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Abstract

In this paper we consider the problem of extended object tracking. An extended object is modelled as a set

of point features in a target reference frame. The dynamics of the extended object are formulated in terms of the

translation and rotation of the target reference frame relative to a fixed reference frame. This leads to realistic, yet

simple, models for the object motion. We assume that the measurements of the point features are unlabelled, and

contaminated with a high level of clutter, leading to measurement association uncertainty. Marginalising over all

the association hypotheses may be computationally prohibitive for realistic numbers of point features and clutter

measurements. We present an alternative approach within the context of particle filtering, where we augment the

state with the unknown association hypothesis, and sample candidate values from an efficiently designed proposal

distribution. This proposal elegantly captures the notionof a soft gating function. We demonstrate the performance

of the algorithm on a challenging synthetic tracking problem, where the ground truth is known, in order to compare

between different algorithms.

Index Terms

Extended object tracking, sequential Monte Carlo methods,particle filters, data association.

I. I NTRODUCTION

Traditional methods for radar and sonar based tracking model the target as a point source. This approximation

is sufficient for low resolution sensors, or for targets in the far field of the sensor. For high resolution sensors, or

objects in the near field of the sensor, the sensor may be able to resolve a number of features on the target. These

may provide valuable information about the target motion and orientation. Thus, instead of combining the target

object features into a single feature, such as an average or centroid measurement, a richer representation may be

achieved by passing all the available features to the tracking algorithm. We will refer to a target observed in this

way as an “extended object”.

As in [1] we model an extended object as a set of point features, or highlights, in a target reference frame.

Each feature is associated with a detection probability to capture the notion that features do not always generate

measurements. We also take account of the fact that the exactlocations of the features within the target reference
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frame are uncertain. We model the dynamics of the extended object in terms of the translation and rotation of

the target reference frame relative to a fixed reference frame. In this way we are able to construct realistic, yet

computationally tractable, models for the extended objectmotion.

In most practical tracking applications the sensors yield unlabelled measurements of the point features. Additional

clutter measurements may arise due to multi-path effects, the presence of other objects in the sensor range, sensor

errors,etc. The unlabelled measurements and the presence of clutter lead to a difficult data association problem.

Keeping track of all the possible association hypotheses over time, as is the case for the Multiple Hypotheses

Tracker (MHT) [2], leads to an NP-hard problem, since the number of association hypotheses grows exponentially

over time. Thus, methods are required to reduce the computational complexity. The nearest neighbour filter [3]

associates each target with the closest measurement in the target space. However, this simple procedure prunes

away many feasible hypotheses. In this respect the Joint Probabilistic Data Association Filter (JPDAF) [3], [4] is

more appealing. At each time step improbable hypotheses arepruned away using a gating procedure. A filtering

estimate is then computed for each of the remaining hypotheses, and combined in proportion to the corresponding

posterior hypothesis probabilities. The main shortcomingof the JPDAF is that, to maintain tractability, the final

estimate is collapsed to a single Gaussian, thus discardingmuch pertinent information. Subsequent work addressed

this shortcoming by proposing strategies to instead reducethe number of mixture components in the original mixture

to a tractable level [5], [6]. Neverthless, many feasible hypotheses may be discarded by the pruning mechanisms.

The Probabilistic Multiple Hypotheses Tracker (PMHT) [7],[8] (wrongly) assumes the association variables to be

independent in order to work around the problems with pruning. It leads to an incomplete data problem that can be

efficiently solved using the Expectation Maximisation (EM)algorithm [9]. However, the PMHT is a batch strategy,

and thus not suitable for online applications. For further discussion on shortcomings and extensions to the PMHT

the reader is referred to [10]. Further developments of dataassociation in the context of MHT are reported in

[11]–[13].

The methods discussed above are mostly applicable to linearGaussian system and observation models. For

models with weak non-linearities it is possible to obtain similar algorithms based on approximations such as the

Extended Kalman Filter (EKF) [14]. However, the performance of the resulting algorithms degrades rapidly as the

non-linearities become more severe. These methods are alsonot robust to non-Gaussian noise in the system and

observation models. These shortcomings have been acknowledged before, and led to the development of numerous

strategies to cope with non-linear and non-Gaussian models. One of the first methods to deal particularly with non-

Gaussian models is the Gaussian Sum Filter [15] that works byapproximating the non-Gaussian target distribution

with a mixture of Gaussians. It suffers, however, from the same shortcoming as the EKF in that linear approximations

are required. It also leads to a combinatorial growth in the number of mixture components over time, calling for

ad-hoc strategies to prune the number of components to a manageable level. An alternative method for non-Gaussian

models that does not require any linear approximations has been proposed in [16]. It approximates the non-Gaussian

state numerically with a fixed grid, and applies numerical integration for the prediction step and Bayes’ theorem

for the filtering step. However, the computational cost of the numerical integration grows exponentially with the
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dimension of the state-space, and the method becomes impractical for dimensions larger than four.

As an alternative method for general non-linear and/or non-Gaussian models, Particle Filtering [17], [18], also

known as Sequential Monte Carlo (SMC) [19]–[21], or CONDENSATION [22], has become a practical numerical

technique to approximate the Bayesian tracking recursions. This is due to its efficiency, simplicity, flexibility, ease

of implementation, and modelling success over a wide range of challenging applications. It represents the target

distribution with a set of samples, or particles, and associated importance weights, which are then propagated through

time to give approximations of the target distribution at subsequent time steps. It requires only the definition of

a suitable proposal distribution from which new particles can be generated, and the ability to evaluate the system

and observation models. As opposed to the strategy in [16], the computational complexity for particle filters is

independent of the dimension of the state-space: it grows linearly in the number of particles, with the error decreasing

as the square root of the number of particles. For further discussions on the relation between dimensionality and

Monte Carlo error the reader is referred to [23], [24].

The data association problem has also been considered within the context of particle filtering. Methods that

combine particle techniques with the philosophy behind theJPDAF are described in [25], [26]. In [27] a method

is described that computes the distribution of the association hypotheses using a Gibbs sampler [28] at each time

step. The method is similar in spirit to the one described in [29] that uses Markov Chain Monte Carlo (MCMC)

techniques [30] to compute the correspondences between image points within the context of stereo reconstruction.

The main problem with the MCMC strategies is that they are iterative in nature and take an unknown number

of iterations to converge. They are thus not very suitable for online applications. In [31] a method is presented

where the associations are simulated from an optimally designed importance distribution. The method is intuitively

appealing since the association hypotheses are treated in asimilar fashion to the target states, so that the resulting

algorithm is non-iterative. It is, however, restricted to point targets in the framework of Jump Markov Linear Systems

(JMLS) [32].

In this paper we propose an alternative strategy to solve thedata association problem within the context of

particle filtering. It is similar in spirit to the method described in [31], in that we augment the system state with

the unknown association vector. To generate candidate samples for the association vector we construct an efficient

proposal distribution based on the notion of a soft gating ofthe measurements. As opposed to the method in [31]

our approach is generally applicable. Its use extends beyond the sequential estimation framework, and it can be

applied in any setting, static or dynamic, where the data association problem arises within a probabilistic modelling

framework. The framework we present here is a development ofour work detailed in [1], [33]. For other recent

related work on SMC methods within our research team seee.g. [34]–[38].

The remainder of the paper is organised as follows. In Section II we describe the extended object model, and

propose a generic model for its motion, based on translationand rotation relative to a fixed reference frame. We

outline the measurement process in Section III, and developa likelihood model for the case where the measurement

association is known. We also show how this likelihood can bemarginalised over the unknown associations by

defining a suitable prior for the associations. In Section IVwe formulate the tracking problem within a particle
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filtering framework. In addition to the state, we generate samples for the unknown associations by sampling from

an efficient proposal distribution, which we derive in Section V. We evaluate the performance of the algorithm on

a challenging synthetic tracking problem in Section VI, before concluding with a summary and some remarks in

Section VII.

II. TARGET MODEL AND DYNAMICS

As in [1] we model an extended object as a set of fixed point features in a target reference frameT . We will

denote these point features byPT = {pTi }
Np

i=1, with pTi = (xTi , y
T
i , z

T
i ) the Cartesian coordinates of thei-th feature

point. Note that the extended target is assumed to be rigid, and the number of point featuresNp is assumed to

be fixed and known. The location and orientation of the targetis tracked relative to a fixed reference frameR.

For this purpose we define the target state asx = (PR, t,θ, δ), wheret = (x, y, z) is the origin of the target

frame in the fixed reference frame,θ = (α, β, γ) are the roll, pitch and yaw angles of the target frame, measured

anti-clockwise around thex, y andz axes, respectively,δ = (δt, δθ) are the velocities, withδt = (δx, δy, δz) the

linear velocity of the origin, andδθ = (δα, δβ, δγ) the angular velocities around the target reference frame axes,

andPR = {pRi }
Np

i=1 are the positions of the point features in the fixed referenceframeR. This full description of

the state will not be required in all applications. Depending on the characteristics of the extended object and its

motion, some of the state components may become redundant.

With the definition of the state as above any Cartesian pointpT in the target reference frame can be mapped to

a point in the fixed reference framepR through the transformation

pR = M(θ)pT + t

= R(α)P(β)Y(γ)pT + t,
(1)

with

R(α) =





1 0 0

0 cosα − sinα

0 sinα cosα




P(β) =





cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ




Y(γ) =





cos γ − sin γ 0

sin γ cos γ 0

0 0 1




(2)

the rotation matrices corresponding to roll, pitch and yaw,respectively.

We assume the system dynamics to be Markovian and of the form

p(xk|xk−1) = p(PR
k , tk,θk, δk|P

R
k−1, tk−1,θk−1, δk−1)

= p(PR
k |tk,θk)p(tk|tk−1,θk, δtk)p(θk|θk−1, δθk)p(δk|δk−1),

(3)

wherek denotes the discrete time index. We model the velocities as independent first order Gaussian random walk

models,i.e.

p(δk|δk−1) = N(δk|δk−1,Λδ) (4)

where N(·|µ,Σ) denotes the multi-variate Gaussian distribution with meanµ and covarianceΣ, and Λδ =

diag(σ2
x, σ

2
y , σ

2
z , σ

2
α, σ

2
β , σ

2
γ) is the diagonal matrix with the variances of the random walk components, which are
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assumed to be fixed and known. Other models for the velocitiescan be straightforwardly accommodated within our

framework. Given the velocities the components for the location and orientation of the target frame in (3) can be

computed deterministically as

θk = θk−1 + ∆Tδθk

tk = tk−1 + ∆TM(θk)δtk,
(5)

where∆T is the time step. The first component in (3) is used to express the uncertainty about the exact locations

of the point features. We assume it to be of the form

p(PR
k |tk,θk) =

Np∏

i=1

N(pRi,k|p̂
R
i,k, σ

2
p
I3), (6)

whereIn denotes then × n identity matrix, and the mean of the Gaussian distribution for the i-th point feature

follows from (1) asp̂Ri,k = M(θk)p
T
i + tk. Note that the uncertainty is assumed to be isotropic aroundthe mean

location, with a fixed and known varianceσ2
p
.

This completes the specification of the general form of the model. Depending on the characteristics of the object

of interest and its motion, the model can often be further restricted, as is exemplified below.

Example 1: In the tracking application we will consider later, we will be interested in tracking a stick like

extended object. The stick object coincides with thex axis in the target reference frame, with point features at

pT1 = (50, 0, 0), pT2 = (−50, 0, 0) andpT3 = (20, 0, 0). The object is allowed to translate along itsx axis, pitch

around itsy axis, and yaw around itsz axis. The velocities for the other components effectively disappear from

the state. An example trajectory, simulated from the dynamics in (3), is depicted in Figure 1. For this trajectory the

fixed parameters of the model were set to(σx, σβ , σγ , σp) = (1, 0.1◦, 0.2◦, 0). �

Fig. 1. Example 3D trajectory for the stick object. Even though no explicit attempt is made to model any physical attributes of the object,

the dynamic model generates realistic and feasible trajectories.
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III. M EASUREMENTS ANDL IKELIHOOD

The likelihood model we describe in this section follows closely the multi-hypothesis likelihood derived in

[39]. The extended object tracking is performed from some observer location in the fixed reference frameR. We

will denote the observer location bypO = (xO , yO, zO), and allow it to vary with time. At each time step1 the

sensors yieldM observationsy = (y1 · · ·yM ), whereM may also vary with time. The nature of the individual

measurements will depend on the characteristics of the sensors. Typically each measurement will correspond to an

estimated line of sight from the observer to a point feature.Measurements arise not only from the point features of

the extended object. Additional clutter measurements may result due to multi-path effects, other objects within the

sensor range, sensor errors,etc. In the absence of specific models for clutter and multi-path, we will assume that

all of these effects can be modelled within a random clutter framework. In cases where models are available for

multi-path, these could be incorporated into our non-linear filtering framework. Hence we will assume that point

features on the extended object can generate at most one measurement each at a particular time step, but may also

go undetected. We will further assume that several or all of the measurements may be due to unstructured, random

clutter.

For a given vector ofM measurements we introduce the association hypothesisλ = (r,MC ,MT ), whereMC is

the number of clutter measurements,MT is the number of measurements resulting from the extended object point

features, withM = MC+MT . The elements of the association vectorr = (r1 · · · rM ) lie in the setri ∈ {0 · · ·Np},

with ri = 0 if measurementi is due to clutter, andri = j 6= 0 if measurementi is generated by point featurej of

the extended object.

In most practical applications the association hypothesisλ is unknown. We will nevertheless first derive a

likelihood model for the measurements, conditional on a known association hypothesis. We will then show how

the likelihood can be marginalised over the unknown hypotheses to remove this uncertainty. This strategy is only

feasible if the total number of hypotheses is not too large. Later, in Section V, we will present an alternative strategy

based on importance sampling to estimate the unknown association hypothesis.

Conditional on the association hypothesis we assume the measurements to be independent, so that the likelihood

can be written as

p(y|x, λ) =

M∏

i=1

p(yi|x, ri), (7)

with

p(yi|x, ri = j) =






UY(yi) = V −1 for j = 0

p(yi|pRj ) for j = 1 · · ·Np,

(8)

whereUA(·) denotes the uniform distribution over the setA. Thus, clutter measurements are assumed to be uniformly

distributed over the range of the sensorY, a region whose volume is assumed to beV . For measurements of the

point features the likelihood depends only on the location of the corresponding point feature in the fixed reference

1In what follows we will suppress the time index for the sake ofnotational clarity.
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frame. Under these assumptions the conditional likelihoodcan be written as

p(y|x, λ) = V −MC

∏

i∈I(λ)

p(yi|p
R
ri

), (9)

whereI(λ) is the subset of measurement indices that correspond to point features. Note that the size of this set is

MT .

Example 2: If the sensors yield line of sight measurements of point sources relative to the observer, the individual

measurements can be written asyi = (Ri, φi, ψi), whereRi is the range from the observer to the point source,

and φi andψi are the azimuth and elevation angles, respectively, of the point source relative to the observer. If

the components of the line of sight measurements are assumedto be corrupted by independent Gaussian noise, the

conditional likelihood for the point features becomes

p(yi|p
R
j ) = N(yi|ŷ(pRj ,p

O),Λy), (10)

where we have assumed thatri = j 6= 0. The covarianceΛy = diag(σ2
R, σ

2
φ, σ

2
ψ) is the diagonal matrix with

the individual measurement noise variances, and is assumedto be fixed and known. The components of the mean

ŷ(pRj ,p
O) = (R̂j , φ̂j , ψ̂j) are given by

R̂j =
(
(xRj − xO)2 + (yRj − yO)2 + (zRj − zO)2

)1/2

φ̂j = tan−1
( yRj − yO

xRj − xO

)

ψ̂j = tan−1

(
zRj − zO

(
(xRj − xO)2 + (yRj − yO)2

)1/2

)
.

(11)

For this model the range of the measurements is given byY = [0, Rmax]× [−π, π]× [−π/2, π/2], whereRmax is

the maximum range of the sensor. Thus, the volume of the measurement space becomesV = 2π2Rmax. �

In most practical applications the association hypothesisλ is unknown. For a given number of point feature

detectionsMT in M measurements the total number of hypotheses are given by

Nλ(MT ,MC) =
M !Np!

MT !(M −MT )!(Np −MT )!
. (12)

This follows from the number of ways of choosing a subset ofMT elements from the availableM measurements,

i.e.
(
M
MT

)
, multiplied by the number of possible associations betweentheMT detections and theNp point features,

i.e. Np!/(Np −MT )!. However, the number of detected point featuresMT is unknown, so that the total number

of feasible hypotheses is given by

Nλ =

min(Np,M)∑

MT =0

Nλ(MT ,MC). (13)

If the total number of hypotheses is manageable, it is possible to marginalise over the association uncertainty, as is

done in [39]. The marginal likelihood is of the form

p(y|x) =
∑

λ

p(λ|x)p(y|x, λ). (14)
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The marginalisation requires the definition of a prior distribution over the association hypothesis. We assume this

prior to be of the form

p(λ|x) = p(r|MT ,MC)p(MC)p(MT |x), (15)

with
p(r|MT ,MC) = (Nλ(MT ,MC))−1

p(MC) = (µV )MC exp(−µV )/MC !

p(MT |x) =
∑

h

∏

i∈I(h)

PD,i
∏

i∈{1···Np}−I(h)

(1 − PD,i).

(16)

In the absence of measurements the prior for the associationvector is assumed to be uniform over all the possible

hypotheses for a known number of target detections. The number of clutter measurements is assumed to follow a

Poisson distribution, withµ the spatial density of the clutter, which is assumed to be fixed and known. To compute

the prior probability for the number of point feature detections we associate a unique detection probability with

each of the point features{PD,i}
Np

i=1. Note that the detection probabilities may depend on the state, to model the

effect that feature points may occlude each other in certainconfigurations relative to the observer. It is also possible

to allow these probabilities to evolve over time, but we do not consider this scenario here. The prior probability

for the number of detections is then obtained by summing overthe
(
Np

MT

)
possible ways to groupMT detections

among theNp point features, andh above ranges over these hypotheses. If the detection probability is the same for

all the point featuresPD, the prior for the number of point feature detections reduces to the binomial distribution,

i.e.

p(MT |x) =

(
Np

MT

)
PMT

D (1 − PD)Np−MT . (17)

Under these assumptions the marginal likelihood can be written as

p(y|x) ∝
∑

λ

( PD
µ(1 − PD)

)MT (λ) ∏

i∈I(λ)

p(yi|p
R
ri

), (18)

where constant terms have been discarded, and we have made the dependency of the number of detections on the

association hypothesis explicit,i.e. MT (λ).

Evaluation of the conditional likelihood in (9) is generally of O(M) complexity. In contrast, the computational

complexity for the marginal likelihood in (18) isO(MNλ). For a fixed number of point features and detection

probability the number of hypotheses increases exponentially with an increase in the number of clutter measurements,

as is depicted in Figure 2. Thus, in many applications of practical interest the number of feasible hypotheses is

prohibitively large, so that the marginalisation cannot beperformed explicitly. In Section V we will present an

alternative importance sampling based strategy to take account of the association uncertainty.

IV. PARTICLE FILTER TRACKING

In this section we describe the particle filter tracking framework for a generic model parameterised by a statex.

We will present the specifics for the extended object tracking problem at the end of this section and in Section V.
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Fig. 2. Complexity curve. Number of hypotheses versus number of clutter measurements for five sources and a unity detection probability.

For tracking the distribution of interest is the posteriorp(xk|y1:k), also known as the filtering distribution, where

y1:k = (y1 · · ·yk) denotes all the observations up to the current time step. In the Bayesian Sequential Estimation

framework the filtering distribution can be computed according to the recursion

p(xk|y1:k) ∝ p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (19)

wherep(xk|xk−1) is the dynamic model describing the state evolution, andp(yk|xk) is the likelihood model. The

recursion is initialised with some distribution for the initial statep(x0). Once the sequence of filtering distributions

is known point estimates of the state can be obtained according to any appropriate loss function, leading to,e.g.,

Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE) estimates.

The tracking recursion yields closed-form expressions in only a small number of cases. The most well-known

of these is the Kalman filter [14] for linear Gaussian dynamicand likelihood models. Both the dynamic and

likelihood models we consider here contain non-linear and non-Gaussian elements. This renders the tracking

recursion analytically intractable, and approximation techniques are required. Sequential Monte Carlo (SMC)

methods [19]–[21], otherwise known as Particle Filters [17], [18], or CONDENSATION [22], have gained a lot

of popularity in recent years as a numerical approximation strategy to compute the tracking recursion for complex

models. This is due to their simplicity, flexibility, ease ofimplementation, and modelling success over a wide range

of challenging applications.

The basic idea behind particle filters is very simple. Starting with a weighted set of samples{x(i)
k−1, w

(i)
k−1}

N
i=1

approximately distributed according top(xk−1|y1:k−1), new samples are generated from a suitably chosen proposal

distribution, which may depend on the old state and the new measurements,i.e., x(i)
k ∼ q(xk|x

(i)
k−1,yk), i = 1 · · ·N .

To maintain a consistent sample the new importance weights are set to

w
(i)
k ∝

w
(i)
k−1p(yk|x

(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1,yk)

, with
N∑

i=1

w
(i)
k = 1. (20)

The new particle set{x(i)
k , w

(i)
k }Ni=1 is then approximately distributed according top(xk|y1:k). Approximations to

the desired point estimates can then be obtained by Monte Carlo techniques. From time to time it is necessary
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to resample the particles to avoid degeneracy of the importance weights. The resampling procedure essentially

multiplies particles with high importance weights, and discards those with low importance weights. A full discussion

of degeneracy and resampling falls outside the scope of thispaper, but more details can be found in [19].

For the extended object tracking problem we will consider two scenarios. In the first setting we will assume

that it is possible to marginalise over the association uncertainty, so that the dynamic and likelihood models in

(3) and (18), respectively, apply. Similar to the bootstrapfilter [17] we will take the proposal for the state to be

the dynamics, so that the new importance weights become proportional to the corresponding particle likelihoods,

multiplied by the old importance weights. The computational complexity of this algorithm isO(NMNλ) at each

time step, and quickly becomes infeasible for realistic numbers of point features and clutter measurements. The

second setting is described in the following section, and avoids the computationally expensive marginalisation by

sampling the association hypotheses from an efficient proposal distribution.

V. TRACKING WITH ASSOCIATIONUNCERTAINTY

In problems where the total number of association hypotheses is large direct marginalisation over the association

uncertainty becomes computationally prohibitive. In thissection we present an importance sampling based strategy

to account for this uncertainty. More specifically, we augment the state with the unknown association hypothesis.

Our aim will then be to estimate the posteriorp(xk, λk|y1:k) recursively within the particle filtering framework.

Under these assumptions the particle weights in (20) become

w
(i)
k ∝

w
(i)
k−1p(yk|x

(i)
k , λ

(i)
k )p(λ

(i)
k |x

(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k , λ

(i)
k |x

(i)
k−1, λ

(i)
k−1,yk)

, (21)

wherep(yk|xk, λk) is the conditional likelihood in (9),p(λk|xk) is the association hypothesis prior in (15), and

p(xk|xk−1) is the dynamics in (3). The problem thus reduces to defining the joint proposal distribution for the state

and association hypothesisq(xk, λk|xk−1, λk−1,yk). We assume this proposal to be of the form

q(xk, λk|xk−1, λk−1,yk) = q(λk|xk,yk)p(xk|xk−1). (22)

As before the proposal for the state is taken to be the dynamics in (3). The proposal for the association hypothesis

depends only on the information available at the current time step. This reflects the fact that there is, at best, only a

weak temporal dependence between the association hypotheses. We will define this proposal in terms of a proposal

for the association vectorq(rk|xk,yk), with the proposals for the number of clutter measurementsMC and point

feature detectionsMT being implicit. As in [1], [33] we assume the proposal for theassociation vector to take the

following factorised form2

q(r|x,y) =
M∏

i=1

q(ri|r1 · · · ri−1,x,yi). (23)

2In what follows we will again suppress the time index for the sake of notational clarity.
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Thus, the proposal for thei-th component of the association vector depends only on the corresponding measurement.

Using Bayes’ rule we define the proposal for thei-th component as

q(ri|r1 · · · ri−1,x,yi) ∝ p(yi|x, ri)q(ri|r1 · · · ri−1,x). (24)

The first term on the right hand side follows from the corresponding component of the conditional likelihood in (8),

and of course will cancel with the corresponding numerator term in (21). For a particular point feature this value

will be higher for measurements closer to the point feature,so that the proposal essentially captures the notion of

a soft gating function. The second term forms the prior for the i-th component of the association vector, and we

define it as

q(ri = j|r1 · · · ri−1,x) ∝






q0 for j = 0

qj
∏i−1
k=1(1 − δrk,j) for j = 1 · · ·Np,

(25)

whereδi,j denotes the Kronecker delta. The prior for the clutter hypothesis is set to be proportional to some fixed

value0 < q0 < 1. For all the other hypotheses the prior component is set to beproportional to some fixed valueqj ,

provided that the corresponding point feature has not already been assigned to another component of the association

vector. For these hypotheses we will normally set the fixed value to be proportional to the detection probability of

the corresponding point feature,i.e.

qj =
PD,j(1 − q0)
∑Np

k=1 PD,k
. (26)

This completes the specification of the proposal distribution for thei-th component of the association vector in (24).

Since this distribution is discrete it is easily normalisedand sampled from using standard techniques. Generating

a sample for the entire association vector from the proposalin (23) can be achieved by sequentially sampling the

individual components conditional on each other fromr1 to rM . Note that the factorisation in (23) can be performed

over any permutation of the components of the association vector. In practice we choose the order randomly for

each particle at each iteration.

The computational complexity of the resulting particle filtering algorithm isO(NMNp). It increases only linearly

with the number of point features and clutter measurements,and not exponentially, as is the case for the algorithm

employing the marginal likelihood. This importance sampling approach to estimate the distribution of the association

vector is more general than the application considered here. It can be applied in any setting, static or dynamic,

where the data association problem arises within a probabilistic modelling framework.

VI. EXPERIMENTS AND RESULTS

In this section we report the results of two sets of experiments. The first, in Section VI-A, gives a comprehensive

evaluation of the proposed extended object model and tracking algorithm on a challenging 3D trajectory under

various filtering and modelling scenarios. The second, in section in Section VI-B, illustrates the sampling based

data association strategy on synthetic 1D and 3D problems and compares with nearest-neighbour Kalman algorithms.
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A. Experiment 1: Extended Object Tracking

For the extended object we will use the stick model from Example 1 in Section II, with the detection probability

fixed toPD = 0.75 for each of the point features. To evaluate the tracking performance we generated a deterministic

trajectory withK = 51 unevenly spaced time steps, which we will denote by{x⋆k}
K
k=1. For the observations we

will take line of sight measurements from a non-stationary observer location, as in Example 2 in Section III.

We set the maximum range for the sensor toRmax = 2, 000, and the measurement noise standard deviations to

(σR, σφ, σψ) = (2, 1◦, 1◦). The trajectory for the observer was also generated deterministically.

We consider two main scenarios. In the first there are no clutter measurements, whereas the second is characterised

by an increasing level of clutter. In both cases we generate synthetic measurements by first sampling from the prior

for the association hypothesis in (15), and conditional on this, sampling from the conditional likelihood model in

(9).

For each of the scenarios we ran the particle filter for three different algorithm settings. In the first, which we

will refer to astruth, we used the conditional likelihood in (9), conditional on the true hypothesis. This establishes

a baseline performance for the other algorithms, as it is unrealisable in practice without prior knowledge of the

association hypothesis. In the second, which we will refer to as marginal, we used the marginal likelihood in

(18). In the third, which we will refer to asconditional, we again used the conditional likelihood in (9), but this

time generated the association hypotheses from the proposal distribution in (23). In all cases the particle filter

was initialised from a Gaussian distribution centred on thetrue first state, and state samples were generated from

the dynamics in (3), with(σx, σβ , σγ , σp) = (1, 0.5◦, 1◦, 0). For the association proposal the prior for the clutter

hypothesis was set toq0 = 10−6 for the experiments with clutter, andq0 = 0 for those without. Using the particles,

we computed MMSE estimates for the states as in (28). We compared the performance of the different algorithms

in terms of the Root Mean Square Error (RMSE), which we define as

RMSE =

√√√√ 1

KNp

K∑

k=1

Np∑

i=1

‖p̂Ri,k − pR⋆i,k‖
2, (27)

and the computational effort. As a measure for the computational effort we took the average execution time per

time step of a fairly optimal Matlab implementation of the different algorithms.

The results for the experiments without clutter are depicted in Figure 3. These were obtained by averaging over 20

runs of the algorithm for an increasing number of particles.For all the runs the same target trajectory was used, but

new measurements were generated for each individual run. Asexpected the error decreases with an increase in the

number of particles, with the performance of the truth algorithm being generally the best. The marginal algorithm

outperforms the conditional algorithm for small numbers ofparticles. This is due to the larger state-space for the

latter algorithm, making the search problem more complex. For more than 500 particles the error statistics for

the three algorithms become virtually indistinguishable.For all three algorithms the computational effort increases

linearly with an increase in the number of particles, with the conditional algorithm being slightly superior to the

marginal algorithm. Thus, in the absence of clutter measurements, and for a small number of point features, the
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Fig. 3. RMSE and average execution time statistics for experimentswithout clutter . RMSE (left) and average execution time (right) for

the true (blue circles), marginal (red triangles) and conditional (green squares) algorithms, as a function of the number of particles. The error

decreases with an increase in the number of particles, with the performance of the three algorithms being virtually indistinguishable for 500

particles and above. For all three algorithms the computational effort increases linearly with the number of particles.

number of hypotheses is manageable.

The results for the experiments with clutter are depicted inFigure 4. These were obtained by averaging over

20 runs of the algorithm for an increasing clutter rate, withthe number of particles fixed toN = 500. Again,

all runs shared the same trajectory, with new measurements generated for each individual run. The error statistics

are similar for each of the algorithms, and remain reasonably constant with an increase in the clutter rate. In this

case, however, the computational effort increases exponentially with the clutter rate for the marginal algorithm. The

computational effort is much lower for the conditional algorithm, and increases only slightly with an increasing

clutter rate. To conclude Figure 5 shows the true and typicalestimated trajectories for the first feature point for a

clutter density ofµ = 2/V . The subjective quality of the trajectories is comparable for the three algorithms, but

that for the marginal algorithm comes at a substantial computational cost.

B. Experiment 2: Comparison of Sampling Based Data Association with Kalman filter

We performed two simulations to illustrate the performanceof sampling based data association. In both cases

we assumed simple rigid target motion, and Gaussian Cartesian measurements around the true target locations.

We assumed Gaussian random walk models for the target velocities; thus the unknown state vector for the model

consists of the center of gravity for the target, its velocity, and theNp−1 relative positions of object features from

the center of gravity. This was implemented using a Rao-Blackwellized particle filter [19], [20], [40] since we have

assumed a rigid target and linear dynamics/observation equation. The idea of Rao-Blackwellization is simultaneous

use of Kalman filter and particle filters. The Kalman filter is used for marginalisation of the continuous variable

part of the state vector, and the particle filter is used for the discrete variable part of it, i.e. the association vector.

The first simulation considered 1D tracking ofNp = 10 target feature points over 30 time steps, withPD = 0.75
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Fig. 4. RMSE and average execution time statistics for experimentswith clutter . RMSE (left) and average execution time (right) for the

true (blue circles), marginal (red triangles) and conditional (green squares) algorithms, as a function of the clutterdensity, with the number of

particles fixed toN = 500. The error statistics are similar for all three algorithms,and remain reasonably constant with an increase in the clutter

rate. The computational effort for the marginal algorithm grows exponentially with the clutter rate, whereas that for the conditional algorithm

increases only slightly.

Fig. 5. Estimated trajectories. True (blue circles) and estimated (red triangles) trajectories for the first point feature, obtained by the true

algorithm (left), marginal algorithm (middle) and conditional algorithm (right). The trajectory of the observer is shown in black squares. The

subjective quality is similar for all three algorithms.

and measurement noise standard deviationσ = 0.1. The second simulation considered a more challenging 3D

tracking scenario ofNp = 5 target points over 50 time steps, withPD = 0.75 and measurement noise standard

deviationσ = 0.3. Variance parameters of the Gaussian random walk models forthe target velocities areσx = 0.1

for the 1D scenario, andσx = σy = σz = 1 for the 3D scenario. We usedN = 1, 000 particles for both the 1D

and the 3D scenarios.

Here, we explain how the tracker was initialised. Note that the focus of this paper is the evaluation of tracking

performance, not on track initialisation. For this reason,the assumption on the initial state is rather well-conditioned.

We suppose that first two observations contain neither missing observations nor clutter. The initial state of the tracker

is then set as follows. For the center of gravity of targets inthe initial state, a Gaussian distribution with mean at the

center of gravity of observation atk = 1 and variance1.0 is assumed. For the velocity of the initial state, a Gaussian
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distribution is assumed with mean calculated by the difference between the centers of gravity of observationsk = 1

andk = 2, and variance0.1. For the remaining part of the state vector, which are theNp − 1 relative positions of

the target features from the center of gravity, a Gaussian distribution with mean 0 and variance1.0 is used.

Synthetic data for the 1D scenario in an observation space ofsize 15, with clutter densityµ = 1.0 (i.e. an

expected number of 15 clutter measurements per time slice) is shown in Figure 6. Typical estimation results for the

1D scenario are given in Figure 7. The plotted estimate is theMinimum Mean-Square Error estimate of the target

state, obtained from the particle filter in the standard way as:

x̂k =

N∑

i=1

w
(i)
k x

(i)
k , (28)

and this is seen to follow closely follow the true target trajectories.

We now conduct comparison experiments between the proposedparticle filter method and 1) the Kalman filter

given the true association, and 2) the nearest neighbor association Kalman filter. In the latter, the nearest observation

is assigned to the corresponding target in state vector, with any observations out of a 4 sigma region being assigned

automatically to clutter. Typical results for these two filters, operating on the same dataset as above, are shown

in Figures 8 and 9. The result from the 1) (Kalman filter with true associations) is considered to be the optimal

estimate since the true associations are given for the estimation and the remainder of the model is linear/Gaussian.

Comparing with the result for the nearest neighbor association Kalman filter, the tracking is lost from around

k = 15, owing to the high levels of clutter. More sophisticated data association could of course be adopted here,

but we choose this basic scheme to give a baseline for comparison.

The three methods are now compared in Monte Carlo trials overa number of different scenarios. For clutter

densitiesµ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and2.0, we have observed the change of the performance for these three

methods. Figure 10 shows comparison of the methods by root mean square errors in observation space. Figure

11 shows thee comparisons between Kalman filter given true associations and the proposed method. We can see

in these figures that, forµ ≥ 0.8, the performance of the nearest neighbour association Kalman filter deteriorates

significantly, while the deterioration of the proposed method is small compared to the optimal Kalman filter, as

shown in Figure 11. These deteriorations compared to the optimal are mainly caused by incorrect association

estimates within each method. To analyse this effect, we have summarized the number of wrong associations as

shown in Figure 12. We can observe the signficant difference in the numbers of wrong associations between the

nearest neighbor association Kalman filter and the proposedmethod, especially forµ ≥ 0.8.

Synthetic data for the 3D scenario is shown in Figure 13. Estimation results by nearest neighbour association

Kalman filter and the proposed method are shown in Figures 14 and 15. We can see in the figures that the result

by the proposed method is close (almost indistinguishable from) the true trajectory, while by nearest neighbor

association Kalman filter there are some noticeable discrepancies between the truth and the estimated.
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Fig. 6. Example Synthetic data for the 1D scenario. Plotted points are the measurements. Target features are detected with probability

PD = 0.75, and the measurement noise standard deviation isσ = 0.1. Clutter density isµ = 1.0. This is a challenging scenario which has

many missed detections and high clutter level.
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Fig. 7. Estimation results for the 1D scenario. Result for tracking of 10 points of an object in motion in 1D space. Lines show the estimated

trajectories of the point features in measurement space andtheir true trajectories (the two are almost indistinguishable in this case). Measurements

are shown as dots, and many clutter measurements are presentwith its density beingµ = 1.0.

VII. C ONCLUSIONS

In this paper we considered the extended object tracking problem. Extended objects were modelled as point

features in a target reference frame. We developed a realistic dynamic model to capture the motion of the extended

object in terms of the translation and rotation of the targetreference frame relative to a fixed reference frame. For the

generally unlabelled measurements we showed how a multi-hypothesis likelihood can be obtained by marginalising

over all the association hypotheses, as in [39]. The complexity of this marginalisation increases exponentially with

an increase in the number of point features and clutter measurements, and quickly becomes infeasible in realistic
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Fig. 8. Estimation results for the 1D scenario by Kalman filter given the true association vector. Result for tracking of 10 points on

an object in motion in 1D space. Lines show the estimated trajectories of the point features in measurement space and their true trajectories.

Measurements are denoted by dots, and many clutter measurements are present with densityµ = 1.0. Good results are obtained since the true

association is given to the filter.

scenarios. As an alternative we proposed a particle filtering algorithm where the unknown association hypotheses

were sampled from an efficiently designed proposal distribution. The computational complexity of this algorithm

is substantially lower than that for an equivalent strategyusing the marginal likelihood. Initial results show the

estimation accuracy for the two strategies to be comparable. It should also be noted that the importance sampling

approach to estimate the distribution of the association vector is more general than the application considered here.

It can be applied to other tracking problems involving multiple targets, or in any setting, static or dynamic, where

the data association problem arises within a probabilisticmodelling framework.

One of the main considerations for future work is the design of a more efficient proposal for the state. Sampling

the state from the dynamics takes no account of the new measurements, and it is often necessary to artificially

increase the excitation noise of the dynamic models to ensure that all the viable regions of the state-space are

explored with a finite number of particles. The downside of this is that the resulting trajectories may not be as

smooth or accurate as desired. With proposals that take account of the new measurements the excitation parameters

can be left at realistic levels, leading to smoother trajectories. Further important issues to be considered include the

development of strategies to learn and adapt the parametersof the dynamic model online, for example in the spirit

of [41], and to automatically detect the number of point features.
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Fig. 9. Estimation results for the 1D scenario by nearest neighbor association Kalman filter. Result for tracking of 10 points on an object

in motion in 1D space. Lines show the estimated trajectoriesof the point features in measurement space and their true trajectories. Measurements

are denoted by dots, and many clutter measurements are present with densityµ = 1.0. The filter loses track from aboutk = 15.
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Fig. 10. Comparison of Root Mean Square Error of tracking result for t he 1D scenario. Root Mean Square Error of tracking result for 10

points on an object in motion in 1D space. KF (left bar) denotes the result by Kalman filter with true associations, NNKF (center bar) denotes

the result by the nearest neighbor association Kalman filter, and RBPF (right hand bar) denotes that of by the proposed particle filter method.
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Fig. 15. Estimation results for the 3D scenario by the proposed method. Result for tracking of 5 points on an object in motion in 3D

space. Blue lines show the estimated trajectories of the point features in measurement space and their true trajectories (black lines - almost

indistinguishable from blue).
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