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Abstract

In this paper we consider the problem of extended objeckimgc An extended object is modelled as a set
of point features in a target reference frame. The dynamidahe extended object are formulated in terms of the
translation and rotation of the target reference frametiveldo a fixed reference frame. This leads to realistic, yet
simple, models for the object motion. We assume that the uneaments of the point features are unlabelled, and
contaminated with a high level of clutter, leading to measunt association uncertainty. Marginalising over all
the association hypotheses may be computationally ptarébior realistic numbers of point features and clutter
measurements. We present an alternative approach withircdhtext of particle filtering, where we augment the
state with the unknown association hypothesis, and sanmpididate values from an efficiently designed proposal
distribution. This proposal elegantly captures the notiéra soft gating function. We demonstrate the performance
of the algorithm on a challenging synthetic tracking prahblevhere the ground truth is known, in order to compare
between different algorithms.

Index Terms

Extended object tracking, sequential Monte Carlo methpdsijcle filters, data association.

I. INTRODUCTION

Traditional methods for radar and sonar based tracking irtbéetarget as a point source. This approximation
is sufficient for low resolution sensors, or for targets ie far field of the sensor. For high resolution sensors, or
objects in the near field of the sensor, the sensor may be abésolve a number of features on the target. These
may provide valuable information about the target motiod anentation. Thus, instead of combining the target
object features into a single feature, such as an averagentrodd measurement, a richer representation may be
achieved by passing all the available features to the tngcklgorithm. We will refer to a target observed in this
way as an “extended object”.

As in [1] we model an extended object as a set of point featwehighlights, in a target reference frame.
Each feature is associated with a detection probabilityagature the notion that features do not always generate

measurements. We also take account of the fact that the aations of the features within the target reference
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frame are uncertain. We model the dynamics of the extend@etiolm terms of the translation and rotation of
the target reference frame relative to a fixed reference drdm this way we are able to construct realistic, yet
computationally tractable, models for the extended ohjeation.

In most practical tracking applications the sensors yi@lidlelled measurements of the point features. Additional
clutter measurements may arise due to multi-path effeutsptesence of other objects in the sensor range, sensor
errors,etc. The unlabelled measurements and the presence of clusgrtéea difficult data association problem.
Keeping track of all the possible association hypotheses time, as is the case for the Multiple Hypotheses
Tracker (MHT) [2], leads to an NP-hard problem, since the benof association hypotheses grows exponentially
over time. Thus, methods are required to reduce the conigughtcomplexity. The nearest neighbour filter [3]
associates each target with the closest measurement irarthet space. However, this simple procedure prunes
away many feasible hypotheses. In this respect the JoirtaBiiistic Data Association Filter (JPDAF) [3], [4] is
more appealing. At each time step improbable hypotheseprareed away using a gating procedure. A filtering
estimate is then computed for each of the remaining hypethemd combined in proportion to the corresponding
posterior hypothesis probabilities. The main shortcomohghe JPDAF is that, to maintain tractability, the final
estimate is collapsed to a single Gaussian, thus discardirgh pertinent information. Subsequent work addressed
this shortcoming by proposing strategies to instead retheaumber of mixture components in the original mixture
to a tractable level [5], [6]. Neverthless, many feasibl@diheses may be discarded by the pruning mechanisms.
The Probabilistic Multiple Hypotheses Tracker (PMHT) [[8] (wrongly) assumes the association variables to be
independent in order to work around the problems with prgninleads to an incomplete data problem that can be
efficiently solved using the Expectation Maximisation (EMorithm [9]. However, the PMHT is a batch strategy,
and thus not suitable for online applications. For furthiscdssion on shortcomings and extensions to the PMHT
the reader is referred to [10]. Further developments of datociation in the context of MHT are reported in
[11]-[13].

The methods discussed above are mostly applicable to li@eaissian system and observation models. For
models with weak non-linearities it is possible to obtaimitr algorithms based on approximations such as the
Extended Kalman Filter (EKF) [14]. However, the performamt the resulting algorithms degrades rapidly as the
non-linearities become more severe. These methods arenatsmbust to non-Gaussian noise in the system and
observation models. These shortcomings have been ackigedebefore, and led to the development of numerous
strategies to cope with non-linear and non-Gaussian mo@els of the first methods to deal particularly with non-
Gaussian models is the Gaussian Sum Filter [15] that workappyoximating the non-Gaussian target distribution
with a mixture of Gaussians. It suffers, however, from thmeahortcoming as the EKF in that linear approximations
are required. It also leads to a combinatorial growth in thmber of mixture components over time, calling for
ad-hoc strategies to prune the number of components to ageable level. An alternative method for non-Gaussian
models that does not require any linear approximations bas proposed in [16]. It approximates the non-Gaussian
state numerically with a fixed grid, and applies numericégnation for the prediction step and Bayes’ theorem

for the filtering step. However, the computational cost af ttumerical integration grows exponentially with the
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dimension of the state-space, and the method becomes iticpidor dimensions larger than four.

As an alternative method for general non-linear and/or @amssian models, Particle Filtering [17], [18], also
known as Sequential Monte Carlo (SMC) [19]-[21], or CONDEN$DN [22], has become a practical numerical
technique to approximate the Bayesian tracking recursidhss is due to its efficiency, simplicity, flexibility, ease
of implementation, and modelling success over a wide rarigehallenging applications. It represents the target
distribution with a set of samples, or particles, and asgediimportance weights, which are then propagated through
time to give approximations of the target distribution absequent time steps. It requires only the definition of
a suitable proposal distribution from which new particles e generated, and the ability to evaluate the system
and observation models. As opposed to the strategy in [b&],computational complexity for particle filters is
independent of the dimension of the state-space: it grovesily in the number of particles, with the error decreasing
as the square root of the number of particles. For furthesudisions on the relation between dimensionality and
Monte Carlo error the reader is referred to [23], [24].

The data association problem has also been considerechwithi context of particle filtering. Methods that
combine particle techniques with the philosophy behind dBBAF are described in [25], [26]. In [27] a method
is described that computes the distribution of the assoocidtypotheses using a Gibbs sampler [28] at each time
step. The method is similar in spirit to the one described2#®] that uses Markov Chain Monte Carlo (MCMC)
techniques [30] to compute the correspondences betweeageipaints within the context of stereo reconstruction.
The main problem with the MCMC strategies is that they areaitee in nature and take an unknown number
of iterations to converge. They are thus not very suitabteofdine applications. In [31] a method is presented
where the associations are simulated from an optimallygdesi importance distribution. The method is intuitively
appealing since the association hypotheses are treatedimilar fashion to the target states, so that the resulting
algorithm is non-iterative. It is, however, restricted tirg targets in the framework of Jump Markov Linear Systems
(IMLS) [32].

In this paper we propose an alternative strategy to solvedtta association problem within the context of
particle filtering. It is similar in spirit to the method degmed in [31], in that we augment the system state with
the unknown association vector. To generate candidatelearfgr the association vector we construct an efficient
proposal distribution based on the notion of a soft gatinghef measurements. As opposed to the method in [31]
our approach is generally applicable. Its use extends lbytlom sequential estimation framework, and it can be
applied in any setting, static or dynamic, where the data@ason problem arises within a probabilistic modelling
framework. The framework we present here is a developmepuofwork detailed in [1], [33]. For other recent
related work on SMC methods within our research teamesgg34]-[38].

The remainder of the paper is organised as follows. In Sedtiove describe the extended object model, and
propose a generic model for its motion, based on translatmahrotation relative to a fixed reference frame. We
outline the measurement process in Section Ill, and deweldglihood model for the case where the measurement
association is known. We also show how this likelihood camitsginalised over the unknown associations by

defining a suitable prior for the associations. In Sectionw¥® formulate the tracking problem within a particle
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filtering framework. In addition to the state, we generat@@ias for the unknown associations by sampling from
an efficient proposal distribution, which we derive in SestV. We evaluate the performance of the algorithm on
a challenging synthetic tracking problem in Section VI,dyefconcluding with a summary and some remarks in

Section VII.

Il. TARGET MODEL AND DYNAMICS

As in [1] we model an extended object as a set of fixed poinufesatin a target reference frarie We will
denote these point features BY = {pZ} "%, with p? = (27,7, 2T the Cartesian coordinates of th¢h feature
point. Note that the extended target is assumed to be rigid,tee number of point featurel, is assumed to
be fixed and known. The location and orientation of the taigdtacked relative to a fixed reference frame
For this purpose we define the target statexas (P, t,0,68), wheret = (z,v,2) is the origin of the target
frame in the fixed reference fram@,= («, 3,v) are the roll, pitch and yaw angles of the target frame, measur
anti-clockwise around the, y andz axes, respectively) = (dt, d6) are the velocities, witht = (dx, dy, dz) the
linear velocity of the origin, and@ = (d«, 63, éy) the angular velocities around the target reference franes,ax
andP? = {pﬁ}ivz"l are the positions of the point features in the fixed referdraome R. This full description of
the state will not be required in all applications. Dependim the characteristics of the extended object and its
motion, some of the state components may become redundant.

With the definition of the state as above any Cartesian gointn the target reference frame can be mapped to

a point in the fixed reference frame® through the transformation

p"=M(@)p" +¢

1
= R(0)P(H)Y(1)p" +t, w
with
1 0 0 cosf 0 sing cosy —siny 0
R(a) = |0 cosa —sina| PB)= 0 1 0 Y(7) = [siny cosy 0 (2)
0 sina cosa —sinf8 0 cosf 0 0 1
the rotation matrices corresponding to roll, pitch and yeegpectively.
We assume the system dynamics to be Markovian and of the form
p(xk|xr-1) = p(PL, tr, Ok, 0k |PL 1, th1,0k—1,05-1) -

= p(Pi|tr, 0%)p(te|te—1, Ok, Ots)p(0%|0k—1,00%)p(81|0k—1),
wherek denotes the discrete time index. We model the velocitiemdapendent first order Gaussian random walk
models,i.e.
p(0k|0k—1) = N(0k|0k—1,As) (4)

where N(-|u, ) denotes the multi-variate Gaussian distribution with meamand covariancex, and A5 =

diago?,07,0%,0%,05,02) is the diagonal matrix with the variances of the random walkiponents, which are

xryr Tz
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assumed to be fixed and known. Other models for the veloatiasbe straightforwardly accommodated within our
framework. Given the velocities the components for the tiocaand orientation of the target frame in (3) can be

computed deterministically as

0, =01+ A1y
®)
ty =tp_1 + ArM(6)dts,

where Ar is the time step. The first component in (3) is used to exptessihcertainty about the exact locations

of the point features. We assume it to be of the form

NP
p(PFtx, 01) = [ [ ML Bl 021s), (6)
=1

wherel,, denotes ther x n identity matrix, and the mean of the Gaussian distributionthe i-th point feature
follows from (1) asﬁfk = M(0;)p! + tx. Note that the uncertainty is assumed to be isotropic ardh@dnean
location, with a fixed and known variane%.

This completes the specification of the general form of thelehdepending on the characteristics of the object
of interest and its motion, the model can often be furthetricted, as is exemplified below.

Example 1:In the tracking application we will consider later, we wilk binterested in tracking a stick like
extended object. The stick object coincides with thexis in the target reference frame, with point features at
p? = (50,0,0), p4 = (-50,0,0) andpl = (20,0,0). The object is allowed to translate along itsaxis, pitch
around itsy axis, and yaw around its axis. The velocities for the other components effectivasagpear from
the state. An example trajectory, simulated from the dywarini (3), is depicted in Figure 1. For this trajectory the

fixed parameters of the model were set(#q, 03,0+, 0p) = (1,0.1°,0.2°,0). |

Fig. 1. Example 3D trajectory for the stick object. Even though no explicit attempt is made to model any physittebutes of the object,

the dynamic model generates realistic and feasible tajest
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IIl. M EASUREMENTS ANDLIKELIHOOD

The likelihood model we describe in this section followssaly the multi-hypothesis likelihood derived in
[39]. The extended object tracking is performed from somseoker location in the fixed reference framfite We
will denote the observer location hy” = (z©,4°, 2¢), and allow it to vary with time. At each time stephe
sensors yield\/ observationsy = (y1---yar), Where M may also vary with time. The nature of the individual
measurements will depend on the characteristics of theosenBypically each measurement will correspond to an
estimated line of sight from the observer to a point featiteasurements arise not only from the point features of
the extended object. Additional clutter measurements reaylr due to multi-path effects, other objects within the
sensor range, sensor erroese. In the absence of specific models for clutter and multi-path will assume that
all of these effects can be modelled within a random cluttemework. In cases where models are available for
multi-path, these could be incorporated into our non-lirfdeering framework. Hence we will assume that point
features on the extended object can generate at most onema@ant each at a particular time step, but may also
go undetected. We will further assume that several or alhefrheasurements may be due to unstructured, random
clutter.

For a given vector of\/ measurements we introduce the association hypothesigr, M, M), whereM¢ is
the number of clutter measuremenidy is the number of measurements resulting from the extendfattopoint
features, with\/ = M¢+ M. The elements of the association veatet (ry - - - ra) lie in the setr; € {0--- Np},
with r; = 0 if measurement is due to clutter, and; = j # 0 if measurement is generated by point featugeof
the extended object.

In most practical applications the association hypothesis unknown. We will nevertheless first derive a
likelihood model for the measurements, conditional on avkm@ssociation hypothesis. We will then show how
the likelihood can be marginalised over the unknown hypsetedo remove this uncertainty. This strategy is only
feasible if the total number of hypotheses is not too largaet, in Section V, we will present an alternative strategy
based on importance sampling to estimate the unknown asswchypothesis.

Conditional on the association hypothesis we assume theureraents to be independent, so that the likelihood

can be written as

M
p(y|x1 A) = HP(Yi|Xa7°i)a (7)
=1
with
. Uy(y;)) =V~L forj=0
p(yilx,ri = j) = (8)
p(yilp}) forj=1---Np,

whereld 4 (-) denotes the uniform distribution over the gktThus, clutter measurements are assumed to be uniformly
distributed over the range of the sengara region whose volume is assumed toWeFor measurements of the

point features the likelihood depends only on the locatibthe corresponding point feature in the fixed reference

1In what follows we will suppress the time index for the sakenofational clarity.
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frame. Under these assumptions the conditional likelihca be written as
pyIx,A) =V T plyilpf), ©)
i€I(N)
whereZ () is the subset of measurement indices that correspond to fe@itures. Note that the size of this set is
M.

Example 2:If the sensors yield line of sight measurements of pointaesirelative to the observer, the individual
measurements can be written gs= (R;, ¢;,%;), whereR; is the range from the observer to the point source,
and ¢; and); are the azimuth and elevation angles, respectively, of thiet gource relative to the observer. If
the components of the line of sight measurements are assuntexlcorrupted by independent Gaussian noise, the

conditional likelihood for the point features becomes
p(yilp)) = Myily (P, p°), Ay), (10)

where we have assumed that= j # 0. The covariance\, = diagc%, 07, 07,) is the diagonal matrix with

the individual measurement noise variances, and is asstoniee fixed and known. The components of the mean

?(Pf”,po) = (}A%j,@,@) are given by

>~ (Y% Y
(bg = tan (7555%—;170) (11)
~ 2R 20
wjztan1< J T 2).
((@ff = 2)2 + (uf —y°)2)"

For this model the range of the measurements is giveW by [0, Riax] X [—7, 71| X [=7/2,7/2], where Ryax iS

the maximum range of the sensor. Thus, the volume of the memsunt space becom&s= 272 R,,.y. |
In most practical applications the association hypothasis unknown. For a given number of point feature
detectionsMy in M measurements the total number of hypotheses are given by

MIN,!
Nx(Mp, Mc) = P . 12
MMz, M) Mp!(M — M7)/(Ny — Mry)! (12)

This follows from the number of ways of choosing a subsebff elements from the available/ measurements,

i.e. (AI‘fT) multiplied by the number of possible associations betwben\/r detections and thé&/, point features,
i.e. Np!/(Np — Mr)!. However, the number of detected point featulés is unknown, so that the total number

of feasible hypotheses is given by
min(Np, M)

Ny = Z Nx(Mr, Mc). (13)
Mr1+=0

If the total number of hypotheses is manageable, it is ptessibmarginalise over the association uncertainty, as is

done in [39]. The marginal likelihood is of the form

p(y[x) = > pAX)p(y]x, N (14)
A
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The marginalisation requires the definition of a prior disttion over the association hypothesis. We assume this
prior to be of the form
p(A[x) = p(r|Mr, Mc)p(Mc)p(M7|x), (15)

with
p(x|Mz, Mc) = (NA(Mg, Mc)) ™!

p(Mc) = (uV)Me exp(—pV)/Mc! (16)
]\/[T|X Z H PDz H (1—PD71').
h i€Z(h) i€{1---Np}—Z(h)

In the absence of measurements the prior for the associatictor is assumed to be uniform over all the possible
hypotheses for a known number of target detections. The ruwifbclutter measurements is assumed to follow a
Poisson distribution, with: the spatial density of the clutter, which is assumed to bealfawd known. To compute
the prior probability for the number of point feature detecs we associate a unique detection probability with
each of the point feature{sPDJ}fi"l. Note that the detection probabilities may depend on thie,sta model the
effect that feature points may occlude each other in cetairfigurations relative to the observer. It is also possible
to allow these probabilities to evolve over time, but we dd cansider this scenario here. The prior probability
for the number of detections is then obtained by summing th&el(ﬁ‘;) possible ways to group/r detections
among theN,, point features, andé above ranges over these hypotheses. If the detection plibpbabthe same for

all the point featured’p, the prior for the number of point feature detections reducethe binomial distribution,

i.e
N, , _
p(Mrlx) = ( M")PS”(l — Pp)Ne= i, (17)
T
Under these assumptions the marginal likelihood can bdemrés
Pp Mt ()
_— i 18
pylx) o ;(u(l e ) I rGilpf). (18)
i€Z(N)

where constant terms have been discarded, and we have meadephndency of the number of detections on the
association hypothesis explicite. Mr()).

Evaluation of the conditional likelihood in (9) is geneyatif O(M) complexity. In contrast, the computational
complexity for the marginal likelihood in (18) i©®(M Ny). For a fixed number of point features and detection
probability the number of hypotheses increases exporigntiith an increase in the number of clutter measurements,
as is depicted in Figure 2. Thus, in many applications of fizakinterest the number of feasible hypotheses is
prohibitively large, so that the marginalisation cannotgsformed explicitly. In Section V we will present an

alternative importance sampling based strategy to takeustf the association uncertainty.

IV. PARTICLE FILTER TRACKING

In this section we describe the particle filter tracking femwork for a generic model parameterised by a state

We will present the specifics for the extended object tragkiroblem at the end of this section and in Section V.
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Fig. 2. Complexity curve. Number of hypotheses versus number of clutter measureni@nfive sources and a unity detection probability.

For tracking the distribution of interest is the postepox|y1.x), also known as the filtering distribution, where
vik = (y1---yr) denotes all the observations up to the current time stephdrBayesian Sequential Estimation

framework the filtering distribution can be computed acewydo the recursion

P(Xkly1:) OCP(}’k|Xk)/p(xk|xkfl)l)(xk71|Y1:k—1)dxk71a (19)

wherep(xy|xi—1) is the dynamic model describing the state evolution, afyd.|x;) is the likelihood model. The
recursion is initialised with some distribution for thetial statep(xy). Once the sequence of filtering distributions
is known point estimates of the state can be obtained acuptdi any appropriate loss function, leading ¢og,
Maximum A Posteriori(MAP) and Minimum Mean Square Error (MMSE) estimates.

The tracking recursion yields closed-form expressionsnty @ small number of cases. The most well-known
of these is the Kalman filter [14] for linear Gaussian dynamia likelihood models. Both the dynamic and
likelihood models we consider here contain non-linear and-@aussian elements. This renders the tracking
recursion analytically intractable, and approximatiocht@iques are required. Sequential Monte Carlo (SMC)
methods [19]-[21], otherwise known as Particle Filters][1Z8], or CONDENSATION [22], have gained a lot
of popularity in recent years as a humerical approximaticstegy to compute the tracking recursion for complex
models. This is due to their simplicity, flexibility, easeiofplementation, and modelling success over a wide range
of challenging applications.

The basic idea behind particle filters is very simple. Startivith a weighted set of sample{x,(le,w,(fz1 N
approximately distributed according tdxx—1|y1.x—1), Nnew samples are generated from a suitably chosen proposal
distribution, which may depend on the old state and the neasomrements,e., x,(j) ~ q(xk|x§f21, Vi), i=1---N.

To maintain a consistent sample the new importance weigbtset to
w,(:) X w](:)lp(yk(lj(]g )(),fj(xlg)|xl(:)l), with iwg) =1. (20)
Q(sz |Xklf1va) i=1

The new particle se{xg), w,(f)}lN:l is then approximately distributed accordingpttx|y1.x). Approximations to

the desired point estimates can then be obtained by Montl® @srhniques. From time to time it is necessary
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to resample the particles to avoid degeneracy of the impoetaveights. The resampling procedure essentially
multiplies particles with high importance weights, andcdisls those with low importance weights. A full discussion
of degeneracy and resampling falls outside the scope ofptijier, but more details can be found in [19].

For the extended object tracking problem we will consideo tveenarios. In the first setting we will assume
that it is possible to marginalise over the association dat#y, so that the dynamic and likelihood models in
(3) and (18), respectively, apply. Similar to the bootstfifter [17] we will take the proposal for the state to be
the dynamics, so that the new importance weights becomeogiopal to the corresponding particle likelihoods,
multiplied by the old importance weights. The computatlarmmplexity of this algorithm iSO(NM N, ) at each
time step, and quickly becomes infeasible for realistic hara of point features and clutter measurements. The
second setting is described in the following section, armalds/the computationally expensive marginalisation by

sampling the association hypotheses from an efficient malpdistribution.

V. TRACKING WITH ASSOCIATIONUNCERTAINTY

In problems where the total number of association hypothisskarge direct marginalisation over the association
uncertainty becomes computationally prohibitive. In théstion we present an importance sampling based strategy
to account for this uncertainty. More specifically, we augbhthe state with the unknown association hypothesis.
Our aim will then be to estimate the posterjaixy, A\x|y1.x) recursively within the particle filtering framework.

Under these assumptions the particle weights in (20) become

o ol A O e e [xi )

W ORENCIMGIING ’ (1)
a(x,”, AL X2 Ay Ye)

wherep(yk|xx, \x) is the conditional likelihood in (9)p(\x|xx) is the association hypothesis prior in (15), and

p(xxk|xx—1) is the dynamics in (3). The problem thus reduces to definiergdimt proposal distribution for the state

and association hypothesjéxy, A\x|xx—1, \k—1,¥k). We assume this proposal to be of the form

(X, Ak Xk—1, Ae—1, Yk) = @Ak |Xk, Y )P(Xk [Xp—1)- (22)

As before the proposal for the state is taken to be the dyrsaimi¢3). The proposal for the association hypothesis
depends only on the information available at the curreng tatep. This reflects the fact that there is, at best, only a
weak temporal dependence between the association hypseth&e will define this proposal in terms of a proposal
for the association vectar(ry |xx, yr), with the proposals for the number of clutter measuremé#itsand point
feature detectiond/r being implicit. As in [1], [33] we assume the proposal for #i&sociation vector to take the

following factorised form

M
q(rlx,y) = H‘J(Tz'|7"1 S Tio1, X, Yi)- (23)
i=1

2|n what follows we will again suppress the time index for ttedes of notational clarity.
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Thus, the proposal for theth component of the association vector depends only onghesponding measurement.

Using Bayes’ rule we define the proposal for thth component as
q(rilry - ric1,%x,y3) o< p(yalx, ri)g(rifry - rim1,%). (24)

The first term on the right hand side follows from the corregfing component of the conditional likelihood in (8),
and of course will cancel with the corresponding numeratamtin (21). For a particular point feature this value
will be higher for measurements closer to the point featsoethat the proposal essentially captures the notion of
a soft gating function. The second term forms the prior f@r #th component of the association vector, and we

define it as

, Qo forj=0
q(rs = jlry---ri1,x) o (25)

¢; [T (1= 8r ) forj=1---Np,
whereg; ; denotes the Kronecker delta. The prior for the clutter higpsis is set to be proportional to some fixed
value0 < go < 1. For all the other hypotheses the prior component is set forygortional to some fixed valug,
provided that the corresponding point feature has not @réaen assigned to another component of the association
vector. For these hypotheses we will normally set the fixddevéo be proportional to the detection probability of

the corresponding point features.
~_ Ppi(1-q)

;= .
Zg;ﬁ PD,k
This completes the specification of the proposal distrdsufor thei-th component of the association vector in (24).

(26)

Since this distribution is discrete it is easily normaliseti sampled from using standard techniques. Generating
a sample for the entire association vector from the propiosé?3) can be achieved by sequentially sampling the
individual components conditional on each other fromo r,,. Note that the factorisation in (23) can be performed
over any permutation of the components of the associatiatoreln practice we choose the order randomly for
each particle at each iteration.

The computational complexity of the resulting particlesfilng algorithm isO(NM Ny,). It increases only linearly
with the number of point features and clutter measuremant$,not exponentially, as is the case for the algorithm
employing the marginal likelihood. This importance sam@lapproach to estimate the distribution of the association
vector is more general than the application considered. he@an be applied in any setting, static or dynamic,

where the data association problem arises within a prabtbimodelling framework.

VI. EXPERIMENTS AND RESULTS

In this section we report the results of two sets of experisieFhe first, in Section VI-A, gives a comprehensive
evaluation of the proposed extended object model and trgc&igorithm on a challenging 3D trajectory under
various filtering and modelling scenarios. The second, otige in Section VI-B, illustrates the sampling based

data association strategy on synthetic 1D and 3D problechs@mpares with nearest-neighbour Kalman algorithms.
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A. Experiment 1: Extended Object Tracking

For the extended object we will use the stick model from Exenipin Section I, with the detection probability
fixed to Pp = 0.75 for each of the point features. To evaluate the trackinggperhnce we generated a deterministic
trajectory with X = 51 unevenly spaced time steps, which we will denote{lay } £ ;. For the observations we
will take line of sight measurements from a non-stationapgesver location, as in Example 2 in Section Il
We set the maximum range for the sensorfiQ., = 2,000, and the measurement noise standard deviations to
(or,04,04) = (2,1°,1°). The trajectory for the observer was also generated detéstically.

We consider two main scenarios. In the first there are noeclateasurements, whereas the second is characterised
by an increasing level of clutter. In both cases we genesatthstic measurements by first sampling from the prior
for the association hypothesis in (15), and conditional lig, tsampling from the conditional likelihood model in
(9).

For each of the scenarios we ran the patrticle filter for thiiferdnt algorithm settings. In the first, which we
will refer to astruth, we used the conditional likelihood in (9), conditional ¢re ttrue hypothesis. This establishes
a baseline performance for the other algorithms, as it i®alisable in practice without prior knowledge of the
association hypothesis. In the second, which we will reéeia$ marginal we used the marginal likelihood in
(18). In the third, which we will refer to asonditional we again used the conditional likelihood in (9), but this
time generated the association hypotheses from the prbd@gabution in (23). In all cases the particle filter
was initialised from a Gaussian distribution centred ontthe first state, and state samples were generated from
the dynamics in (3), witho,, 03, 04,0p) = (1,0.5°,1°,0). For the association proposal the prior for the clutter
hypothesis was set i = 10~° for the experiments with clutter, ang = 0 for those without. Using the particles,
we computed MMSE estimates for the states as in (28). We cardpbe performance of the different algorithms

in terms of the Root Mean Square Error (RMSE), which we defme a

K Np
1 = *
RMSE = DD RN (27)
KNp k=1 i=1

and the computational effort. As a measure for the compmurtatieffort we took the average execution time per
time step of a fairly optimal Matlab implementation of théfelient algorithms.

The results for the experiments without clutter are depiate=igure 3. These were obtained by averaging over 20
runs of the algorithm for an increasing number of particks. all the runs the same target trajectory was used, but
new measurements were generated for each individual ruexpacted the error decreases with an increase in the
number of particles, with the performance of the truth athar being generally the best. The marginal algorithm
outperforms the conditional algorithm for small numberspafticles. This is due to the larger state-space for the
latter algorithm, making the search problem more complex. lore than 500 particles the error statistics for
the three algorithms become virtually indistinguishaller all three algorithms the computational effort increase
linearly with an increase in the number of particles, witk tonditional algorithm being slightly superior to the

marginal algorithm. Thus, in the absence of clutter measands, and for a small number of point features, the
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Fig. 3. RMSE and average execution time statistics for experimentsvithout clutter. RMSE (left) and average execution time (right) for
the true (blue circles), marginal (red triangles) and ctbowial (green squares) algorithms, as a function of the rarnob particles. The error
decreases with an increase in the number of particles, Wwehperformance of the three algorithms being virtually stidguishable for 500

particles and above. For all three algorithms the compmitatieffort increases linearly with the number of particles

number of hypotheses is manageable.

The results for the experiments with clutter are depictedrigure 4. These were obtained by averaging over
20 runs of the algorithm for an increasing clutter rate, whle number of particles fixed t& = 500. Again,
all runs shared the same trajectory, with new measurememisrgted for each individual run. The error statistics
are similar for each of the algorithms, and remain reasgnathstant with an increase in the clutter rate. In this
case, however, the computational effort increases expiatigrwith the clutter rate for the marginal algorithm. The
computational effort is much lower for the conditional aigfam, and increases only slightly with an increasing
clutter rate. To conclude Figure 5 shows the true and tymstimated trajectories for the first feature point for a
clutter density ofu = 2/V. The subjective quality of the trajectories is comparablethe three algorithms, but

that for the marginal algorithm comes at a substantial cdatjmnal cost.

B. Experiment 2: Comparison of Sampling Based Data Assoaiatith Kalman filter

We performed two simulations to illustrate the performantesampling based data association. In both cases
we assumed simple rigid target motion, and Gaussian Canteseasurements around the true target locations.
We assumed Gaussian random walk models for the target tiekydihus the unknown state vector for the model
consists of the center of gravity for the target, its velpaind theN, — 1 relative positions of object features from
the center of gravity. This was implemented using a Raoi8ladized particle filter [19], [20], [40] since we have
assumed a rigid target and linear dynamics/observatioateEgqu The idea of Rao-Blackwellization is simultaneous
use of Kalman filter and particle filters. The Kalman filter ised for marginalisation of the continuous variable
part of the state vector, and the particle filter is used ferdiscrete variable part of it, i.e. the association vector.

The first simulation considered 1D tracking &f, = 10 target feature points over 30 time steps, with = 0.75
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Fig. 4. RMSE and average execution time statistics for experimentsvith clutter. RMSE (left) and average execution time (right) for the
true (blue circles), marginal (red triangles) and condaio(green squares) algorithms, as a function of the clutesity, with the number of
particles fixed taV = 500. The error statistics are similar for all three algorithrasd remain reasonably constant with an increase in thesclutt
rate. The computational effort for the marginal algorithnovgs exponentially with the clutter rate, whereas that far tonditional algorithm
increases only slightly.

Fig. 5. Estimated trajectories. True (blue circles) and estimated (red triangles) trajies for the first point feature, obtained by the true
algorithm (left), marginal algorithm (middle) and condital algorithm (right). The trajectory of the observer i®wh in black squares. The
subjective quality is similar for all three algorithms.

and measurement noise standard deviatioa- 0.1. The second simulation considered a more challenging 3D
tracking scenario ofV, = 5 target points over 50 time steps, wiff, = 0.75 and measurement noise standard
deviationo = 0.3. Variance parameters of the Gaussian random walk modelhédotarget velocities are, = 0.1
for the 1D scenario, and, = o, = 0, = 1 for the 3D scenario. We uself = 1,000 particles for both the 1D
and the 3D scenarios.

Here, we explain how the tracker was initialised. Note tlhat focus of this paper is the evaluation of tracking
performance, not on track initialisation. For this reagbe,assumption on the initial state is rather well-conditio.
We suppose that first two observations contain neither ngssbservations nor clutter. The initial state of the tracke
is then set as follows. For the center of gravity of targetdh@initial state, a Gaussian distribution with mean at the

center of gravity of observation &t= 1 and variancd.0 is assumed. For the velocity of the initial state, a Gaussian
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distribution is assumed with mean calculated by the diffeesbetween the centers of gravity of observatibrs 1
andk = 2, and variancé.1. For the remaining part of the state vector, which arelMje— 1 relative positions of
the target features from the center of gravity, a Gaussiafmilsition with mean 0 and variande0 is used.
Synthetic data for the 1D scenario in an observation spacsizef 15, with clutter density, = 1.0 (i.e. an
expected number of 15 clutter measurements per time scg)awn in Figure 6. Typical estimation results for the
1D scenario are given in Figure 7. The plotted estimate isgMemum Mean-Square Error estimate of the target

state, obtained from the particle filter in the standard wsty a
N . .
Xy = Z w,(;)x,(;), (28)
=1

and this is seen to follow closely follow the true targetdrdpries.

We now conduct comparison experiments between the propuseidle filter method and 1) the Kalman filter
given the true association, and 2) the nearest neighbociatism Kalman filter. In the latter, the nearest observatio
is assigned to the corresponding target in state vectdn, aviy observations out of a 4 sigma region being assigned
automatically to clutter. Typical results for these twoeifif, operating on the same dataset as above, are shown
in Figures 8 and 9. The result from the 1) (Kalman filter withetrassociations) is considered to be the optimal
estimate since the true associations are given for the a&stimand the remainder of the model is linear/Gaussian.
Comparing with the result for the nearest neighbor asdociatalman filter, the tracking is lost from around
k = 15, owing to the high levels of clutter. More sophisticatedadassociation could of course be adopted here,
but we choose this basic scheme to give a baseline for cosgpari

The three methods are now compared in Monte Carlo trials aveumber of different scenarios. For clutter
densitiesy = 0.0,0.2,0.4,0.6,0.8,1.0 and 2.0, we have observed the change of the performance for these thr
methods. Figure 10 shows comparison of the methods by roanrmsgquare errors in observation space. Figure
11 shows thee comparisons between Kalman filter given treecégions and the proposed method. We can see
in these figures that, far > 0.8, the performance of the nearest neighbour association dtaliitter deteriorates
significantly, while the deterioration of the proposed noeths small compared to the optimal Kalman filter, as
shown in Figure 11. These deteriorations compared to thenaptare mainly caused by incorrect association
estimates within each method. To analyse this effect, we lsavnmarized the number of wrong associations as
shown in Figure 12. We can observe the signficant differenciaé numbers of wrong associations between the
nearest neighbor association Kalman filter and the propostod, especially for > 0.8.

Synthetic data for the 3D scenario is shown in Figure 13.nkion results by nearest neighbour association
Kalman filter and the proposed method are shown in Figuresnti41&. We can see in the figures that the result
by the proposed method is close (almost indistinguishatde) the true trajectory, while by nearest neighbor

association Kalman filter there are some noticeable disore@ps between the truth and the estimated.
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Fig. 6. Example Synthetic data for the 1D scenario Plotted points are the measurements. Target featureseteetedd with probability
Pp = 0.75, and the measurement noise standard deviation 4s 0.1. Clutter density isu = 1.0. This is a challenging scenario which has
many missed detections and high clutter level.

15 ¥

Fig. 7. Estimation results for the 1D scenario Result for tracking of 10 points of an object in motion in 1pase. Lines show the estimated
trajectories of the point features in measurement spac¢hairttrue trajectories (the two are almost indistinguidean this case). Measurements
are shown as dots, and many clutter measurements are pvegieits density being: = 1.0.

VII. CONCLUSIONS

In this paper we considered the extended object trackinpl@mo. Extended objects were modelled as point
features in a target reference frame. We developed a iealighamic model to capture the motion of the extended
object in terms of the translation and rotation of the targétrence frame relative to a fixed reference frame. For the
generally unlabelled measurements we showed how a myltithesis likelihood can be obtained by marginalising
over all the association hypotheses, as in [39]. The conitglek this marginalisation increases exponentially with

an increase in the number of point features and clutter meamnts, and quickly becomes infeasible in realistic
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Fig. 8. Estimation results for the 1D scenario by Kalman filter given the true association vector Result for tracking of 10 points on
an object in motion in 1D space. Lines show the estimate@drajies of the point features in measurement space andttheitrajectories.
Measurements are denoted by dots, and many clutter measuieare present with density= 1.0. Good results are obtained since the true

association is given to the filter.

scenarios. As an alternative we proposed a particle filjealgorithm where the unknown association hypotheses
were sampled from an efficiently designed proposal didtiobu The computational complexity of this algorithm
is substantially lower than that for an equivalent strateging the marginal likelihood. Initial results show the
estimation accuracy for the two strategies to be comparébéhould also be noted that the importance sampling
approach to estimate the distribution of the associatiaioves more general than the application considered here.
It can be applied to other tracking problems involving npléitargets, or in any setting, static or dynamic, where
the data association problem arises within a probabilisticielling framework.

One of the main considerations for future work is the desifya more efficient proposal for the state. Sampling
the state from the dynamics takes no account of the new neasuits, and it is often necessary to artificially
increase the excitation noise of the dynamic models to enthat all the viable regions of the state-space are
explored with a finite number of particles. The downside a$ tils that the resulting trajectories may not be as
smooth or accurate as desired. With proposals that takeiatod the new measurements the excitation parameters
can be left at realistic levels, leading to smoother trajges. Further important issues to be considered include th
development of strategies to learn and adapt the paranddtére dynamic model online, for example in the spirit

of [41], and to automatically detect the number of point deas.
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Fig. 9. Estimation results for the 1D scenario by nearest neighbor ssociation Kalman filter. Result for tracking of 10 points on an object
in motion in 1D space. Lines show the estimated trajectarfdbe point features in measurement space and their trigetivaies. Measurements
are denoted by dots, and many clutter measurements arenpreitie density,. = 1.0. The filter loses track from about = 15.
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Fig. 10. Comparison of Root Mean Square Error of tracking result for the 1D scenario Root Mean Square Error of tracking result for 10
points on an object in motion in 1D space. KF (left bar) desdte result by Kalman filter with true associations, NNKFn¢ee bar) denotes
the result by the nearest neighbor association Kalman, fatedt RBPF (right hand bar) denotes that of by the proposetitigafilter method.
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space. Blue lines show the estimated trajectories of thet geatures in measurement space and their true trajest@iack lines - almost
indistinguishable from blue).
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