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ABSTRACT

Estimating the pitch of musical signals is complicated by the pres-
ence of partials in addition to the fundamental frequency. In this
paper, we propose developments to an earlier Bayesian model which
describes each component signal in terms of fundamental frequency,
partials (*harmonics’), and amplitude. This basic model is modi-
fied for greater realism to include non-white residual spectrum,
time-varying amplitudes and partials ‘detuned’” from the natural
linear relationship. The unknown parameters of the new model are
simulated using a reversible jump MCMC algorithm, leading to a
highly accurate pitch estimator. The models and algorithms can
be applied for feature extraction, polyphonic music transcription,
source separation and restoration of musical sources.

1. INTRODUCTION

Accessing the high level information contained in general audio
signals (i.e., music, environmental noise, speech or a mixture of
these) is complex, and requires sophisticated signal processing
tools. Many previous studies have emphasized the major inter-
est in audio descriptors, or audio features, that summarize the
spectral information contained in an audio signal at a given time.
Among these features, the pitch, which is closely related to the
fundamental frequency, is of prime importance for applications in-
volving music. Numerous musical pitch estimation techniques can
be found in the literature [1-3], and most rely on nonparametric
signal analysis tools (local autocorrelation function,spectrogram,
etc.). However, characterizing a musical signal with a single pitch
value at time ¢ is not sufficient for applications such as music tran-
scription. More complex approaches using banks of filters have
been proposed in order to estimate all the frequencies, but their
accuracy is not sufficient in complex cases.

In this paper, we devise novel Bayesian models for periodic,
or nearly perdiodic, components in a musical signal. The work
develops upon models devised for automatic pitch transcription by
Walmsley et al. [4, 5] in which it is assumed that each musical note
may be described by a fundamental frequency and linearly related
partials with unknown amplitudes. The number of notes, and also
the number of harmonics for each note are generally unknown and
so a reversible jump MCMC procedure is adopted for inference in
this variable dimension probability space; see [6-10] for some rel-
evant MCMC work in signal processing and audio. Use of these
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powerful inference methods allows estimation of pitch, harmonic
amplitudes, and the number of notes/harmonics present at each
time. The methods of [4, 5] have shown promise in highly com-
plex problems with many notes simultaneously present. However,
in the presence of non-stationary or ambiguous data, problems are
expected in terms of large residual modelling errors and pitch er-
rors (especially errors of +/- one octave). Here we seek to address
some of these shortcomings by elaboration of the model to include
more flexibility in the modelling of non-stationary data, and also to
allow the modelling of inharmonicity (or ‘detuning’ of individual
harmonics relative to the usual linear frequency spacing). Specifi-
cally, the modelling contributions of this paper are:

e A continuously variable amplitude process over time for
each harmonic

e Modelling of non-white residual error
e More realistic prior modelling of harmonic amplitudes
e Modelling of inharmonicity in partials

As before, a MCMC strategy is adopted for inference in the new
model, and novel proposal mechanisms are developed for this pur-
pose.

For a stark example of the importance of these modifications,
see Fig. 1, in which the standard harmonic model of [4, 5] is com-
pared with the new (time-varying amplitude) model over the start
attack region of a saxophone note. The harmonic modelled data
(centre of figure) is visually much improved through use of the
time-varying amplitude model. The residual noise after harmonic
components have been extracted (right hand figures) is also re-
markably improved through use of the new time-varying amplitude
model (note different y-axis scalings). This has obvious advan-
tages from a pure modelling perspective, but is likely to impinge
significantly on analysis of quantities such as pitch, especially in
the polyphonic setting.

Preliminary results are presented for monophonic pitch esti-
mation, showing the effectiveness of the model for real data. We
have also extended the methods to the polyphonic setting and will
report results in future papers. We anticipate that the methods
will find application in instrument recognition, music transcrip-
tion, source separation and restoration.

The paper is organized as follows. In Section 2, we present
the new harmonic model and specify the probabilistic framework.
In Section 3, we describe the MCMC algorithm implemented. Fi-
nally, simulation results are presented Section 4.
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Fig. 1. Note attack from extract ‘sax’ (left) modelled in two different ways: firstly, with a constant amplidude model (upper figures),

secondly with time-varying amplitudes (lower figures).

2. BAYESIAN MODEL

For simplicity, we assume that the original musical signal has been
segmented into individual notes by using e.g. the technique pre-
sented in [11]. Here we present the model in a single note setting,
noting that the polyphonic case can be obtained by a superposition
of several such notes in a similar manner to [4, 5]. The model is as
follows:

ylt] = > {am[thwm cos[(m + ) wot]

m=1

+ b [t]wm sin [(m + dm) wo t]} + v[t] 1)

wheret =0,..., N — 1isthe discrete time index. In Eq. (1), the
unknowns are the amplitudes a.,[t] and b,,[t], the fundamental
frequency wo, the number of partials A > 0, and the de-tuning
parameters 6,,, denoted 8,y = [8[1],...,8[M]]T. The error
v[t] is modelled by a P-order Gaussian AR process:

v[t] = awvt — 1]+ ... + apv[t — P] + €[t]

where €[t] is a zero mean Gaussian white noise with variance o2,
The weights w,, are tuned to the average decay of musical par-
tials with increasing frequency, so that the amplitudes (a2, [t] +
b2,[t])*/? are all on a similar scale, see Subsection 2.2. Note that
the form of w,, defines our prior knowledge about the expected
rate of decay of partials with increasing frequency. We believe this
introduces an added element of realism into the model compared
with earlier harmonic approaches.

Many evolution models are possible for amplitude processes
am[t] and by, [t], including random walks, autoregressions, etc.,
and many would be tractable within our Bayesian framework. In
our specific implementation, in order to reduce the dimensionality

of the model and induce smoothness in the amplitude evolution
with time, the amplitudes are projected onto basis functions ¢;,
i=0,...,I (with I fixed and known) such that:

anlt] = 3 anitilt] s bult] = 3 bustilt]

The functions ¢; are obtained by translating in time a prototype
function ¢[¢t] (typically a spline, Hamming window, etc.):

Gilt] = Bt — 1A¢]
where A; is the time offset between adjacent translations. In our
implementation we have employed a length Q Hanning window

for ¢ with A, = @ /2 (50% overlap).
Under this general formulation, the model of Eq. (1) becomes:

ylt] = Z Wi Z {a@m,i cos [(m + dm )wo t] (2)
+bm,i sin [(m + 6777,)‘*’0 t]} ¢[t — lAt] + ’U[t]
= d[t]" 6 + [t] 3

where @ = [a1,0b1,0a2,0b2,0...an.1basr]” and the elements
of dJt] are constructed correspondingly to satisfy Eq. (2). Now,
defining y = [y[0], ... ,y[N — 1]], v = [v[0],... ,v[N —1]]T
and D = [d[0] ... d[N — 1])%, Eq. (3) can be rewritten in the form
of the general linear model as

y = DO+v 4)

Here D@ corresponds to a basis function expansion of the data
in terms of windowed sin() and cos() functions (the columns of
D). For example, using a Hanning window of length @ = 400
with 50% overlap and I = 3 leads, for one particular harmonic
frequency, to the cosine basis functions shown in Fig. 2.
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Fig. 2. Typical set of basis functions ¢; cos(-)

2.1. Likelihood function

Given the linear model formulation and the assumption of i.i.d.
Gaussian excitation for the AR process, we immediately obtain
the likelihood function (see [4, 8, 9]):

p(y10,wo,8n, 0,02, M) =

1

1 T AT

where A is the matrix

—ap ... —Q1 1 0 0

A=| 0
0
0 0 —ap —ap 1

2.2. Parameter priors

The model structure selected leads naturally to the following prior
structure:

p(oaw():(sM:a:U?:M) = p(0|w076M70'?7M) X
p(dar|wo, M) p(M|wo) p(ex) p(wo) p(o?)

The form for each of these distributions should reflect prior be-
liefs about generic musical signals without unfairly guiding the
posterior towards inferences based upon examining the particular
extract under consideration. Briefly, p(o2) is inverted gamma with
parameters a. and 3., p(wo) is the truncated Jeffreys distribution
p(wo) = 1/wolg 3, p(M|wo) is a Poisson distribution with pa-
rameter A truncated to [1, min(Mmax, m/wo], p(cx) is zero-mean
Gaussian with covariance matrix X, and p(dar|wo, M) is the
zero-mean Gaussian distribution with covariance matrix 35 =
o215 (Where Iy is the identity matrix of size M), restricted such
that mwo + 6, € [0, w]. Finally, the amplitudes prior is a zero-
mean Gaussian distribution with covariance matrix o>y, since
we expect harmonic amplitudes to scale relative to the residual
noise energy. Various forms have been coded up and investigated
for Xy, including £21, the identity matrix (independent amplitude
components for the harmonics), and the g-prior, which has some
convenient properties for model selection ([4,5, 7] have all em-
ployed g-priors in related sinusoidal modelling contexts):

1

2 = ¢(D"ATAD)”

We assume the g-prior for the remainder of this paper and will
present a comparative analysis of various alternatives in future
work.

2.3. Posterior distribution

Under the assumed prior structure above, it is straightforward to
integrate out the amplitude parameter @ and the noise variance o2,
to obtain the following posterior distribution, which is defined over
the prior support for all the parameters (see last section):

p(wo, dar, e, Mly) o (y" Pary +28) /270
1 1

A M
oo (M~ 1)! {(1+£2)”1 27r05]
xexp( 26 ) exp <_§aT2 a)
(®)

Where Pyy = ATA — ATADS] D"ATA with S,/ =
D"ATAD + X, . Other conditional distributions used in our
algorithms are as follows (with & = Sy, DT AT Ay):

. N P
p(af|w0,6M,a,M,y) = Ig(? +a67¥+ﬂ6) (6)

p(0|0'3,UJO,6M,CX,M,y) = N(“:"':SM) (7)

3. BAYESIAN COMPUTATION

Estimating the parameters in the model of Eq. (4) requires to com-
pute multidimensional integrals of a function f of the form:

/ fwo,dn,,8,02)p(wo, dar, ax, 8,02 |y) dwodd prdad@do?
Q

Standard numerical techniques are generally inaccurate, and we
apply MCMC techniques in order to create a Markov Chain (MC)

NI
&, 5 &'} whose stationary density is p(wo, d a7, |y). The
estimates are then computed by the following Monte Carlo average
(written for wo):

b' |

L
Z 5" corresponding to f(wo,dar, ) =wo  (8)

In order to produce the MC samples, we propose to imple-
ment the following Metropolis-Hastings (MH) MCMC algorithm,
inspired from [7] (the proposal distributions are details below):

MCMC algorithm for harmonic models

1. Initialization.
o sample &\" ~u[0,7/M], Sample & ~ A'(0,T0)

e Sample 6M ~N(0,35) andset [+ 1
2. While [ < L, do

e With probability A\; perform a MH step with proposal distri-
bution g¢(wo,darly), and with probability 1 — Xy, perform
a one-variable-at-a-time MH step with Normal random walk

proposal distribution w.r.t the target distribution p(wo, 817, &%V y)

given Eq. (5)
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e With probability A> perform a MH step with the uniform pro-
posal distribution /([amin; @max]) and with probability 1 —
A2, perform a MH step with a Normal random walk proposal

distribution w.r.t the target distribution p(&((,l),gg\l/f),aw) given
Ea. (5)

e Sample E? ®

~p(o2\@, 84, &0, M, y) given Eq. (6)
e Sample 8" ~ p(0\652 (”,ag’),’ﬁj?,a“),M,y) given Eq. (7)

o Set I+ [+1

where the proposal distribution g(wo, dar|y) is chosen in order to
ensure a high acceptance reta, namely

q(wo,dmly) = [H q(5m|y,wo)] q(woly) 9

m=1

where g(woly) o Fif.an(wo) and F o denotes the dis-
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Fig. 3. Pitch estimation from flute extract

5. DISCUSSION

In this paper we have described new models and algorithms for

crete spectrum of y restricted towo € [0; w/M]. Moreover, q(dr|y) = harmonic analysis of musical audio. The methods have been demon-

N(0;03).
In the case where M is unknown, it can be sampled by con-
sidering the following moves:

e Addition of a partial (with probability a 77.:)). This move
consists of setting M " «<— M=) +1 and sampling d -1y ~
N(0;03);

e Removal of a partial (with probability r5z.)). This move

consists of setting M « M1 — 1 and removing the
highest order partial;

e Parameters update (with probability w;)). This move

. . ~(— ~(-=1
consists of updating the parameters {wél 1>, e

by using the algorithm presented above.

where (an + 7 +unr = 1), withaar,,,, = 0and r; = 0. These
probabilities are more precisely:

. p(M + 1)} . {
=05 1,2 —— 4 g =05 1,
anr mln{ p(M) M+41 min p(M+ 1)

4. SIMULATION RESULTS

Tests have been carried out on both monophonic and polyphonic
musical extracts. Here we report summary results from analysis of
a short solo flute extract (the opening of Debussy’s Syrinx) down-
sampled to 22050 Hz sample rate. This demonstrates the high reli-
ability and accuracy of the models for pitch estimation. The wave-
form was arbitrarily segmented into blocks of duration 0.1s with
50% overlap and the monophonic algorithm applied in turn to each
block. The pitch estimates obtained are shown in Fig. 3. Pitches
are plotted logarithmically with grid lines showing semitone steps
relative to A440Hz. The estimated pitch corresponds exactly to
a manual transcription of the recording with the exception of the
brief low G around 12s. Close listening around 12s shows that
the flute plays a low distortion undertone in addition to the scored
pitch at this point, and the algorithm is clearly modelling this un-
dertone. The ‘drop-out’ between 9s and 10s corresponds to short
period of silence. Informal examination of spectrograms indicated
that the reversible jump algorithm for determining the number of
harmonics was very successful.

Oy, &y

p(M) }

strated reliably in operation with monophonic material. \We have
extended the models to the polyphonic setting using reversible
jump MCMC to determine automatically the numbers of notes and
harmonics playing at any given time, and will report detailed algo-
rithms and results in future work.
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