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Figure 1: Filtering densites evolving through time (blue line is true state value)

1



ON-LINE BAYESIAN METHODS FOR ESTIMATION OF NON-LINEAR NON-GAUSSIAN SIGNALS SIMON GODSILL

INTRODUCTION

In many signal processing applications it is required to estimate a latent or ‘hidden’ process
(the ‘state’ of the system) from noisy, convolved or non-linearly distorted observations. Since
data also arrive sequentially in many applications it is therefore desirable (or essential) to
estimate the hidden process on-line, in order to avoid memory storage of huge datasets and to
make inferences and decisions in real time. Some typical applications from the engineering
perspective include:

• Tracking for radar and sonar applications

• Real-time enhancement of speech and audio signals

• Sequence and channel estimation in digital communications channels

• Medical monitoring of patient eeg/ecg signals

• Image sequence tracking

In this tutorial we will consider sequential estimation in such applications. Only when the
system is linear and Gaussian can exact estimation be performed, using the classical Kalman
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filter. I will present a succinct derivation of the Kalman filter, based on Bayesian updating of
probability models. In most applications, however, there are elements of non-Gaussianity
and/or non-linearity which make analytical computations impossible. Here we must adopt
numerical strategies. I will consider a powerful class of Monte Carlo filters, known
generically asparticle filters, which are well-adapted to general problems in this category.
Worked examples will be given for several simple modelling scenarios.
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OVERVIEW

• General summary of Bayesian methods

• State space models, filtering and smoothing

• The Kalman filter

• The extended Kalman filter

• The particle filter

• Developments and conclusions
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BAYESIAN INFERENCE - OVERVIEW

Observations:y

Quantity of interest:x

Other parameters/unknowns:θ

Likelihood:
p( y | x, θ )

Joint posterior for all unknowns (by Bayes Rule):

p( x, θ | y ) =
p( y | x, θ ) p( x, θ )

p(y)

Marginal posterior forx:

p( x | y ) =

Z

θ

p( x, θ | y ) dθ
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Marginal posterior is used for inference about the quantity of interest,x.
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STATE SPACE MODELS

First define the notations used. We will consider a very general class of time series models,
thestate space model. Almost all models of practical utility can be represented within this
category, using a state vector of finite dimension. The sequential inference methods presented
can readily be extended beyond the Markovian state space models given here, but for
simplicity we retain the standard Markovian setup.

Note: from here on column vectors are denoted in standard typeface, e.g.xt, and matrices are
denoted by capitals, e.g.B. This avoids some cumbersome heavy typeface notations.

7



ON-LINE BAYESIAN METHODS FOR ESTIMATION OF NON-LINEAR NON-GAUSSIAN SIGNALS SIMON GODSILL

• Consider a time series with statesxt, t ∈ {0, 2, ..., T}.

• The states evolve in time according to a probability model. Assume a Markov structure,
i.e.

p(xt+1|x0, x1, ..., xt) = f(xt+1|xt) (1)

• The states are ‘partially’ observed through a likelihood function for observations{yt}
which are assumed iid given the states, i.e.

p(yt+1|x0, x1, ..., xt, xt+1, y0, y1, ..., yt) = g(yt+1|xt+1) (2)
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Summarise as a ‘state space’ or ‘dynamical’ model:

xt+1
iid∼ f(xt+1|xt) State evolution density

yt+1
iid∼ g(yt+1|xt+1) Observation density (3)

Joint density can be expressed using the probability chain rule:

p (x0:t, y0:t) = f(x0)
tY

i=1

f(xt|xt−1)
tY

i=0

g(yt|xt)

wheref(x0) is the distribution of the initial state,x0:t
4
= (x0, ..., xt) and

y0:t
4
= (y0, ..., yt).
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EXAMPLE : LINEAR AR MODEL OBSERVED IN NOISE

zt =

PX

i=1

aizt−i + et

yt = zt + wt

with et andwt independently distributed as zero mean Gaussians with varianceσ2
e andσ2

w,
respectively (fixed and known).

ai are the AR coefficients, of orderP , also assumed here to be fixed and known.

We observe the noisy signalyt.

The only unknown here is the signalzt.

Form state vector as:
xt = [zt, zt−1, ..., zt−P+1]

T (4)
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Then a state space model in terms of the signal values is obtained as:

xt = Axt−1 + et (5)

yt = Bxt + wt (6)

where:

A =

2
666664

a1 a2 ... aP

1 0 ... 0

0 1 ... 0

0 0 ... 0

0 0 ... 0

3
777775

(7)

B =
�

1 0 0 ... 0
�

(8)
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Alternatively, in terms of state evolution and observation densities:

f(xt+1|xt) = N (xt+1|Axt, σ
2
e)

g(yt|xt) = N (yt|Bxt, σ
2
w) (9)

This is an example of the linear Gaussian state space model, an important special case that is
used extensively to construct algorithms in the nonlinear non-Gaussian case (extended
Kalman filters, Rao-Blackwellised particle filters, ...).
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EXAMPLE : NON-LINEAR MODEL:

xt = A(xt−1) + vt

=
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt

yt = B(xt) + wt

=
(xt)

2

20
+ wt

wherevt ∼ N (0, σ2
v) andwt ∼ N (0, σ2

w).

This may be expressed in terms of density functions as:

f(xt+1|xt) = N (xt+1|A(xt), σ
2
v)

g(yt|xt) = N (yt|B(xt), σ
2
w)
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INFERENCE TASKS

Observe data:
y0:t

4
= (y0, ..., yt)

Wish to infer the ‘hidden states’:

x0:t
4
= (x0, ..., xt)

Fundamental inference tasks:

• Filtering:
p(xt|y0:t)

• Smoothing (‘fixed lag’):
p(xt−p:t|y0:t)

• Smoothing (‘fixed interval’):
p(x0:T |y0:T )
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FILTERING

Wish to estimatep(xt|y0:t) itself or expectations of the form

h = Eh(xt) =

Z
h(xt)p(xt|y0:t)dxt

e.g.h(xt) = xt - posterior mean estimation (MMSE estimator)
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Suppose we havep(xt|y0:t) but wish to findp(xt+1|y0:t+1). In principle we can use the
filtering recursions:

p(xt+1|y0:t) =

Z
p(xt, xt+1|y0:t)dxt

=

Z
p(xt|y0:t)p(xt+1|xt, y0:t)dxt

=

Z
p(xt|y0:t)f(xt+1|xt)dxt (10)

p(xt+1|y0:t+1) =
g(yt+1|xt+1)p(xt+1|y0:t)

p(yt+1|y0:t)
(11)

Time t− 1 t t + 1 ...

Data yt−1 yt yt+1

Filtering p(xt−1|y0:t−1) p(xt|y0:t) p(xt|y0:t+1)

Prediction p(xt|y0:t−1) p(xt+1|y0:t)
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However, in the general case the integral is intractable and approximations must be used. (xt

high-dimensional,f(), g() non-Gaussian, ...)
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MOTIVATING EXAMPLES - EVOLVING DATASETS

• Tracking applications in radar, sonar, etc.

◦ xt - cartesian/polar coordinates of a target
◦ yt - noisy observations of a non-linear function ofxt. e.g.yt =arg(xt) + vt

(‘Bearings only tracking’).
◦ f(xt+1| xt) - determined by the dynamics of the target - e.g. constant acceleration.
◦ Need to estimate target positionxt.

• Finance - stock prices, exchange rates arrive sequentially. Need to update portfolios on
line as more data emerges.

• Medical Monitoring - on-line monitoring of eeg/ecg data for sick patients.

• Digital communications

• Speech recognition and processing.
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L INEAR GAUSSIAN MODELS - THE KALMAN FILTER

(Harvey, 1989; Anderson and Moore, 1979)

• In cases where the state space model is linear and Gaussian, the classic Kalman filter can
be applied. In this case we have:

f(xt+1|xt) = N (xt+1|Axt, C)

g(yt|xt) = N (yt|Bxt, D) (12)

whereN (x|µ, Q) is the Gaussian density function with mean vectorµ and covariance
matrixQ.

• We can write this equivalently as:

xt+1 = Axt + vt (13)

yt = Bxt + wt (14)

wherevt andwt are zero mean Gaussian vectors with covariance matricesC andD,
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respectively.vt andwt are independent over time and also independent of one another.

• We also require that the initial state be Gaussian distributed:

p(x0) = N (x0|µ0, P0)

• We first requirep(xt+1|y0:t), the prediction step from the above filtering recursion:

p(xt+1|y0:t) =

Z
p(xt|y0:t)f(xt+1|xt)dxt

• Suppose that we have already that at timet:

p(xt|y0:t) = N (xt|µt, Pt)
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• Now, from 13 we have
xt+1 = Axt + vt

Thus from standard change of variables theory (linear Gaussian case) we have:

p(xt+1|y0:t) = N (xt+1|µt+1|t, Pt+1|t)

where:
µt+1|t = Aµt, Pt+1|t = C + APtA

T (15)
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• Now, the correction step of the above filtering recursion is

p(xt+1|y0:t+1) =
g(yt+1|xt+1)p(xt+1|y0:t)

p(yt+1|y0:t)
(16)

• Substituting the above Gaussian forms into the numerator gives:

p(xt+1|y0:t+1) ∝ N (yt+1|Bxt+1, D)N (xt+1|µt+1|t, Pt+1|t)

∝ exp(−1

2
{[yt+1 − Bxt+1]

T
D
−1

[yt+1 − Bxt+1]})

× exp(−1

2
{[xt+1 − µt+1|t]

T
P
−1
t+1|t[xt+1 − µt+1|t]})

∝ exp(−1

2
{[xt+1 − µt+1]

T
P
−1
t+1[xt+1 − µt+1]})

= N (xt+1|µt+1, Pt+1)
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where

µt+1 = Pt+1(B
T
D
−1

yt+1+P
−1
t+1|tµt+1|t), and Pt+1 = (B

T
D
−1

B+Pt+1|t)
−1

• This expression can be rearranged using the matrix inversion lemma to give:

µt+1 = µt+1|t + Kt(yt+1 − Bµt+1|t), and Pt+1 = (I −KtB)Pt+1|t

where

Kt = Pt+1|tB
T
(BPt+1|tB

T
+ D)

−1
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• Hence the whole Kalman filtering recursion can be summarised as:

µt+1|t = Aµt (17)

Pt+1|t = C + APtA
T (18)

µt+1 = µt+1|t + Kt(yt+1 − Bµt+1|t) (19)

Pt+1 = (I −KtB)Pt+1|t (20)

Kt = Pt+1|tB
T
(BPt+1|tB

T
+ D)

−1 (21)
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THINGS YOU CAN DO WITH A KALMAN FILTER

The Kalman filter is a fundamental tool for tracking and on-line estimation problems:

• Estimate the system state sequentially usingx̂t = µt

• Obtain an uncertainty measure about the state using var(x̂t) = Pt

• Recursive least squares. WithC = 0 we have the same model and updating rules as used
in the RLS algorithm - hence RLS is a special case of Kalman.

• Fixed-lag smoothing: augment the state with past states:x′t = [xt xt−1 . . . xt−p]

• Fixed interval smoothing: theKalman smootheroperates backwards in time, estimating
recursivelyp(xt|y0:T ), t < T .
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• Likelihood evaluation. A useful result is that the Kalman filter can sequentially evaluate
the likelihood function,p(y0:t). This is used for maximum likelihood or maximuma
posterioriestimation, and also for Bayesian model choice problems and the
Rao-Blackwellised particle filter. To see how this works, start from the Kalman prediction
step:

p(xt+1|y0:t) = N (xt+1|Aµt, C + APtA
T
)

Now, equation 14 expressesyt+1 in terms ofBxt+1 plus a random Gaussian disturbance
wt with covariance matrixD:

yt = Bxt + wt

Hence we can obtain the conditional likelihood:

p(yt+1|y0:t) = N (yt+1|Bµt+1|t, D + BPt+1|tB
T
)

Finally, using the probability chain rule, we obtain the likelihood function:

p(y0:T ) = p(y0)

T−1Y
t=0

p(yt+1|y0:t)
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NUMERICAL METHODS - OR THINGS YOU CAN’ T DO WITH THE KALMAN FILTER

(Harvey, 1989; Anderson and Moore, 1979)

• The Kalman filter is optimalonly for the linear Gaussian model. In other cases the
Kalman filter will give the bestlinear estimator in a mean-square error sense, but this may
not be good enough for highly non-linear or non-Gaussian models

• There are numerous methods for dealing with more general models, all based on
numerical approximations to the filtering recursions of equations 10 and 11, e.g. the
Gaussian sum filter (Sorenson and Alspach, 1971)

• Here we will consider two important examples in detail: the extended Kalman filter (EKF)
and the Monte Carlo particle filter
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THE EXTENDED KALMAN FILTER (EKF)

(Harvey, 1989; Anderson and Moore, 1979; Jazwinski, 1970)

The extended Kalman filter is the classical method for estimating non-linear state-space
systems.

• Consider the following non-linear state-space model, which is the non-linear equivalent to
equations 13 and 14:

xt+1 = A(xt) + vt (22)

yt = B(xt) + wt (23)

whereA() andB() are now non-linear functions.
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• Perform a 1st order Taylor expansion ofA() andB() around the pointsµt andµt|t−1,
respectively:

A(xt) ≈ A(µt) +
∂A(xt)

∂xt

����
xt=µt

(xt − µt)

B(xt) ≈ B(µt|t−1) +
∂B(xt)

∂xt

����
xt=µt|t−1

(xt − µt|t−1)

• Substituting these approximations into the state-space model leads to alinearizedset of
equations which can be solved using the standard Kalman filter

• Limitatations - the approximation is still unimodal, hence for multimodal distributions the
filter will fail

• Also the tracking performance and error covariance estimates will be sub-optimal
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MONTE CARLO FILTERING

Consider numerical estimation of the following expectation:

h = Eh(xt) =

Z
h(xt)p(xt|y0:t)dxt

• If the integral is intractable then we can resort to a Monte Carlo integration:

b
h = 1/N

NX

i=1

h(x
(i)
t ), where x

(i)
t

iid∼ p(xt|y0:t) (24)

• More generally, when we cannot sample directly fromp(xt|y0:t), we can sample from
another distributionq(xt) (‘importance function’) having the same support asp(xt|y0:t).
So we makeN random draws fromq() instead ofp():

x
(i)
t ∼ q(xt), i = 1, ..., N
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• Now we have to make a correction to ensure that the expectation estimate is good. It turns
out that the required correction is proportional to the ratiop()/q(), which is termed the
importance weight:

w
(i)
t ∝ p(x

(i)
t |y0:t)

q(xi
t)

• If we normalise the importance weights such that
PN

i=1 w
(i)
t = 1 we can form an

empirical approximation to the filtering density:

p(xt|y0:t) ≈
NX

i=1

w
(i)
t δ

x
(i)
t

(xt) (25)
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from which expectation estimates can be obtained as:

b
h =

NX

i=1

w
(i)

h(x
(i)
t ), (26)

where x
(i)
t

iid∼ q(xt), w
(i)
t ∝ p(x

(i)
t |y0:t)/q(x

(i)
t ),

NX

i=1

w
(i)
t = 1 (27)

i.e.

h = Eh(xt) =

Z
h(xt)p(xt|y0:t)dxt

≈
Z

h(xt)

NX

i=1

w
(i)
t δ

x
(i)
t

(xt)dxt =

NX

i=1

w
(i)

h(x
(i)
t )
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• Resampling(this will prove important in the sequential setting). We now have the option
of resampling the the particles so they have uniform weights:

Set x
′(i)
t = x

(i)
t with probability w

(i)
t

and setw′(i)
t+1 = 1/N .

While this is unnecessary in the static case, and would always increase the Monte Carlo
variation of our estimators, it is a vital component of the sequential schemes which follow,
limiting degeneracy of the importance weights over time. Note that resampling schemes
can incorporate variance reduction strategies such as stratification in order to improve
performance.

• We now have a means for approximatingp(xt|y0:t) and also expectations ofxt.

• But, how do we adapt this to the sequential context? (Note thatp(xt|y0:t) cannotin
general be evaluated).
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• Consider updating the filtering distribution fromt to t + 1:

Step 0:

p(xt, xt+1|y0:t) = p(xt|y0:t)f(xt+1|xt)

Step 1:

p(xt+1|y0:t) =

Z
p(xt, xt+1|y0:t)dxt

Step 2:

p(xt+1|y0:t+1) =
g(yt+1|xt+1)p(xt+1|y0:t)

p(yt+1|y0:t)
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• We would like to mimic the three steps here by Monte Carlo operations.

• Suppose we start off with many ‘particles’ drawn from the filtering distribution
p(xt|y0:t). We label these particles as

x
(i)
t , i = 1, 2, ..., N with N >> 1

• These can be used to plot histogram estimates ofp(xt|y0:t), form Monte Carlo estimates
of expectations, ..., in fact perform almost any inference procedure we care to choose,
providedN is ‘sufficiently’ large

• We can simulateStep 0above by taking each particlex(i)
t in turn and generating a new

state from the state transition density according to:

x
(i)
t+1 ∼ f(xt+1|x(i)

t )

• Each pair(x(i)
t , x

(i)
t+1) is now a joint random sample fromp(xt, xt+1|y0:t).

• By construction,x(i)
t+1 taken on its own is a random sample from the requiredmarginal

distributionp(xt+1|y0:t), (Step 1)
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• Step 2. We now have samples fromp(xt+1|y0:t). Step 2 gives us the appropriate
importance weight:

wt+1 ∝
p(xt+1|y0:t+1)

q(xt+1)

∝
g(yt+1|xt+1)p(xt+1|y0:t)

p(yt+1|y0:t)

p(xt+1|y0:t)

∝ g(yt+1|xt+1)
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• We now have the option of
1. retaining weighted particles, in which case the weights are accumulated over time as

wt+1 ∝ wt g(yt+1|xt+1)

Or:
2. Resampling the particles so they have uniform weights:

Set x
′(i)
t+1 = x

(i)
t+1 with probability w

(i)
t

and setw′(i)
t+1 = 1/N .
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• A basic algorithm with (optional) resampling at every time step, the ‘Bootstrap Filter’, is
thus (Gordon, Salmond and Smith, 1993)(Kitagawa, 1996):

For t = 1, 2..., T

For i = 1, 2, ..., N

x
(i)
t+1 ∼ f(x

(i)
t+1|x(i)

t )

w
(i)
t+1 ∝ w

(i)
t g(yt+1|x(i)

t+1)

End

For i = 1, 2, ..., N

(Optional) Resamplex(i)
t+1 with probabilityw

(i)
t+1. Setw(i)

t+1 = 1/N

End

End
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Figure 2: Bootstrap filter operation - nonlinear model
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GENERAL SEQUENTIAL IMPORTANCESAMPLING

We can do better in many cases than the basic bootstrap filter, by choosing a better importance
function. Consider now the following modified updates:

Step 0’:

q(xt, xt+1|y0:t+1) = p(xt|y0:t)q(xt+1|xt, y0:t+1)

Step 2’:

p(xt, xt+1|y0:t+1) =
g(yt+1|xt+1)f(xt+1|xt)p(xt|y0:t)

p(yt+1|y0:t)

We now considerq(xt, xt+1|y0:t+1) to be an importance function forp(xt, xt+1|y0:t+1).
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The importance weight forStep 2’ is hence modified to:

w
(i)
t+1 ∝ w

(i)
t

g(yt+1|x(i)
t+1)f(x

(i)
t+1|x(i)

t )

q(x
(i)
t+1|x(i)

t )
(28)

This is the general sequential importance (SIS) sampling method ((Liu and Chen, 1998),
(Doucet, Godsill and Andrieu, 2000)).

Important special cases:

• q(xt+1|xt) = f(xt+1|xt) - bootstrap filter (Gordon et al., 1993)(Kitagawa, 1996) -
‘prior’ sampling

• q(xt+1|xt) = p(xt+1|xt, yt+1) - sequential imputations (Liu and Chen, 1995) - optimal
importance function (Doucet et al., 2000).

Repeated application over time (without resampling) leads to degeneracy of the weights - all
the mass becomes concentrated on a fewi - hence estimates are poor.
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The resampling procedure (choosingx
(i)
t+1 with probabilityw

(i)
t+1) alleviates this - SIR (?).

eg. Measure degeneracy by estimating the variance ofw
(i)
t+1 - since reduction in effective

sample size is approximately(1+var(w(i)
t+1)).
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The algorithm is now modified to:

For t = 0, 2..., T

For i = 1, 2, ..., N

x
(i)
t+1 ∼ q(x

(i)
t+1|x(i)

t , y0:t+1)

w
(i)
t+1 ∝ w

(i)
t

g(yt+1|x
(i)
t+1)f(x

(i)
t+1|x

(i)
t )

q(x
(i)
t+1|x

(i)
t ),y0:t+1

End

For i = 1, 2, ..., N

(Optional) Resamplex(i)
t+1 with probabilityw

(i)
t+1. Setw(i)

t+1 = 1/N

End

End
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RECENT DEVELOPMENTS

Some (biased!) pointers to recent advances in algorithms:

• Auxiliary particle filters - (Pitt and Shephard, 1999). The idea here is to presample the
time t particles according to their importance at timet + 1 - see (Godsill and
Clapp, 2001) for further discussion.

• Rao-Blackwellised particle filters- (Doucet et al., 2000). The idea here is to marginalise
any tractable parameters (e.g. conditionally linear- Gaussian or Hidden Markov Model
(HMM)). The system is no longer Markovian and weights are modified accordingly.
Similar idea to the ‘Mixture Kalman filter’ (Liu and Chen, 2000).

• MCMC particle filters (Gilks and Berzuini, 2000)(MacEachern, Clyde and Liu, 1999).
See also annealed particle filters (Godsill and Clapp, 2001).

• Particle smoothers- these sample from the entire state trajectoryp(x0:t|y0:t). The can
be implemented in a particle filtering/ backwards particle smoothing framework, see
(Fong, Godsill, Doucet and West, 2002)(Hürzeler and K̈unsch, 2000)(Kitagawa, 1996)
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MONTE CARLO FILTERING - HISTORY

• Automatic control problems - (Handschin and Mayne, 1969; Handschin, 1970; Akashi and
Kumamoto, 1977; Akashi and Kumamoto, 1975; Zaritskii, Svetnik and
Shimelevich, 1975)

• Statistical developments - (West, 1993)(Mueller, 1992)(?)(Liu and Chen, 1995)(Liu and
Chen, 1998)

• Recent review material: (Doucet et al., 2000; Doucet, De Freitas and Gordon, 2001)
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MONTE CARLO FILTERING - THEORY

The theory of particle filtering is now quite well developed, although it remains a research
topic still for mathematicians. For example, the empirical particle measure converges almost
surely top(xt|y0:t) for all t > 0 asN →∞ under quite general conditions on the state
space model. Moreover, rates of convergence to zero have been established for mean squared
error with respect to this filtering density. Hence particle filters are rigorously validated as a
means for tracking the distribution of, and estimating the value of a hidden state over time.
Some recent advances in convergence analysis can be found in Del Moral (1996), Del Moral
(1998), Crisan, Del Moral and Lyons (1999), Crisan and Lyons (1999), Crisan and Doucet
(2000), Crisan (2001).
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