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Overview
� As tasks in signal processing inference become more complex and subtle, itbecomes appropriate to adopt compute-intensive methodologies
� Consider here Monte Carlo methods for inference in (principally) Bayesianprobabilistic settings
� In particular I will describe Sequential Monte Carlo methods, or particle�lters for non-linear, non-Gaussian settings.
� These �nd application in numerous sequential settings: tracking, computervision, speech and audio, robotics, �nancial time series, ....
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Monte Carlo Methods
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Monte Carlo Methods

In the Monte Carlo method, we are concerned here with estimating theproperties of some highly complex probability distribution p(x), e.g.expectations: EX = Z h(x)p(x)dx
where h(:) is some useful function for estimation.
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In cases where this cannot be achieved analytically the approximation problemcan be tackled indirectly, as it is often possible to generate random samplesfrom p(x), i.e. by representing the distribution as a collection of random points:x(i), i = 1; :::; N , for large N
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In cases where this cannot be achieved analytically the approximation problemcan be tackled indirectly, as it is often possible to generate random samplesfrom p(x), i.e. by representing the distribution as a collection of random points:x(i), i = 1; :::; N , for large NWe can think of the Monte Carlo representation informally as:
p(x) � 1N NX

i=1
�(x� x(i))
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In cases where this cannot be achieved analytically the approximation problemcan be tackled indirectly, as it is often possible to generate random samplesfrom p(x), i.e. by representing the distribution as a collection of random points:x(i), i = 1; :::; N , for large NWe can think of the Monte Carlo representation informally as:
p(x) � 1N NX

i=1
�(x� x(i))

Then the Monte Carlo expectation falls out easily as:
EX = Z h(x)p(x)dx � Z h(x) 1N NX

i=1
�(x� x(i))dx = 1N NX

i=1
h(x(i))
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Alternatively, suppose we draw the random samples x(i) from a distributionq(x) instead of p(x). Now the expectation can be estimated using importancesampling:
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Alternatively, suppose we draw the random samples x(i) from a distributionq(x) instead of p(x). Now the expectation can be estimated using importancesampling:
EX = Z h(x)p(x)dx =Z h(x)q(x)p(x)q(x) dx � Z h(x)p(x)q(x) 1N NX

i=1
�(x� x(i))dx

= 1N NX
i=1

p(x(i))q(x(i))h(x(i)) =
NX
i=1

w(i)h(x(i))
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Alternatively, suppose we draw the random samples x(i) from a distributionq(x) instead of p(x). Now the expectation can be estimated using importancesampling:
EX = Z h(x)p(x)dx =Z h(x)q(x)p(x)q(x) dx � Z h(x)p(x)q(x) 1N NX

i=1
�(x� x(i))dx

= 1N NX
i=1

p(x(i))q(x(i))h(x(i)) =
NX
i=1

w(i)h(x(i))
where w(i) / p(x(i))

q(x(i)) is the importance weight and we can think informally ofp(x) as
p(x) � NX

i=1
w(i)�(x� x(i)); NX

i=1
w(i) = 1
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There are numerous versions of Monte Carlo samplers, including Markov chainMonte Carlo, simulated annealing, importance sampling, quasi-Monte Carlo, ...
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There are numerous versions of Monte Carlo samplers, including Markov chainMonte Carlo, simulated annealing, importance sampling, quasi-Monte Carlo, ...Here we limit attention to Sequential Monte Carlo methods, which are provingvery successful for solving challenging state-space modelling problems.
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State space models, �ltering and smoothingWe will focus here on a broad and general class of models. Examples include:
� Hidden Markov models
� Most standard time series models: AR, MA, ARMA,...
� Special models from tracking, computer vision, �nance, communications,bioinformatics, ...
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State space models, �ltering and smoothingWe will focus here on a broad and general class of models. Examples include:
� Hidden Markov models
� Most standard time series models: AR, MA, ARMA,...
� Special models from tracking, computer vision, �nance, communications,bioinformatics, ...

Summarise the statistics as a probabilistic `state space' or `dynamical' modelwith unknown states xt and observations yt:
xt+1�f(xt+1jxt) State evolution densityyt+1�g(yt+1jxt+1) Observation density
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Estimation tasksGiven observed data up to time t:
y0:t 4= (y0; :::; yt)

Wish to infer the `hidden states':
x0:t 4= (x0; :::; xt)
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Speci�cally:
� Filtering:Wish to estimate p(xtjy0:t) itself or expectations of the form

h = Eh(xt) = Z h(xt)p(xtjy0:t)dxt
e.g. h(xt) = xt - posterior mean estimation (MMSE estimator)
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Speci�cally:
� Filtering:Wish to estimate p(xtjy0:t) itself or expectations of the form

h = Eh(xt) = Z h(xt)p(xtjy0:t)dxt
e.g. h(xt) = xt - posterior mean estimation (MMSE estimator)

� Smoothing (`�xed lag'): p(xt�Ljy0:t)
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Speci�cally:� Filtering:Wish to estimate p(xtjy0:t) itself or expectations of the form
h = Eh(xt) = Z h(xt)p(xtjy0:t)dxt

e.g. h(xt) = xt - posterior mean estimation (MMSE estimator)� Smoothing (`�xed lag'): p(xt�Ljy0:t)
� Smoothing (`�xed interval'):Estimate entire state sequence given all data:

p(x0:T jy0:T )
21
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FilteringAt time t, Suppose we have p(xtjy0:t) but wish to �nd p(xt+1jy0:t+1). Inprinciple we can use the �ltering recursions:Prediction step:
p(xt+1jy0:t) = Z p(xt; xt+1jy0:t)dxt

= Z p(xtjy0:t)p(xt+1jxt; y0:t)dxt
= Z p(xtjy0:t)f(xt+1jxt)dxt
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FilteringAt time t, Suppose we have p(xtjy0:t) but wish to �nd p(xt+1jy0:t+1). Inprinciple we can use the �ltering recursions:Prediction step:
p(xt+1jy0:t) = Z p(xt; xt+1jy0:t)dxt

= Z p(xtjy0:t)p(xt+1jxt; y0:t)dxt
= Z p(xtjy0:t)f(xt+1jxt)dxt

Correction step (Bayes' Theorem):
p(xt+1jy0:t+1) = g(yt+1jxt+1)p(xt+1jy0:t)p(yt+1jy0:t)
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The sequential scheme is as follows:
Time t� 1 t t+ 1 :::

Data yt�1 yt yt+1

Filtering p(xt�1jy0:t�1) p(xtjy0:t) p(xt+1jy0:t+1)

Prediction p(xtjy0:t�1) p(xt+1jy0:t)

However, in the general case the integral is intractable and approximationsmust be used. (xt high-dimensional, f(), g() non-Gaussian, ...)
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Sequential Monte Carlo (SMC) - the Particle �lterA generic solution involves repeated importance sampling/resamplingsequentially through time (particle �lter) (see e.g. Gordon et al. 1993 (IEE),Kitagawa 1993 J. Comp.Graph. Stats., Doucet Godsill Andrieu 2000 (Stats.amd computing), Liu and Chen 1997 (JASA)).The SMC scheme mimics the �ltering recursions as follows:
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Sequential Monte Carlo (SMC) - the Particle �lterA generic solution involves repeated importance sampling/resamplingsequentially through time (particle �lter) (see e.g. Gordon et al. 1993 (IEE),Kitagawa 1993 J. Comp.Graph. Stats., Doucet Godsill Andrieu 2000 (Stats.amd computing), Liu and Chen 1997 (JASA)).The SMC scheme mimics the �ltering recursions as follows:
� Suppose we have available a collection of samples, or `particles' drawnrandomly from the �ltering density at time t:

x(i)t � p(xtjy0:t); i = 1; :::; N (N large)
i.e.

p(xtjy0:t) ' 1N NX
i=1

�(xt � x(i)t )
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� Substitute this into the prediction equation:
p(xt+1jy0:t) = Z p(xtjy0:t)f(xt+1jxt)dxt

� Z 1N NX
i=1

�(xt � x(i)t )f(xt+1jxt)dxt
= 1N NX

i=1
f(xt+1jx(i)t )
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� Substitute this into the prediction equation:
p(xt+1jy0:t) = Z p(xtjy0:t)f(xt+1jxt)dxt

� Z 1N NX
i=1

�(xt � x(i)t )f(xt+1jxt)dxt
= 1N NX

i=1
f(xt+1jx(i)t )

� Then perform the correction step using Bayes' theorem:
p(xt+1jy0:t+1) � 1N g(yt+1jxt+1)PN

i=1 f(xt+1jx(i)t ))p(yt+1jy0:t)
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� SMC is a collection of methods for drawing random samples from theabove Monte Carlo approximation to p(xt+1jy0:t+1), i.e. producing a newset of random draws:
x(i)t+1 � p(xt+1jy0:t+1); i = 1; :::; N (N large)
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� SMC is a collection of methods for drawing random samples from theabove Monte Carlo approximation to p(xt+1jy0:t+1), i.e. producing a newset of random draws:
x(i)t+1 � p(xt+1jy0:t+1); i = 1; :::; N (N large)

� There are many variants on schemes to achieve this (Bootstrap �lter(Gordon et al. 1993, Sequential Importance sampling, (Doucet GodsillAndrieu (2000), Liu and Chen (1997)), Auxiliary Particle �lters (Pitt andShephard (1998)), etc.
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A Basic Particle FilterThe �rst step initialises the initial states of the �lter at t = 0:
x(i)0 � p(x0jy0); i = 1; 2; :::; N

where it is assumed that this draw can be made easily (use MCMC or static ISif not).Then, for t=0,1,2,...
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� At time t, have
p(xtjy0:t) ' p̂(xtjy0:t) = NX

i=1
w(i)
t �(xt � x(i)t ); NX

i=1
w(i)
t = 1
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� At time t, have
p(xtjy0:t) ' p̂(xtjy0:t) = NX

i=1
w(i)
t �(xt � x(i)t ); NX

i=1
w(i)
t = 1

� For i = 1; :::; N : x(i)t+1 � q(xt+1jx(i)t )
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� At time t, have
p(xtjy0:t) ' p̂(xtjy0:t) = NX

i=1
w(i)
t �(xt � x(i)t ); NX

i=1
w(i)
t = 1

� For i = 1; :::; N : x(i)t+1 � q(xt+1jx(i)t )
Update the importance weight:

w(i)
t+1 _ w(i)

t
g(yt+1jx(i)t+1)f(x(i)t+1jx(i)t )q(x(i)t+1jx(i)t )
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� At time t, have
p(xtjy0:t) ' p̂(xtjy0:t) = NX

i=1
w(i)
t �(xt � x(i)t ); NX

i=1
w(i)
t = 1

� For i = 1; :::; N : x(i)t+1 � q(xt+1jx(i)t )
Update the importance weight:

w(i)
t+1 _ w(i)

t
g(yt+1jx(i)t+1)f(x(i)t+1jx(i)t )q(x(i)t+1jx(i)t )

� Optionally, resample fx(i)t+1g N times with replacement using weights w(i)
t+1,and then resetting w(i)

t+1 = 1=N .
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Example: standard nonlinear model
xt = A(xt�1) + vt= xt�12 + 25 xt�11 + x2t�1 + 8 cos(1:2t) + vt
yt = B(xt) + wt

= (xt)220 + wt

where vt � N (0; �2v) and wt � N (0; �2w).This may be expressed in terms of density functions as:
f(xt+1jxt) = N (xt+1jA(xt); �2v)g(ytjxt) = N (ytjB(xt); �2w)
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Smoothing with particle �lters[Work with Arnaud Doucet, Mike West and William Fong, see Godsill, Doucetand West JASA (to appear), Fong, Godsill, Doucet and West (IEEE SP 2002)]
� It is possible to extend the particle framework to provide smoothing as wellas �ltering. Smoothing is very useful in problems where batch processing isrequired, or some `lookahead' is allowable in the system.
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Smoothing with particle �lters[Work with Arnaud Doucet, Mike West and William Fong, see Godsill, Doucetand West JASA (to appear), Fong, Godsill, Doucet and West (IEEE SP 2002)]
� It is possible to extend the particle framework to provide smoothing as wellas �ltering. Smoothing is very useful in problems where batch processing isrequired, or some `lookahead' is allowable in the system.
� We will consider the �xed interval problem (`batch' processing), i.e.estimation of:

fx0; x1; x2; ::: ; xT g from fy0; y1; y2; ::: ; yT g
Fixed lag and other versions can be obtained by suitable modi�cations tothe algorithms.
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� First, assume that particle �ltering has been done for t = 1; 2; :::; T , leadingto
p(xtjy0:t) ' NX

i=1
w(i)
t �(xt � x(i)t ); t = 0; 1; 2; :::; T
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� First, assume that particle �ltering has been done for t = 1; 2; :::; T , leadingto
p(xtjy0:t) ' NX

i=1
w(i)
t �(xt � x(i)t ); t = 0; 1; 2; :::; T

� Now factorise the smoothing density as follows:
p(x0:T jy0:T ) = TY

t=0
p(xtjxt+1:T ; y0:T )

where, by the assuptions of the Markov state-space model:
p(xtjxt+1:T ; y0:T ) / p(xtjy0:t)f(xt+1jxt)
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� First, assume that particle �ltering has been done for t = 1; 2; :::; T , leadingto
p(xtjy0:t) ' NX

i=1
w(i)
t �(xt � x(i)t ); t = 0; 1; 2; :::; T

� Now factorise the smoothing density as follows:
p(x0:T jy0:T ) = TY

t=0
p(xtjxt+1:T ; y0:T )

where, by the assuptions of the Markov state-space model:
p(xtjxt+1:T ; y0:T ) / p(xtjy0:t)f(xt+1jxt)

� This factorisation allows construction of an algorithm operating in thereverse time direction t = T; T � 1; :::; 0.
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Algorithm: Particle smoother
� Draw exT � p(xT jy0:T )� For t = T � 1 to 1:
� Calculate w(i)

tjt+1 / w(i)
t f(ext+1jx(i)t ) for i = 1; :::; N

� Choose ext = x(i)t with probability w(i)
tjt+1� End
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Algorithm: Particle smoother
� Draw exT � p(xT jy0:T )� For t = T � 1 to 1:
� Calculate w(i)

tjt+1 / w(i)
t f(ext+1jx(i)t ) for i = 1; :::; N

� Choose ext = x(i)t with probability w(i)
tjt+1� End

The sequence (ex0; ex1; ::: ; exT )is then an (approximate) random draw from
p(x0:T jy0:T ) = TY

t=0
p(xtjxt+1:T ; y0:T )
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Repeated application allows Monte Carlo estimation of the smoothed statesequence.Variants on the algorithm also allow MAP smoothing, see Godsill, Doucet andWest 2001 (Ann. Inst. St. Math.)
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Example - the nonlinear model
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Example - the nonlinear model
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Example - a nonlinear TVAR model for non-stationary speechSignal process fztg generated as standard Time-varying autoregression:
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Example - a nonlinear TVAR model for non-stationary speechSignal process fztg generated as standard Time-varying autoregression:
f(ztjzt�1:t�P ; at; �et) = N  PX

i=1
at;izt�i; �2et

!
g(ytjxt; �vt) = N �xt; �2vt�
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Example - a nonlinear TVAR model for non-stationary speechSignal process fztg generated as standard Time-varying autoregression:
f(ztjzt�1:t�P ; at; �et) = N  PX

i=1
at;izt�i; �2et

!
g(ytjxt; �vt) = N �xt; �2vt�

� at = (at;1; at;2; :::; at;P ) is the P th order AR coe�cient vector
� �2et is the innovation variance at time t.
� �2vt is the observation noise variance.
� at is assumed to evolve over time as a dynamical model. We choose anonlinear parameterisation based on time-varying lattice coe�cients
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Figure 1: Speech data. 0.62s of a US male speaker saying the words`...rewarded by...'. Sample rate 16kHz, resolution 16-bit, from theTIMIT speech database
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Figure 2: Noisy speech, t=801,...,1000, and smoothed realisations
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Figure 3: 10 realizations from the smoothing density for the TV-PARCORcoe�cients (LHS) compared with standard trajectory-based method(RHS).
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Several improvements to the basic smoothing method have been developed
(Fong, Godsill, Doucet and West (2002)), motivated by the TVAR application:

� Block-based smoother - smoothing performed in small batches of N data
points. Saves on memory requirements and suits applications where data
arrive sequentially in batches.

� Rao-Blackwellised smoothing. As with Monte Carlo �ltering, improvements
are achieved if some states are marginalised. The Monte Carlo smoother
formulae are modi�ed appropriately.
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Multirate and trans-dimensional particle �ltersWork with William Fong, Jaco Vermaak and Arnaud Doucet
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Multirate and trans-dimensional particle �ltersWork with William Fong, Jaco Vermaak and Arnaud Doucet

� In this work particle �lters are extended to cases where the state processarrives at a di�erent rate to the observation process
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Multirate and trans-dimensional particle �ltersWork with William Fong, Jaco Vermaak and Arnaud Doucet

� In this work particle �lters are extended to cases where the state processarrives at a di�erent rate to the observation process
� This allows for dynamical model selection within the SMC framework
� Motivated by examples in radar tracking, Bayesian curve �tting, audioparameter modelling, musical beat tracking and statistical learning theory57



We now construct a modifed dynamical model having random time indices:
�k � f1(�kj�k�1)

and corresponding parameter values:
�k � f2(�kj�k�1)
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We now construct a modifed dynamical model having random time indices:
�k � f1(�kj�k�1)

and corresponding parameter values:
�k � f2(�kj�k�1)

Each observation yt now depends on a local neighbourhood Nt of �k values:
yt � g(ytjf�k; k 2 Nt)
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� An e�ective particle �lter and smoother can be derived and generalisedfurther for this more sophisticated setting - the trans-dimensional particle�lter - see Vermaak, Godsill and Doucet - poster this morning
� Results so far encouraging for applications in TVAR speech modelling,Bayesian curve-�tting and statistical learning theory
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Example: musical beat tracking[work with Tai Lam]
� Musical beat is to be estimated from detected `onset times' from a musicalaudio track - formulate as a binary observation process (no amplitudeinformation used here):8<:yt = 1 Candidate onset detected at frame tyt = 0 No detection at frame t
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Example: musical beat tracking[work with Tai Lam]
� Musical beat is to be estimated from detected `onset times' from a musicalaudio track - formulate as a binary observation process (no amplitudeinformation used here):8<:yt = 1 Candidate onset detected at frame tyt = 0 No detection at frame t
� Model times of successive beats in the audio using a variable rate process:

�k = h(�k�1; �k�2) + vk
where h() gives the next predicted beat time in terms of the previous two,and vk is a random disturbance.
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� Connect fytg and �k via a Bernoulli likelihood function:
yt � Bernoulli(�(f�k; k 2 Ntg))

Here Nt contains the two closest beat times to the current frame t.
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This is a very simpli�ed model that works nicely on straightforward data. Formore elaborate and robust particle �lter models, see the work of Robin Morrisor Steve Hainsworth.
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Example: TVAR speech modelling[work with William Fong]
� In many modelling scenarios some or all parameters are expected to beslowly and smoothly varying with time - e.g. in the TVAR speech audiomodel, the AR coe�cients at;i vary much more slowly and smoothly thanthe signal zt and observation yt.
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Example: TVAR speech modelling[work with William Fong]
� In many modelling scenarios some or all parameters are expected to beslowly and smoothly varying with time - e.g. in the TVAR speech audiomodel, the AR coe�cients at;i vary much more slowly and smoothly thanthe signal zt and observation yt.� In a `standard' modelling setup these STV parameters might be modelledby a random walk with very low variance (or some higher order [smooth]di�erence equation). This can lead to computational and numericalproblems.
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Example: TVAR speech modelling[work with William Fong]
� In many modelling scenarios some or all parameters are expected to beslowly and smoothly varying with time - e.g. in the TVAR speech audiomodel, the AR coe�cients at;i vary much more slowly and smoothly thanthe signal zt and observation yt.� In a `standard' modelling setup these STV parameters might be modelledby a random walk with very low variance (or some higher order [smooth]di�erence equation). This can lead to computational and numericalproblems.
� This can be `�xed' by inating the variance of the random walk model, butthen sampled parameter traces vary too rapidly and model short termsignal uctuations rather than overall parameter trends.
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� We propose the alternative approach using the multirate state space modeland particle �lter, in which some parameters vary on a di�erent time-scaleto others in the model (see Fong and Godsill ICASSP (2002)).
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Multirate TVAR modelsThe model now contains two dynamic parameters: �, the AR coe�cients and z,the signal. � is parametrised on a time grid K times coarser than z:
�� � f(�� j���1) �t = ht(f�� ; � 2 Ntg)

zt � f(ztjzt�1; �t)yt � g(ytjzt; �t)Here ht() is some suitably smooth interpolation function which interpolatesintermediate �t values from a local neighbourhood of coe�cients �� . We haveused linear interpolators and spline interpolators, but many other possibilities.
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Experimental Results
� Speech Data: S1: Good service should be rewarded by big tipsS2: Draw every outer line �rst, then �ll in the interiorClip Input SNR Proposed Extended Kalman �lter/smootherS1 0dB 3.86dB 1.92dBS1 10dB 2.54dB 0.99dBS1 20dB 1.08dB 0.87dBS2 0dB 4.31dB 2.21dBS2 10dB 2.80dB 1.57dBS2 20dB 1.35dB 1.09dB
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Plot of time-varying posterior distribution for �t;1
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Oustanding Challenges
� The particle �lter/smoother plus its adaptations, make a powerful,computationally intensive, suite of methods for inference in large datasets.
� Fixed parameter problems p(xtj�; y0:t) are an on-going challenge
� Large scale problems with many objects, parameters...
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