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Figure 1: Filtering densites evolving through time (blue line is true state value)
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INTRODUCTION

In many signal processing applications it is required to estimate a latent or ‘hidden’ process
(the ‘state’ of the system) from noisy, convolved or non-linearly distorted observations. Since
data also arrive sequentially in many applications it is therefore desirable (or essential) to
estimate the hidden process on-line, in order to avoid memory storage of huge datasets and to
make inferences and decisions in real time. Some typical applications from the engineering
perspective include:

Tracking for radar and sonar applications

Real-time enhancement of speech and audio signals

Sequence and channel estimation in digital communications channels
Medical monitoring of patient eeg/ecg signals

Image sequence tracking

In this tutorial we will consider sequential estimation in such applications. Only when the
system is linear and Gaussian can exact estimation be performed, using the classical Kalman
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filter. 1 will present a succinct derivation of the Kalman filter, based on Bayesian updating of
probability models. In most applications, however, there are elements of non-Gaussianity
and/or non-linearity which make analytical computations impossible. Here we must adopt
numerical strategies. | will consider a powerful class of Monte Carlo filters, known
generically agatrticle filters which are well-adapted to general problems in this category.
Worked examples will be given for several simple modelling scenarios.
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OVERVIEW

General summary of Bayesian methods
State space models, filtering and smoothing
The Kalman filter

The extended Kalman filter

The patrticle filter

e Developments and conclusions
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BAYESIAN INFERENCE- OVERVIEW
Observationsy
Quantity of interestx
Other parameters/unknown@:

Likelihood:
p(yl|x, 0)

Joint posterior for all unknowns (by Bayes Rule):

p(ylx, 8)p(x, 0)
p(y)

p(X, 9|Y) —

Marginal posterior fox:
Z

p(x|y) = 91K>9 0|y)do
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Marginal posterior is used for inference about the quantity of intexest,
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STATE SPACE MODELS

First define the notations used. We will consider a very general class of time series models,
the state space modehAlmost all models of practical utility can be represented within this
category, using a state vector of finite dimension. The sequential inference methods presented
can readily be extended beyond the Markovian state space models given here, but for
simplicity we retain the standard Markovian setup.

Note: from here on column vectors are denoted in standard typeface, eand matrices are
denoted by capitals, e.@. This avoids some cumbersome heavy typeface notations.
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e Consider a time series with states ¢t € {0,2, ..., T}.
e The states evolve in time according to a probability model. Assume a Markov structure,
le.
p(Te+1]To, T1, .- Tt) = f(@e41|z0) (1)
e The states are ‘partially’ observed through a likelihood function for observafigns
which are assumed iid given the states, i.e.

p(yt—|—1|x07 L1y ooy Lty L1y Y0y Y1y -+ yt) — g(yt—i—llxt—l-l) (2)
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Summarise as a ‘state space’ or ‘dynamical’ model:

Ty o f(xig1|xt) State evolution density
Y41 Iflg g(yt—|—1|$t+1) Observation denSity

Joint density can be expressed using the probability chain rule:

Y Y

D (CUO:ta yo:t) = f(ﬂUO) f($t|$t—1) g(yt|$t)
=1 i=0

1=

where f (z¢) is the distribution of the initial states.; 2 (xg, ..., x¢) and

AN
Yo:t = (y(b X yt)

(3)
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EXAMPLE: LINEAR AR MODEL OBSERVED IN NOISE

XK
Zt = A;Zt—; + €4
i=1
Yt = Z¢ + Wy

with e; andw; independently distributed as zero mean Gaussians with varighaado>,
respectively (fixed and known).

a; are the AR coefficients, of ordd?, also assumed here to be fixed and known.

We observe the noisy signg).

The only unknown here is the signgl.

Form state vector as:

T
Ty — [Zt, Kt—T1y +oey Zt—P+1] (4)

10
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Then a state space model in terms of the signal values is obtained as:

Tt = Aa:t_l —I— €¢ (5)
Yt — BCBt —|— Wt (6)
where: 2 3
a1 a- .. ap
1 0 0
A=8 0 1 0 (7)
O O 0
0O O 0
B= 10 0 .. 0 (8)

11
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Alternatively, in terms of state evolution and observation densities:
f(@eil|ze) = N(zp41]|Azy, o)
2
9(yilze) = N (yt| Bz, o) (9)

This is an example of the linear Gaussian state space model, an important special case that is
used extensively to construct algorithms in the nonlinear non-Gaussian case (extended
Kalman filters, Rao-Blackwellised particle filters, ...).

12
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EXAMPLE: NON-LINEAR MODEL:

x: = A(zi—1) + V¢

Lt—1 Lt—1
= 20— 4+ 8cos(1.2t) + v
2 T a2 (1.28) + v,
y: = B(x) + wy
(24)°
= w
50 + wy

wherev; ~ N (0, o) andw; ~ N (0, o2).
This may be expressed in terms of density functions as:
f(zilz) = N (2| Aw), o)
g(yelee) = N (ye| B(x), o)

13
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INFERENCE TASKS

Observe data:
A
Yo:t — (y07 sy yt)
Wish to infer the ‘hidden states’:

JAN
Lot — (330, ceey ZBt)

Fundamental inference tasks:

e Filtering:
p(x¢|Yo:t)
e Smoothing (‘fixed lag’):
p(a:t—p:t‘yO:t)
e Smoothing (‘fixed interval’):
p(zo.7|Yo:T)

14
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FILTERING
Wish to estimatey (x| yo.¢) itself or expectations of the form
Z
h =FEh(x:) =  h(x:)p(x|yor)dx,

e.g.h(x;) = x; - posterior mean estimation (MMSE estimator)

15
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Suppose we have(x:|yo.:) but wish to findp(z++1|yo.c+1). In principle we can use the
filtering recursions:

Z
p(xis1|yor) =  p(T, Te41|Yor)day
Z
= P($t|yozt)p(96t+1|$t, yo:t)dﬂﬁt
Z

= p(@t|yos) f(Tey1|ze)dz: (10)
g(yt+1 |96t+1)p(36t+1 |y0:t>

P(Tey1]|Yoies1) = (11)
P(Yt+1|Yo:t)

Time t—1 t t+1

Data Yi—1 Yt Yt+1
Filtering | p(x:—1|yo.t—1) p(xt|Yo:t) (2t Yo:t41)
Prediction p (x| Yot—1) p(ze41]Yo:t)

16
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However, in the general case the integral is intractable and approximations must berysed. (
high-dimensionalf (), g() non-Gaussian, ...)

17
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MOTIVATING EXAMPLES - EVOLVING DATASETS

e Tracking applications in radar, sonar, etc.

o x, - cartesian/polar coordinates of a target
o - Noisy observations of a non-linear functiongf e.g.y; =arg(x;) + v:
(‘Bearings only tracking’).
o f(x¢+1] x4) - determined by the dynamics of the target - e.g. constant acceleration.
o Need to estimate target positian.
e Finance - stock prices, exchange rates arrive sequentially. Need to update portfolios on
line as more data emerges.

e Medical Monitoring - on-line monitoring of eeg/ecg data for sick patients.
e Digital communications
e Speech recognition and processing.

18
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LINEAR GAUSSIAN MODELS - THE KALMAN FILTER
(Harvey, 1989; Anderson and Moore, 1979)

e In cases where the state space model is linear and Gaussian, the classic Kalman filter can
be applied. In this case we have:

f(xi1|ze) = N(zpq1] Az, O)
9(yt|xe) = N (y¢| Bz, D) (12)

whereN (x|, Q) is the Gaussian density function with mean vegt@and covariance
matrix Q.
e \We can write this equivalently as:

Ti41 — A:Et -+ V¢ (13)
Yyt = Bxy + wy (14)

wherev; andw; are zero mean Gaussian vectors with covariance maitticasd D,

19
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respectivelyv; andw; are independent over time and also independent of one another.
e \We also require that the initial state be Gaussian distributed:

p(xo) = N (xo|po, Po)

e We first requirep(x:11|yo:t), the prediction step from the above filtering recursion:
Z

p(wt+1|yo;t) = p(xtlyO:t)f(xt—H’xt)dxt

e Suppose that we have already that at time

p(x|yot) = N (x¢| e, Pr)

20
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e Now, from 13 we have
Ti41 = Az + vy

Thus from standard change of variables theory (linear Gaussian case) we have:

P(Tit1|yor) = N($t+1‘/~5t—|—1|t7 Pt+1|t)

where:
piv1e = Apt, Py = C + APA" (15)

21



ON-LINE BAYESIAN METHODS FOR ESTIMATION OF NONLINEAR NON-GAUSSIAN SIGNALS SIMON GODSILL

e Now, the correction step of the above filtering recursion is

g(yt—l—l |33t+1)p(3?t+1 |'y0:t)
p(yt+1|y0:t)

p($t+1|y0:t+1) —

e Substituting the above Gaussian forms into the numerator gives:

P(Ter1]Yo+1) <X N (Yey1|Bxirr, D)N (Tiralppesaye; Py

1 _
o exp(—i{[ytﬂ — Bxy1]' D7yt — Brysa]})

1 T -1
X eXP(—i{[th — Mt+1|t] Pt+1|t[$t+1 — Mt+1|t]})

1 T ~—1
X exp(—a{[ath — t41] Pt+1[$t+1 — i1l })

= N (41| pt41, Pis1)

(16)

22
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where

Wiyl = Pt—|—1(BTD_lyt+1‘|‘Pt111|tMt+1|t)7 and P = (BTD_lB+Pt+1|t)_1

e This expression can be rearranged using the matrix inversion lemma to give:
M1 = Miy1)e T+ Ki(yi41 — B,LLt—l—1|t>7 and Py = — KtB)Pt—|—1|t

where

Kt p— Pt+1|tBT(BPt+1’tBT —|— D)_l

23
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e Hence the whole Kalman filtering recursion can be summarised as:

Mit1)t = Apy (17)
Py =C+ APA" (18)
pir1 = pegrpe + Ke(yerr — Bl (19)
Piy1 = (I — KiB)P (20)
K; = Pt—|—1|tBT(BPt—|—1|tBT + D)_l (21)

24
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THINGS YOU CAN DO WITH A KALMAN FILTER

The Kalman filter is a fundamental tool for tracking and on-line estimation problems:

e Estimate the system state sequentially usthg= 1,
e Obtain an uncertainty measure about the state usingyvae= P,

e Recursive least squares. With = 0 we have the same model and updating rules as used
in the RLS algorithm - hence RLS is a special case of Kalman.

e Fixed-lag smoothing: augment the state with past states: [z: x1—1 ... T1—yp)

e Fixed interval smoothing: thKalman smootheoperates backwards in time, estimating
recursivelyp(x:|yo.r), t < T.

25



ON-LINE BAYESIAN METHODS FOR ESTIMATION OF NONLINEAR NON-GAUSSIAN SIGNALS SIMON GODSILL

e Likelihood evaluation. A useful result is that the Kalman filter can sequentially evaluate
the likelihood functionp(yo.+). This is used for maximum likelihood or maximuan
posterioriestimation, and also for Bayesian model choice problems and the
Rao-Blackwellised particle filter. To see how this works, start from the Kalman prediction
step:

p(Tiy1|yot) = N(xep1|Ape, C + APtAT)
Now, equation 14 express@s,; ; in terms of Bz, 1 plus a random Gaussian disturbance
w, With covariance matrixD:
Yyt = Bzt + wy
Hence we can obtain the conditional likelihood:

P(Yt+1lYot) = N (Yer1| By, D + BPHWBT)
Finally, using the probability chain rule, we obtain the likelihood function:

Rt

p(yo.r) = P(%o) P(Yit1|Yo:t)

26
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NUMERICAL METHODS - OR THINGS YOU CAN T DO WITH THE KALMAN FILTER

(Harvey, 1989; Anderson and Moore, 1979)

e The Kalman filter is optimabnly for the linear Gaussian model. In other cases the
Kalman filter will give the bestinearestimator in a mean-square error sense, but this may
not be good enough for highly non-linear or non-Gaussian models

e There are numerous methods for dealing with more general models, all based on

numerical approximations to the filtering recursions of equations 10 and 11, e.g. the
Gaussian sum filter (Sorenson and Alspach, 1971)

e Here we will consider two important examples in detail: the extended Kalman filter (EKF)
and the Monte Carlo patrticle filter

27
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THE EXTENDED KALMAN FILTER (EKF)

(Harvey, 1989; Anderson and Moore, 1979; Jazwinski, 1970)

The extended Kalman filter is the classical method for estimating non-linear state-space
systems.

e Consider the following non-linear state-space model, which is the non-linear equivalent to
equations 13 and 14

Tiy1 = A(xy) + vy (22)
Yy = B(x) + wy (23)

where A () and B() are now non-linear functions.

28
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e Perform a 1st order Taylor expansionAf) and B() around the pointg; and i, ;_1,
respectively:

OA(xt)

A(xe) = A(pe) + (1 — pe)
0Tt oy
OB (x
B(xy) =~ B(,ut|t—1) + 8—(t) (¢ — ,ut|t—1)
Tt Tt=H¢|t—1

e Substituting these approximations into the state-space model leadigéazedset of
equations which can be solved using the standard Kalman filter

e Limitatations - the approximation is still unimodal, hence for multimodal distributions the
filter will fail
e Also the tracking performance and error covariance estimates will be sub-optimal

29
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MONTE CARLO FILTERING

Consider numerical estimation of the following expectation:

Z
h = Eh(x:) = h(zi)p(wt|yot)dz:

e Ifthe integral is intractable then we can resort to a Monte Carlo integration:

? X i) (i) iid
=1/N h(x;”), wherex,” ~ p(x|yo:) (24)
i=1

e More generally, when we cannot sample directly fro(x,|yo.:), we can sample from
another distributiory (x;) (‘importance function’) having the same supporgds:|yo.:).
So we makeaV random draws frong() instead ofp():

wii)wq(mt), i=1,....N

30
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e Now we have to make a correction to ensure that the expectation estimate is good. It turns
out that the required correction is proportional to the raiio/q(), which is termed the
Importance weight

(1) p(:viz) | Yo:¢)
t X 7
q(ajt)

P .
e If we normalise the importance weights such thaﬁil wf’) = 1 we can form an
empirical approximation to the filtering density:

p(@ilyod) & w8 (i (wr) (25)
: t

31
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from which expectation estimates can be obtained as:

>x |
B_ w(z)h(:cgz)),

=1
(4) 1 (2) (2) X (Z)
where 2" % q(z1), wi o p(af’yo.) /a(xf),
1=1
le.
Z
h =Eh(z:) = h(z)p(@e|yo:) da
z > o0 X
~  h(xy) o (Z)(act)dxt = h(x,”)

1=1 1=1

=1

(26)

(27)

32
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e Resampling(this will prove important in the sequential setting). We now have the option
of resampling the the particles so they have uniform weights:

set " = {7 with probability "

and setw’f_’gl =1/N.

While this is unnecessary in the static case, and would always increase the Monte Carlo
variation of our estimators, it is a vital component of the sequential schemes which follow,
limiting degeneracy of the importance weights over time. Note that resampling schemes

can incorporate variance reduction strategies such as stratification in order to improve
performance.

e We now have a means for approximatin@Qr:|yo.:) and also expectations af.

e But, how do we adapt this to the sequential context? (Note titat, | yo..) cannotn
general be evaluated).

33
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e Consider updating the filtering distribution frotto ¢ + 1:

Step O:
p(xe, Tey1|yo:e) = p(Te|yo:) f(oq1|e)
Step 1:
Z
p($t+1|yont) = p(l’t, l’t+1|yo:t)d$t
Step 2:

g(yt+1 |£Ut+1)p($t+1 |yo:t)

P($t+1’y0:t+1) =
p(yt+1|y0:t)

34
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e \We would like to mimic the three steps here by Monte Carlo operations.

e Suppose we start off with many ‘particles’ drawn from the filtering distribution
p(x¢|yo.r). We label these particles as

2P i=1,2,...,N with N >>1

e These can be used to plot histogram estimates of|yo.: ), form Monte Carlo estimates
of expectations, ..., in fact perform almost any inference procedure we care to choose,
provided N is ‘sufficiently’ large

e \We can simulat&tep Oabove by taking each particlegi) in turn and generating a new
state from the state transition density according to:

371(521 ~ f(33‘t+1|55'§l))

e Each pair(:cff), $§21 is now a joint random sample frop(x:, ++1|yo:¢)-

e By construction,az:gz1 taken on its own is a random sample from the requiretdginal

distributionp(x:11|yo:t), (Step )

35
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e Step 2 We now have samples frop(x:11|yo.¢). Step 2 gives us the appropriate
importance weight:

p($t+1|y0:t+1)

W41 X
Q($t+1)
9(yet1lee41)p(@e11v0:¢)
p(yt+11Y0:¢)
X

p(xt—Fl |y0:t>

X g(Ytt1|Ti41)

36
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e \We now have the option of
1. retaining weighted particles, in which case the weights are accumulated over time as

Wiy1 X Wy 9(yt+1|$t+1)

Or:
2. Resampling the particles so they have uniform weights:
Set x’iil = 93321 with probability w,@

and setw’,gfg1 =1/N.

37
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e A basic algorithm with (optional) resampling at every time step, the ‘Bootstrap Filter’, is
thus (Gordon, Salmond and Smith, 1993)(Kitagawa, 1996):

Fort =1,2...,T
For: =1,2,...., N
xz(e21 ~ f(ngzﬂxy))
iy 0w g(yrale),

End

For:=1,2,....,. N

(Optional) Resample:ftfz1 with probabilitywﬁzl. Setwﬁzl =1/N
End
End

38
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Figure 2: Bootstrap filter operation - nonlinear model

39
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GENERAL SEQUENTIAL IMPORTANCE SAMPLING

We can do better in many cases than the basic bootstrap filter, by choosing a better importance
function. Consider now the following modified updates:

Step 0’
Q(wt, $t+1|y0:t+1) — p($t|y0:t)CI($t+1|l‘t, yo:t+1)
Step 2’

9(Yit1|xey1) f(xi1|ze) (2| Yoit)
’p(yt+1\yo;t)

p(ﬂft, $t+1\y0:t+1) —

We now considety(x¢, T+11|yo.t+1) to be an importance function f@r(x;, x:11|yo.t41).

40
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The importance weight fd8tep 2’is hence modified to:

(4) (i)g(ym\wgl)f(ﬂfiﬁllfvf))
Wy OC Wy @

: (28)
Q(xt—|—1|£ct1)>

This is the general sequential importance (SIS) sampling method ((Liu and Chen, 1998),
(Doucet, Godsill and Andrieu, 2000)).

Important special cases:

o q(xi11|xs) = f(xes1|xe) - Dootstrap filter (Gordon et al., 1993)(Kitagawa, 1996) -
‘prior’ sampling

o q(xi11|xt) = p(xis1|Te, yi41) - S€quential imputations (Liu and Chen, 1995) - optimal
importance function (Doucet et al., 2000).

Repeated application over time (without resampling) leads to degeneracy of the weights - all
the mass becomes concentrated on aifelwence estimates are poor.

41
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The resampling procedure (choos.ﬁj@1 with probabilitywifgl) alleviates this - SIRY).

eg. Measure degeneracy by estimating the varian@eﬁé{ - since reduction in effective
sample size is approximate(yt —|—var(wt(f21)).

42
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The algorithm is now modified to:

Fort =0,2...,T

For:=1,2,..., N

()

Liyqg ™ Q(fvﬁllwiz), Yo:t+1)

Dy 1ag)

' N9 (Ygt1l
w'? o WL 410 4
t+1 t (i) | (3)
Q(xt+1|xt )’y0:t+1

End

For: =1,2,..., N

(Optional) Res;ample;g1 with probabilitngl. Setwﬁzl =1/N
End
End

43
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RECENT DEVELOPMENTS

Some (biased!) pointers to recent advances in algorithms:

e Auxiliary particle filters - (Pitt and Shephard, 1999). The idea here is to presample the
time ¢ particles according to their importance at time- 1 - see (Godsill and
Clapp, 2001) for further discussion.

e Rao-Blackwellised particle filters- (Doucet et al., 2000). The idea here is to marginalise
any tractable parameters (e.g. conditionally linear- Gaussian or Hidden Markov Model
(HMM)). The system is no longer Markovian and weights are modified accordingly.
Similar idea to the ‘Mixture Kalman filter’ (Liu and Chen, 2000).

e MCMC particle filters (Gilks and Berzuini, 2000)(MacEachern, Clyde and Liu, 1999).
See also annealed patrticle filters (Godsill and Clapp, 2001).

e Particle smoothers- these sample from the entire state trajectof¥o.:|yo.:). The can
be implemented in a particle filtering/ backwards particle smoothing framework, see
(Fong, Godsill, Doucet and West, 2002)(i2eler and Kinsch, 2000)(Kitagawa, 1996)

44
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MONTE CARLO FILTERING - HISTORY

e Automatic control problems - (Handschin and Mayne, 1969; Handschin, 1970; Akashi and
Kumamoto, 1977; Akashi and Kumamoto, 1975; Zaritskii, Svetnik and
Shimelevich, 1975)

e Statistical developments - (West, 1993)(Mueller, 199%)iu and Chen, 1995)(Liu and
Chen, 1998)

e Recent review material: (Doucet et al., 2000; Doucet, De Freitas and Gordon, 2001)

45
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MONTE CARLO FILTERING - THEORY

The theory of particle filtering is now quite well developed, although it remains a research

topic still for mathematicians. For example, the empirical particle measure converges almost
surely top(x¢|yo.:) forallt > 0asN — oo under quite general conditions on the state

space model. Moreover, rates of convergence to zero have been established for mean squared
error with respect to this filtering density. Hence patrticle filters are rigorously validated as a
means for tracking the distribution of, and estimating the value of a hidden state over time.
Some recent advances in convergence analysis can be found in Del Moral (1996), Del Moral
(1998), Crisan, Del Moral and Lyons (1999), Crisan and Lyons (1999), Crisan and Doucet
(2000), Crisan (2001).
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