined by AxN = 0.
If x0 is a solution to the equation, i.e. y = Ax0, then we could just add some
of xN onto the original solution and we’d still have a valid solution.

A(x0 + λxN) = Ax0 + λAxN (12)

= y + 0 (13)

So there will be an infinite number of solutions when the nullspace exists.
Otherwise, there’s just one.

We’ll get onto how we actually find x0 and xN when we look at decomposi-
tions.

3.1 Least Squares Solutions

We said that we can’t solve a matrix equation when yLN 6= 0. However, all is
not lost. We can still find a best-fit/minimum-error solution. Remember that
the left-nullspace is characterised by ATyLN = 0. So if we pre-multiply the
output (i.e. the constraints) of the equation by AT , then we can make that
awkward left-nullspace bit disappear.

AT (yC + yLN) = ATyC + ATyLN (14)

= ATyC + 0 (15)

So if we take the original solution-less equation and pre-multiply by AT , we
get a new equation which does have a solution.

ATy = ATAx (16)

This solution results in an output of yC , which is as close as we can get to
y.

An elegant connection can be made here. Consider that we’re trying to find
the value of x for which Ax is as close to y as possible. Hence, we want to
minimise,

||y −Ax||2 = (y −Ax)T (y −Ax)

= yTy − 2yTAx + xTATAx. (17)

The minimum is found by differentiating this w.r.t. x and setting the result
to 0. This give us

−2yTA + 2xTATA = 0

xTATA = yTA

ATAx = ATy (18)

So the least squared error solution is the same as the column space-only
solution, which is as expected. Good.

4

4 LU Decompositions

An LU decomposition (specifically, a Doolittle LU decomposition) is a factori-
sation of the form, . . . .

. . . .

. . . .


︸ ︷︷ ︸

A(m×n)

=

1 0 0
. 1 0
. . 1


︸ ︷︷ ︸

L(m×m)


0 . . .
0 0 . .


︸ ︷︷ ︸

U(m×n)

(19)

4.1 Row Space Interpretation

Lets reason our way to the LU decomposition by considering the row space. Our
row space vectors of A are not very nice — they’re all in arbitrary directions,
which makes calculations difficult. We can try to modify them by tying them
to the axes a bit. First we make the first row of A “responsible” for the first
dimension (the x-axis). Otherwise, it remains unchanged. We then scale and
add this x-row to the other rows to get rid of their x components (i.e. forcing the
0s in the first column of U). Next we make the (modified) second row responsible
for the y-axis. We scale and add this y-row to the others to get get rid of their
y components. Continue until we run out of rows or dimensions. The resulting
modified rows make up our U matrix. L contains the scale factors required to
“rebuild” the row of A from the rows of U. u1

l2,1u1 + u2

l3,1u1 + l3,2u2 + u3

 =

 1 0 0
l2,1 1 0
l3,1 l3,2 1

u1

u2

u3

 (20)

All we did to the rows of A to get the rows of U was scaling and adding, so
we have not changed the vector space that they span. Hence, the row space of
A is the row space of U.

What happens if the rows of U are not independent? We find that having
attended to r of the rows, then when we do the scaling and adding to get rid of
the first r components of the (r + 1)th row, the entire row ends up being filled
with zeros. This follows from the fact that the (r + 1)th row is just a linear
combination of the first r rows. Thus, the rank of the matrix is the number of
non-zero rows of U. Of course, if m is larger than n, then there will always be
at least one row of zeros in U. u1

l2,1u1 + u2

l3,1u1 + l3,2u2

 =

 1 0 0
l2,1 1 0
l3,1 l3,2 1

u1

u2

0

 (21)

L is square and has determinant 1, so its always invertible. This makes it
really easy to find the nullspace of A,

AxN = 0

LUxN = 0

UxN = L−10 = 0. (22)

5

4.2 Column Space interpretation

We can now turn the whole thing on its head and consider the column spaces.
The columns of A are built up from the columns of L, using the factors of U as
scale factors.

[
u1,1l1 u1,2l1 + u2,2l2 u1,3l1 + u2,3l2 + u3,3l3 u1,4l1 + u2,4l2 + u3,4l3

]
=
[
l1 l2 l3

] u1,1 u1,2 u1,3 u1,4
0 u2,2 u2,3 u2,4
0 0 u3,3 u3,4

 (23)

The columns of A are just linear combinations of those of L, so we might
expect the column space of A to be the same as the column space of L. However,
if there is a row in U populated entirely with zeros, then we don’t actually use
the corresponding column of L when rebuilding A. So in fact the column space
of A is spanned by the columns of L corresponding to non-zero rows of U (or
in other words, the first r columns of L). This, incidently, is how we prove that
the row and column spaces have the same number of dimensions.

The left-nullspace can be found from its definition (perpendicular to the
column space) by finding vectors orthogonal to the first r columns of L.

4.3 Partial Pivoting

Remember when we “made the first row responsible for the first dimension”.
What if it doesn’t have a component in that direction, or it does but its tiny?
In these circumstances, we need to swap the rows around. This can be achieved
by premultiplying A by a permutation matrix, so we now have,

PA = LU. (24)

P has one 1 in each row and each column. All other components are 0. It is
orthogonal, i.e. P−1 = PT .

4.4 Solving Equations

Recall from earlier that we need methods for finding x0 and xN in order to find
the general solution to y = Ax. Once we have an LU decomposition, these are
easy. For x0, solve

y = Lz (25)

z = Ux (26)

These are both easy because of the triangular structure of L and U. The
second equation is likely to be underspecified (fewer equations than unknowns).
We only need one solution, so some of the variables can simply be fixed (to 0 is
easiest).

For xN , just use,

UxN = 0, (27)

6

from the definition. Again, there will probably be multiple solutions, so
some variables must be set to arbitrary (non-zero) values.

5 QR Decompositions

QR decompositions can be a bit confusing because there are two forms, referred
to here as full and reduced.

A = QR

=
[
QC QLN

] [RR

0(m−r×n)

]
(28)

= QCRR (29)

QC is m × r, and QLN is m ×m − r, making Q a square, m ×m matrix.
RR is r×n. For some problems and proofs we will need the full form, but most
of the time we can get away with using the reduced variety, which requires less
calculation. The reduced form looks like this,

. . .

. . .

. . .

. . .


︸ ︷︷ ︸

A(m×n)

=
[
q1 q2 q3

]︸ ︷︷ ︸
QC(m×r)

 . . .
0 . .
0 0 .


︸ ︷︷ ︸

RR(r×n)

, (30)

where we make the qis an orthonormal basis (i.e. orthogonal unit vectors)
for the column space of A. This will be really useful for solving equations.

5.1 Column Space Interpretation

With the LU decomposition, we manipulated the row space vectors of A to make
them a bit nicer, i.e. to force all but one vector onto the x = 0 plane, all but
two vectors onto the y = 0 plane, etc. For a QR decomposition, we are going
to manipulate the column space vectors to make them orthonormal. We can do
this using a procedure called Gram-Schmidt orthogonalisation (sounds painful).
This is not complex, but it is tedious.

1: for i = 1 to n do
2: for j = 1 to i− 1 do
3: Find r̃j,i = ai ·qj , the projection of the ith column of A in the direction

of the jth column of QC .
4: end for
5: Subtract the projections from ai, q̃i = ai −

∑
j r̃j,iqj . What remains is

perpendicular to all previous columns.
6: Find the magnitude, si = |q̃i|.
7: Normalise the new column, qi = q̃i/si.
8: end for

7

The values in the RR matrix are just those required to “rebuild” the columns
of A from the columns of QC . Hence,

[
a1 a2 a3

]
=
[
q1 q2 q3

] s1 r̃1,2s2 r̃1,3s3
0 s2 r̃2,3s3
0 0 s3

 , (31)

If the columns of A are not all independent, then we will find that we get
q̃r+1 = 0 in our orthogonalisation procedure. In this case, we can just throw
away that column and the corresponding row in RR — we do not need it for
the orthonormal basis. This does not affect the column space spanned because
the discarded column was a linear combination of the others. The QC matrix
becomes m× r and the RR matrix r × n.

Because the orthogonalisation is just a set of linear operations on the columns
of A, the column space of A is the same as that of QC . By switching to a row
space interpretation (like that of the LU decomposition), we can reason that
the row space and nullspace of A are the same as those of RR.

The columns of matrix QC are orthogonal and unit length. This means that,

QT
CQC =

qT
1

qT
2

qT
3

 [q1 q2 q3

]

=

q1 · q1 q1 · q2 q1 · q3

q2 · q1 q2 · q2 q2 · q3

q3 · q1 q3 · q2 q3 · q3


= I. (32)

However, the reverse is only true if the matrix is square! (i.e. in general
QCQT

C 6= I, but see next section)

5.2 Full Form

To compute the full form of the QR decomposition, we find an additional m− r
vectors which form an orthonormal basis for the left-nullspace. We concatenate
these to QC in order to make Q a square, full rank, orthogonal matrix. Note
that this means the column space of Q is no longer the same as the column
space of A. We add zeros in the rows of R corresponding to these new columns.
Q is now a proper orthogonal matrix (QT = Q−1), which is useful, but this
requires a whole lot more calculation of orthogonal vectors, so don’t do it by
hand. MATLAB uses this form.

5.3 Solving Equations

The orthogonal property of the Q matrix is super-useful for solving equations.
If an exact solution exists, then we can find it using,

y = Qz (33)

z = Rx (34)

8

This is easy if we use the full form decomposition, because we can invert
Q simply by taking a transpose. The second equation is simple because R is
triangular. With reduced form equations, it is non-trivial.

Least squares problems are even easier using QR decompositions. Using
reduced form, the column space (and thus the left-nullspace) of QC is the same
as that for A. This means we can use the left-nullspace trick with QC instead
of A, i.e. QT

C(yC + yLN) = QT
CyC . Hence we can find a least squares solution

by solving,

y = Ax

QT
Cy = QT

CQCRRx

QT
Cy = RRx. (35)

Again, this will be easy because RR is triangular.
From here on, there are quite a lot of unproved statements.

6 Eigenvalues

Eigenvalues and vectors are properties of square matrices only, specified jointly
by the equation,

Au = λu. (36)

If A is a n × n square matrix then this has n solutions (not necessarily
unique).

We need to consider how eigenvectors fit into the vector subspace picture of
a matrix. Because the matrix is square, the input and output spaces are the
same.

If one of the eigenvalues is zero then we have,

Aui = 0. (37)

This means that ui lies in the nullspace. The rank of the matrix must
therefore be n minus the number of eigenvalues equal to zero.

If an eigenvalue is non-zero then we have,

Aui = λiui. (38)

This means that ui must lie in the column space.

7 Singular Values

Singular values and vectors are jointly defined by the equations,

Av = σu (39)

ATu = σv. (40)

These work with matrices of any size.
To find the singular values and vectors, substitute each equation into the

other,

AATu = σ2u (41)

ATAv = σ2v. (42)

9

Hence, u and σ2 are the eigenvectors and eigenvalues of AAT (so there will
be m of them), and v and σ2 are the eigenvectors and eigenvalues of ATA (n
of them). Because AAT and ATA are clearly symmetric, the singular vectors
are all orthogonal. Furthermore, both product matrices ony have r non-zero
eigenvalues, so A has only r singular values.

If one of the singular values is zero then the corresponding vectors lie in the
nullspace and left-nullspace,

Av = 0 (43)

ATu = 0. (44)

8 Eigenvalue and Singular Value Decompositions

The n eigenvalue/eigenvector equations can be grouped into a matrix equation,

A
[
u1 u2 u3

]︸ ︷︷ ︸
U

=
[
u1 u2 u3

]︸ ︷︷ ︸
U

λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

Λ

. (45)

Now rearranging,

A = UΛU−1 (46)

In the convenient case that A is symmetric, then U is orthogonal, so U−1 =
UT .

We can do the same grouping thing with singular values. In this example,
m = 3, n = 4, r = 2.

A
[
v1 v2 v3 v4

]︸ ︷︷ ︸
V

=
[
u1 u2 u3

]︸ ︷︷ ︸
U

σ1 0 0 0
0 σ2 0 0
0 0 0 0


︸ ︷︷ ︸

Σ

(47)

AT
[
u1 u2 u3

]︸ ︷︷ ︸
U

=
[
v1 v2 v3 v4

]︸ ︷︷ ︸
V


σ1 0 0
0 σ2 0
0 0 0
0 0 0


︸ ︷︷ ︸

ΣT

(48)

. (49)

U and V are square and orthogonal (see previous section), and Σ is m× n.
Now rearranging,

A = UΣVT . (50)

We can interpret both the eigenvalue and singular value decompositions
geometrically. The input vector is first rotated in the input space, then scaled
along the axes. If Σ is not square, then it dimensions are also added or removed.
The resulting vector is then rotated in the output space to give the output point.

10

