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ABSTRACT

Here we describe recent advances in particle filtering
algorithms and models for tracking of manoeuvring ob-
jects in clutter. The methods develop on the basic
variable dimension particle filtering algorithms intro-
duced in [1], in which a new type of dynamical model
is introduced whose state variables arrive at unknown
times relative to the observation process (hence ‘vari-
able rate’). Targets are assumed to follow determinis-
tic trajectories in between state times, determined by
an appropriate model, such as the differential equation
model for the object. The framework allows for auto-
matic modelling and estimation of the trajectories of
targets using an adaptation of particle filtering meth-
ods [2] into the variable dimension setting. In this
paper we introduce more effective sampling schemes
for the variable rate setting that ensure future states
are only generated as and when required, new dynam-
ical models appropriate for manoeuvring objects, and
new observation models under the assumption of a non-
homogeneous Poisson process for both targets and clut-
ter. Simulations show very effective tracking perfor-
mance under challenging settings which cannot be em-
ulated in a standard fixed rate scheme.

1. INTRODUCTION

Filtering methods for tracking of objects in noise are
now very well established, see for example [3, 4]. In
straightforward settings (close to linear/Gaussian mod-
els, low clutter levels) the classical Kalman filter and its
variants can be successfully adopted. In more challeng-
ing settings (highly non-linear, non-Gaussian models,
high clutter densities and low detection probabilities),
other numerical methods are required, and in recent
years a class of methods receiving great attention is
sequential Monte Carlo, or particle filters [2, 5, 6]. In
common with the earlier methods the particle filter re-
lies on a state-space representation of the system in
terms of Markov hidden states {xn} and observations

{yn}:
xn+1∼f(xn+1|xn) State evolution density

yn∼g(yn|xn) Observation density (1)

with x0 ∼ f(x0) being the initialisation, where ∼ de-
notes that the variable to the left is drawn indepen-
dently from the probability density on the right.

The optimal (‘Bayesian’) filtering recursions from
time index n to n + 1 are then given by

p(xn+1|y0:n) =
∫

p(xn|y0:n)f(xn+1|xn)dxn (2)

p(xn+1|y0:n+1) =
g(yn+1|xn+1)p(xn+1|y0:n)

p(yn+1|y0:n)
(3)

The Kalman filter implements this exactly in the lin-
ear/Gaussian setting. The general update rule is an-
alytically intractable for most models of practical in-
terest. We therefore turn to Sequential Monte Carlo
(SMC) methods [2, 5, 6], also known as particle filters,
to provide an efficient numerical approximation to the
update rule. These methods have gained tremendous
popularity in recent years over a wide range of track-
ing applications. They are applicable to non-linear and
non-Gaussian models, and are able to capture multi-
modal distributions. The basic idea behind particle fil-
ters is simple: the target distribution is represented by
a weighted set of Monte Carlo samples. These samples
are propagated and updated using a sequential version
of importance sampling as new measurements become
available. Using the samples, estimates of the target
state can be obtained using standard Monte Carlo in-
tegration techniques. The particle filter implements the
filtering recursions approximately by propagation of a
weighted ‘cloud’ of N particles {x(i)

n , w
(i)
n , i = 1, ..., N},∑

i w
(i)
n = 1. A basic filter [2, 7] implements the follow-

ing recursion at time n, and for particles i = 1, ..., N :

x
(i)
n+1 ∼ q(xn+1|x(i)

n , y0:n+1),

w
(i)
n+1 ∝ w(i)

n

g(yn+1|x(i)
n+1)f(x(i)

n+1|x(i)
n )

q(x(i)
n+1|x(i)

n , y0:n+1)



where q() is a specially designed proposal density, and
this is usually followed at some time steps by a resam-
pling operation that selects the particles according to
their weights and then resets weights to 1/N .

There are now many applications of particle filters
in the tracking arena, see e.g. [8]. Most of these ap-
plications apply particle filtering to fairly simple (typ-
ically linear) dynamical models with more or less elab-
orate observation models, including sometimes multi-
ple targets and/or random clutter. In this paper we
develop strategies based upon a variable rate state ar-
rival process. The material takes as its basis the vari-
able dimension particle filters and modelling frame-
work introduced in [1], in which target states are al-
lowed to arrive at different and unknown rates com-
pared with the observation process. In this way the
models are able to model parsimoniously the various
turning/straight, smooth/non-smooth manoeuvres of
an object. The basic particle filtering techniques re-
quired and basic tracking models were proposed in [1],
and here we develop these further in several ways, by
incorporation of: more efficient sampling schemes for
the state process; specialised deterministic resampling
methods; new variable rate dynamical models within
an intrinsic coordinate system for the motion of ma-
noeuvring targets; observation models are proposed based
upon a Poisson assumption for both targets and clutter
(in this way the data association problem in standard
tracking work is avoided altogether and large numbers
of clutter points/low target detection probabilities may
readily be dealt with). We believe the new Poisson ob-
servation models adopted are closely related to those
proposed in [9], although the derivation and exposi-
tion here are more straightforward. Simulations are
presented for challenging scenarios with many clutter
points and highly manoeuvrable targets, demonstrat-
ing the robustness of the variable rate filters compared
with their more standard fixed rate counterparts.

2. VARIABLE RATE MODEL

The variable rate state is defined as as xk = (θk, τk),
where k ∈ N is the discrete state index, τk ∈ R+ de-
notes the state arrival time, and θk denotes the vec-
tor of variables necessary to parameterise the target
state (see [1]). Commonly they will include position,
velocity, heading, etc., variables. We will assume that
the variable rate state sequence follows a Markovian
process such that successive states are independently
drawn as follows

xk ∼ f(xk|xk−1) = fθ(θk|θk−1, τk, τk−1)fτ (τk|τk−1).
(4)
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Fig. 1. Standard fixed rate representation (top) and
variable rate representation (bottom)

The Markovian assumption is convenient for presenta-
tion, but can easily be relaxed if the models require it.
See Fig. 2 for a comparison of the variable rate model
with the fixed rate model. In the fixed rate model, tra-
jectories are parameterised in terms of a state variable
per time point, even when a very smooth and unvarying
manoeuvre is being executed. The variable rate model,
through a suitable choice of dynamical model, param-
eterises smooth straight sections with only a few state
points, while rapid manoeuveres require more closely
spaced states. We will denote by yn the vector of mea-
surements, with n ∈ N the discrete measurement time
index, as above. The rate of the measurement pro-
cess will typically (but not necessarily) be higher than
that of the state process. In our variable rate setting
the observation functions are specified in terms of a
‘neighbourhood’ Nn of state indices defining the de-
pendence structure of the data. The data are then
assumed drawn independently from a density function
conditional on the neighbourhood of state points Nn :

yn ∼ g(yn|{xk : k ∈ Nn}) = g(yn|xNn). (5)

Note that the neighbourhood is a deterministic func-
tion of the time n and state sequence x1:.... This is
quite a general formulation that encompasses many



Bayesian models. Typically the likelihood is calcu-
lated as g(yn|θ̂n(xNn

)), where θ̂n(xNn
) is a determinis-

tic function of xNn . We will propose specific examples
of both dynamical models and observation functions in
a later section.

3. VARIABLE RATE STATE ESTIMATION

The objective will be to estimate recursively the se-
quence of variable rate state points as the measure-
ments become available. All the information concern-
ing the variable rate state sequence is contained in its
conditional probability distribution. In keeping with
the standard filtering nomenclature this conditional dis-
tribution will be referred to as the variable rate filtering
distribution, defined as

p(x1:k+
n
|y1:n), (6)

where y1:n = (y1 · · ·yn) is the sequence of available
measurements up to time index n and x1:k = (x1 · · ·xk)
denotes a sequence of k hidden state variables; k+

n de-
notes the index of the state variable having largest time
index τk within all neighbourhoods N1 through Nn, i.e.

k+
n = {k ∈ N1:n : τk > τl,∀l ∈ N1:n, l 6= k} (7)

where N1:n = ∪n
k=1Nk. Note that k+

n is a random vari-
able that depends deterministically on the sequence of
xk values.

The variable rate filtering distribution has variable
dimension support since k+

n itself is a random variable
(to be estimated along with the hidden state sequence).
Hence the problem can be considered as one of dynam-
ical model uncertainty as well as parameter estimation.

For a recursive inference procedure we require an
update rule of the form

p(x1:k+
n−1

|y1:n−1)
yn−→ p(x1:k+

n
|y1:n), (8)

i.e. once a new measurement is received, the variable
rate filtering distribution at the previous time step is
incrementally updated to yield the new variable rate
filtering distribution at the current time step. Using
Bayes’ theorem and the modelling assumptions of the
variable rate model, the new variable rate filtering dis-
tribution can be related to that at the previous time
step by

p(x1:k+
n
|y1:n)

∝ g(yn|xNn)
p(y1:n−1|x1:k+

n
)

p(y1:n−1|x1:k+
n−1

)

f(xk+
n−1+1:k+

n
|xk+

n−1
)p(x1:k+

n−1
|y1:n−1).

The first term in the above expression is the observa-
tion likelihood, whereas the third term denotes a re-
peated application of the variable rate state evolution
model in (4) to complete the local neighbourhood for
the new measurement yn, defined as

f(xk:k+L|xk−1) =
k+L∏

l=k

f(xl|xl−1). (9)

It is worthwhile to note that the second term, the ratio
of likelihoods, will be unity in many cases, since the
addition of states xk+

n−1+1:k+
n

will not alter the neigh-
bourhood structures for data points y1:n−1 and hence
the ratio of likelihoods is one. In practice this can be
ensured for all of the models of interest here by a suit-
able definition of the neighbourhood structure. We will
assume in all future calculations that neighbourhoods
are constructed in this way so that future states be-
yond k+

n−1 cannot alter the neighbourhood structure
for yn−1, and the update equation then simplifies to

p(x1:k+
n
|y1:n)

∝ g(yn|xNn)f(xk+
n−1+1:k+

n
|xk+

n−1
)p(x1:k+

n−1
|y1:n−1).

This sequential update rule is similar in form to that
for standard state-space models, comprising a likeli-
hood and a dynamic component. There is, however,
a very important difference: owing to the form of the
variable rate model the number of state points required
to represent any section of the target trajectory is an
unknown random variable. This will play an impor-
tant role in the development of efficient numerical tech-
niques to implement the update.

The basic form of the particle filter required for this
task is as in [1], summarised here for convenience. As-
suming that we have a set of weighted samples approx-
imately distributed according to the variable rate fil-
tering distribution at the previous time step, i.e.

{x(i)

1:k+
n−1

, w
(i)
n−1}N

i=1 ∼ p(x1:k+
n−1

|y1:n−1),

the particle filter update step proceeds as below when
a new measurement becomes available, for each i =
1, ..., N :

x(i)

k+
n−1+1:k+

n
∼ q(xk+

n−1+1:k+
n
|x(i)

k+
n−1

,yn)

w(i)
n ∝ w

(i)
n−1

g(yn|x(i)
Nn

)f(x(i)

k+
n−1+1:k+

n
|x(i)

k+
n−1

)

q(x(i)

k+
n−1+1:k+

n
|x(i)

k+
n−1

,yn)
,

and as before resampling may be carried out as and
when required, resetting the weights to 1/N . q() is any
appropriate proposal function which can sequentially



generate new state points conditional on previous ones.
Note that the proposal mechanism involves repeatedly
increasing the number of state points until the neigh-
bourhood for time n is complete, i.e. the observation
likelihood can be evaluated. In the examples here, we
set q() equal to the dynamical model for the variable
rate states, i.e. (9).

The resulting set of weighted samples will then be
approximately distributed according to the new vari-
able rate filtering distribution, i.e.

{x(i)

1:k+
n
, w(i)

n }N
i=1 ∼ p(x1:k+

n
|y1:n).

In this paper we present two modifications to the
basic algorithm above:

Deterministic resampling. In order to retain
greater diversity in the particle population, particles
are deterministically replicated at each time step (see
[6] for general discussion of this issue). Specifically, if a
particle has weight wn greater greater than 1/N , then
we assign a multiplicity m = bNwnc to that particle,
and a weight wn/m. If a particle has weight wn less
than 1/N , we preserve it in the particle set with a mul-
tiplicity of 1, and retaining its own weight wn. This
procedure preserves exactly the same representation of
the filtering density, but maintains some lower weight
particles that would normally be resampled out. Of
course, such a procedure can lead to (at most) a dou-
bling of the number of particles at each time step, and
so a further pruning stage is included that preserves
only the N highest weighted particles in the filter fol-
lowing the update to the next time step.

State regeneration. This addresses an inefficiency
in the basic filter, since state times τk, k ∈ Nn are of-
ten well in the future (i.e. significantly greater than n).
In the basic filter above these state points are never
regenerated and can attain very low weights at some
point in the future if they are not consistent with new
data points. We address this by allowing for regenera-
tion of these future state points at each time n. There
are several correct ways to achieve this, but we have
settled on one effective procedure. In essence we at-
tempt to regenerate any part of the state that does
not affect the current (or previous) likelihood func-
tions g(yn|xNn). Typically this will involve regenerat-
ing one or more future τk values, conditional upon the
sequence of values θ̂1:n used in likelihood computation.
To see how this works, consider augmenting the vari-
able rate state at time n with the value of θ̂n(xNn),
i.e. the state becomes {xNn , θ̂n(xNn)}. Now, suppose
that some parts of xNn are ‘redundant’ in the sense
that they can be modified without changing the values
of θ̂1:n. We can then resample these elements accord-
ing to p(xNn |θ̂1:n,xN1:n−1 ,y1:n) = p(xNn |θ̂1:n,xN1:n−1)

Fig. 2. Intrinsic coordinate system

(a degenerate distribution in general) and the parti-
cle weights remain unchanged as before, since this can
be regarded as a very simple Markov chain transition
kernel of the type described in [10]. Furthermore, since
high weighted particles have a multiplicity greater than
1 (see above), some degree of stratification is often pos-
sible, since different particles can be drawn from differ-
ent regions of the probability distribution.

4. VARIABLE RATE TRACKING MODELS

A new dynamical model appropriate for manoeuvring
objects under the variable rate model is proposed, based
on an intrinsic coordinate system. In an intrinsic co-
ordinate system applied forces can be represented rela-
tive to the heading of the object, rather than relative to
the more standard Cartesian or polar fixed coordinate
frame. This we postulate is a more realistic represen-
tation of the thrusts applied when turning a vehicle.
Distance travelled along the path of motion is denoted
s, while angle of the path relative to horizontal is de-
noted ψ. Accelerations tangential to and perpendicular
to the motion are then given in Fig. 2.In the variable
rate model we now assume that a piecewise constant
thrust, relative to the direction of heading, is applied
between any two times τk and τk+1, with tangential
component TT and perpendicular component TP . A
resistance term λds

dt , assumed to apply in the oppo-
site direction to the heading adds some damping to the
system. Resolving forces tangentially and perpendicu-
larly:

TT = λ
ds

dt
+ m

d2s

dt2

TP = m
ds

dt

dψ

dt

These equations are readily integrated to give equations
for s(t) and ψ(t) during any time period with fixed
thrusts TT and TP , from which the cartesian position
x(t) can be obtained by numerical integration for any
time t between τk and τk+1.



Fig. 3. Example trajectories simulated from the in-
trinsic coordinate model

We thus have the variable rate state variables as
follows:

θk = [TT,k, TP,k, v(τk), ψ(τk), x(τk)]

from which the position, speed and angle at any time
between τk and τk+1 may be obtained deterministi-
cally. This implies that the variable rate neighbour-
hood structure for this model need contain only one
element, i.e. Nt = {k; τk ≤ t, τk+1 > t}.

To complete the dynamical model we specify the
distribution of thrusts in the time interval τk to τk+1:

TT,k ∼ N(µT , σ2
T ), TP,k ∼ N(0, σ2

P )

and the distribution of time points:

τk+1 − τk ∼ G(ατ , βτ )

where N is the normal and G is the gamma distribu-
tion.

Some example trajectories from the model are shown
in Fig. 3, showing the clear ability of the model to gen-
erate elaborate manoeuvres.

Many possible observation models are available for
this dynamical model, and we have explored several.
In order to test a challenging non-Gaussian case, we
adopt here a Poisson target model with independent
Poisson clutter observations. The number of measure-
ments from the target at each time point are assumed
drawn randomly from a Poisson distribution having
mean λT . Each such target measurement spatially then
has a Gaussian distribution centered on the true posi-
tion. Random clutter measurements are also included,
having mean number λC and uniform spatial distri-
bution. See [9] for a very similar model for extended

object tracking. The model for the measurements is
then:

yn,i ∼
{

N(xn, σ2
y), target measurement

UR, clutter measurement

where UR is the uniform distribution over the region
of surveillance R. Under these assumptions it can be
shown from the properties of Poisson point processes
that

g(yn|xn) ∝ ΠNn
i=1λyc(yn,i),

λyc(y) = λT N(y|xn, σ2
yI) + λCUR

where Nn is the total number of measurements at time
index n. This model thus avoids any explicit treat-
ment of the data association problem inherent in many
tracking scenarios, but can potentially handle very high
clutter densities.

5. RESULTS

We have experimented successfully in various differ-
ent scenarios. To demonstrate this in one represen-
tative case, see the following example. Here we have a
surveillance region of size 2000 × 2000, clutter param-
eter λC = 20 (i.e. an average of 20 clutter points per
time point) and target mean λT = 0.7, i.e. the target
is often unobserved, and with observation parameter
σy = 40. A manoeuvring target is generated using
the intrinsic dynamic model with m = 500, λ = 0.3,
µT = 50, σT = 50 and σP = 1000. The data and results
are summarised in Fig. 4. Note that the target appears
almost buried in clutter, but the variable rate filter is
able to track its manoeuvres successfully. A more de-
tailed analysis shows that the filter is able to maintain
many feasible hypotheses when the data is ambiguous.
By contrast the corresponding fixed rate filter is un-
able to follow the trajectory and loses track. Although
it has the same intrinsic model for the dynamics, it is
unable to track the sustained turning manoeuvres from
the variable rate model.
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Fig. 4. Tracking example - Poisson likelihood, 400 par-
ticles. Top - true trajectory, second down - raw data,
third down - variable rate particle filter (all particles
shown), bottom - fixed rate particle filter (all particles
shown)
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