
3F3 Digital Signal Processing 

Section 2: Digital Filters 

• A filter is a device which passes some signals 'more' than others (`selectivity’), 
e.g. a sinewave of one frequency more than one at another frequency. 

• We will deal with linear time-invariant (LTI) digital filters. 

• Recall that a linear system is defined by the principle of linear superposition: 

 

 

 

 

   

 

 

 

 

• If the linear system's parameters (coefficients) are constant, then it is Linear 
Time Invariant (LTI). 

 [Some of the the material in this section is adapted from notes byDr Punskaya, Dr Doucet and Dr Macleod] 

 

TexPoint fonts used in EMF.  
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Write the input data sequence as: 

 

  

 

 

 

 

 

 

 

And the corresponding output sequence as: 
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The linear time-invariant digital filter can then be described by the difference 

equation: 

  

A direct form implementation of (3.1) is: 

  xn 

yn b0 bM 

a1 aN 

= unit delay 
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The operations shown in the Figure above are the full set of possible linear 

operations: 

 

• constant delays (by any number of samples), 

• addition or subtraction of signal paths, 

• multiplication (scaling) of signal paths by constants - (incl. -1), 

 

Any other operations make the system non-linear. 
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Matlab has a filter command for implementation of linear digital filters. 

 

The format is 

 
 y = filter( b, a, x); 

 

where  

 b = [b0 b1 b2 ... bM ];  a = [ 1  a1 a2 a3  ...  aN ]; 

  

So to compute the first P samples of the filter’s impulse response, 

 
  y = filter( b, a, [1 zeros(1,P)]); 

 

Or step response, 
  y = filter( b, a, [ones(1,P)]); 

  

To evaluate the frequency response at n points equally spaced in the normalised frequency 
range µ=0 to µ= ,  Matlab's function freqz is used:  

                              
                              freqz(b,a,n); 

  

 

 



3F3 Digital Signal Processing 

Filtering example: 

Generate a Gaussian random noise sequence: 

 

Matlab code: 

 

x=randn(100000,1); 

plot(x) 

plot(abs(dft(x))) 

soundsc(x,44100) 

 

a=[1 -0.99 0.9801]; 

b=[1 –0.1 –0.56]; 

 

y=filter(b,a,x); 

plot(y) 

plot(abs(dft(y))) 

soundsc(y,44100) 

 

 

 

 

 

 

 

 

 

Selective amplification 

Of one frequency 
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Impulse Response 
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The roots of the numerator polynomial in H(z) are known as the zeros, and the roots of 

the denominator polynomial as poles. In particular, factorize H(z) top and bottom: 

 

Transfer Function, Poles and Zeros 
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Frequency Response 
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   System has 2 poles (x) 
and 2 zeros (o) Im (z) 

X 

X 

O 

unit circle 

O 
-1 1 

Proceed around the unit 

circle with 
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Im (z) 

X 

X 

O 

unit circle 

O 
-1 1 

Transfer function: 

Frequency response: 

C1C2 

D1D2 
= 

C1 

C2 

D2 

D1 
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Im (z) 

X 

X 

O 

unit circle 

O 
-1 1 C1 

C2 

D2 

D1 

The magnitude of the frequency 

response is given by       times the 

product of the distances from the zeros 

to              divided by the product of 

the distances from the poles to  

 

 

The phase response is given by the sum 

of the angles from the zeros to                 

minus the sum of the angles from the 

poles to                 plus a linear phase 

term (M-N) 
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Im (z) 

X 

X 

O 

unit circle 

O 
-1 1 C1 

C2 

D2 

D1 

Thus when                   'is close 

to' a pole, the magnitude of the 

response rises (resonance).  

 

When                    'is close to' a 

zero, the magnitude falls (a 

null). 

 

 

The phase response – more 

difficult to get “intuition”, but 

similar principle applies 
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Calculate frequency response of filter in Matlab: 

 

 

 

b=[1 -0.1 -0.56]; 

a=[1 -0.9 0.81]; 

freqz(b,a) 

Peak close to pole frequency 

Troughs at zero frequencies 



3F3 Digital Signal Processing 

Distance from unit  

circle to zero 

Distance from unit  

circle to pole 
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Design of Filters 

The 4 classical standard frequency magnitude responses are: 

 

  Lowpass, Highpass, Bandpass,  and Bandstop 

 

Consider e.g. Lowpass: 

Gain 

1.0 

Pass band Stop band 

Transition band 

0   
Normalised Frequency 

fp fs 
 Frequency band where signal is passed is the pass band 
  
Frequency band where signal is removed is stop band 
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Ideal Filters – Magnitude Response 

Ideal Filters are usually such that they admit a gain of 1 in a given 

passband (where signal is passed) and 0 in their stopband (where 

signal is removed). 



3F3 Digital Signal Processing 

It is impossible to implement the above responses (or any response with finite width constant 

magnitude sections).  Any realisable filter can only approximate it.  

 

 [ Another requirement for realisability is that the filter must be causal (i.e. hn=0,  n<0). ] 

  

Hence a typical filter specification must specify maximum permissible deviations from the ideal 

 - a maximum passband ripple p and a maximum stopband amplitude s  

(or minimum stopband attenuation) : 
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These are often expressed in dB:   

 

 passband ripple = 20 log10 (1+p ) dB;  

  

 or peak-to-peak passband ripple  20 log10 (1+2p ) dB; 

 

 minimum stopband attenuation = -20 log10 (s ) dB. 

  

Example:  p = 6%: 

 

   peak-to-peak passband ripple  20 log10 (1+2p ) = 1dB; 

 

 s = 0.01:   

 

  minimum stopband attenuation = -20 log10 (s ) = 40dB. 

  

The bandedge frequencies are often called corner frequencies, particularly when 

 associated with specified gain or attenuation (eg gain = -3dB). 
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Other standard responses: 

Gain 

1.0 

Pass band 
Stop band 

Transition band 

0   

Normalised Frequency 

High Pass: 

fp fs 
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Gain 

1.0 

0   

Normalised Frequency 

Band Pass: 

Pass band 

Stop band 
Stop band 

Transition bands 
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Gain 

1.0 

0   

Normalised Frequency 

Band Stop: 
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FIR Filters 

The simplest class of digital filters are the Finite Impulse Response 

(FIR) filters, which have the following structure: 

 

 

and difference equation: 

 

 

 

 xn 

yn 

b0 bM 

= unit delay 
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Can immediately obtain the impulse response, with xn= dn 

Hence the impulse response is of finite length M+1, as required 

 

FIR filters also known as feedforward or non-recursive, or transversal  
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Design of FIR filters 

Given the desired frequency response D() of a filter, can compute an 

appropriate inverse DTFT to obtain its ideal impulse response.  Since 

the coefficients of an FIR filter equate to its impulse response, this 

would produce an “ideal” FIR filter.  

However, this “ideal” impulse response is not actually constrained to be of 

finite length, and it may be non-causal (i.e. have non-zero response at 

negative time).  Somehow we must generate an impulse response 

which is of limited duration, and causal. 

In order to obtain the coefficients, simply inverse DTFT the desired 

response (since impulse response is inverse DTFT of frequency 

response):  
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 -c  +c 

D() 
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The ideal filter coefficients can in this case be calculated exactly: 

 

 

 

 

 

This 'sinc' response is symmetric about sample n=0, and infinite in extent : 

     

n 
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To implement an order-M FIR filter, assume we select only a finite length section of dn. 

 

For the sinc response shown above, the best section to select (that is, the one which gives 

 minimum total squared error) is symmetric about 0. The resulting filter is non-causal,  

but it can be made causal simply by adding delay: 

 

  

    

 

 

  

This selection operation is equivalent to multiplying the ideal coefficients by a 

 rectangular window extending from -M/2 to M/2 (prior to delaying by M/2).   

  

We can compute the resulting filter frequency response, which can now be thought of as a 

 truncated Fourier series approximation of D(), given by the DTFT of  
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This is illustrated below for the case M=24 (length 25) 

 and c=  /2  (cut-off frequency = 0.25 x sample frequency).  

 

 Note the well known Gibb's phenomenon (an oscillatory error, increasing in magnitude 

 close to any discontinuities in D() ). 
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The actual filter would require an added delay of M/2 samples to make it causal. This 

 does not affect the amplitude response, but introduces a linear phase term to the  

frequency response. 

  

Now replot the frequency response on a dB amplitude scale. 

 

The sidelobes due to the rectangular window can be clearly seen: 
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The high sidelobe level close to the passband, and the 

slow decay of sidelobe level away from the passband,  

make this an unsatisfactory response for most purposes. 

 

 Use of a window function 

  

A good solution is to create the required finite number of  

filter coefficients by multiplying the (delayed by M/2) infinite-length coefficient 

vector dn by a finite-length window wn with non-rectangular shape, e.g. the raised 

cosine (Hann or Hanning) window function, 
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Leading to a much improved frequency response, illustrated below: 

The sidelobes have been greatly reduced, but the transition from 

passband to stopband has been widened.  The -3dB frequency has moved 

from 1.55 rad/sample down to 1.45 rad/sample, illustrating the general point 

that the choice of window affects the frequencies at which specified gains 

are achieved. 

Again plotting the response on a dB amplitude scale, we have: 
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The greatly reduced first sidelobe level, more rapid decay of sidelobes, 

and the broader transition band, are clearly seen. 
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Analysis 

Frequency domain  

convolution 
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To see the effect of the frequency domain convolution, see the example below, 

for a rectangle window of length 16: 
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Example window functions: 
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40 

1 
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Numerous window functions available – see Matlab command `Window’ 

Each offer different tradeoffs of transition width, sidelobe level, … 

Examples include: 

  

 Rectangle 

 Hann or Hanning 

 Hamming, 

 Blackman, 

 Kaiser -  includes a 'ripple control' parameter ß which allows the designer to  

  tradeoff passband ripple against transition width.  
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Using the window method for FIR filter design 

The window method is conceptually simple and can quickly design filters to 

approximate a given target response.  However, it does not explicitly impose 

amplitude response constraints, such as passband ripple, stopband attenuation, or 

3dB points, so it has to be used iteratively to produce designs which meet such 

specifications. 

 

 There are 5 steps in the window design method for FIR filters. 

 

1.Select a suitable window function. 

2.Specify an 'ideal' response D(). 

3.Compute the coefficients of the ̀ ideal’ filter. 

4.Multiply the ideal coefficients by the window function to give the filter 

coefficients and delay to make causal 

5.Evaluate the frequency response of the resulting filter, and iterate 1-5 if necessary 
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Example: 

Obtain the coefficients of an FIR lowpass digital filter to meet these specifications: 

 

 

 

 passband edge frequency (1dB attenuation)  1.5 kHz 

 transition width     0.5 kHz 

 stopband attenuation    >50 dB 

 sampling frequency     8 kHz 
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Step 1 – Select a suitable window function 

Choosing a suitable window function can be done with the aid of published data such 

as this [taken from "Digital Signal Processing" by Ifeachor and Jervis, Addison-

Wesley]: 

 

 

Name of 

window 

function 

 

Transition 

width/ sample 

frequency 

 

Passband 

ripple (dB) 

 

Main lobe 

relative to 

largest side 

lobe (dB) 

 

Maximum 

stopband 

attenuation 

(dB) 

 
Rectangular 

 
0.9 / N 

 
0.75 

 
13 

 
21 

 
Hann(ing) 

 
3.1/N 

 
0.055 

 
31 

 
44 

 
Hamming 

 
3.3/N 

 
0.019 

 
41 

 
53 

 
Blackman 

 
5.5/N 

 
0.0017 

 
57 

 
74 

 
Kaiser 

(=4.54) 

 

2.93/N 

 
0.0274 

 
  

 
50 

 
Kaiser 

(=8.96) 

 

5.71/N 

 
0.000275 

 
  

 
90 
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However, the above table is worst-case. 

 

For example, in earlier example the use of a Hanning window achieved a main lobe level 

of –42dB (cf –31 dB) and a normalised transition width of 0.7/2  = 0.11 (cf 3.1/N = 

3.1/25 = 0.124). 

 

Using the table, the required stopband attenuation (50dB) can probably be obtained by 

the use of Hamming, Blackman or Kaiser windows.  

 

Try a Hamming window.  The table indicates that the transition width (in normalised 

freq.) is 3.3/N.   

 

Require a normalised transition width of 0.5/8 = 0.0625, so the required N is 52.8 (ie. 

N=53). 
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Step 2 – Specify an 'ideal' response D() 

  

The smearing effect of the window causes the transition region to spread about the 

chosen ideal bandedge: 

 

 

 

   

 

 

 

Hence choose an 'ideal' bandedge A which lies in the middle of the wanted transition 

region, i.e. frequency = 1.5+0.5/2 = 1.75 kHz   

 

So, A = 1.75/8 x 2 rad/sample. 

 

A 
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Step 3 – Compute the coefficients of the ideal filter  

The ideal filter coefficients dn are given by the inverse Discrete time Fourier transform of 

D(), 

 

 

In practice, this may not be computable in closed form for more complex D(). Can then 

approximate by numerical integration, or by discretisation of D() on a fine grid and 

inverse DFT-ing, i.e. take inverse DFT of: 

 

 

 

 

 

where the second condition ensures that the coefficients are real-valued. 
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STEP 4 – Multiply to obtain the filter coefficients 

 

Now multiply by the chosen window function, i.e. Hamming with length 53: 

 

 

 

 

 

 

 

 

 

Notice though that the filter is non-causal since it has non-zero values for n<0.  

This is `fixed’ by delaying the impulse response by (in this case) 26 samples. The resulting 

frequency magnitude response is unchanged, but a constant delay of 26 samples is 

introduced into the filter output (= a linear phase term in the frequency response): 
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Step 5 – Evaluate the frequency response and iterate 

 

 

Compute the resulting frequency response of the windowed filter.   

 

 

If the resulting filter does not meet the specifications, either adjust D() (for example, 

move the band edge) and repeat from step 2, or adjust the filter length and repeat from step 

4, or change the window (and filter length) and repeat from step 4. 

 

 

In our example the specifications are almost met. A small reduction in the edge frequency 

A of the ideal response, and repeat of the design process steps 2-4, is all that is required in 

this case to meet the specification. 
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Performance of the window method of FIR filter design  

 

The window method is conceptually simple and easy to use iteratively.  It can be used for 

non-linear-phase as well as linear-phase responses. 

 

However, it is inflexible; for example, if a bandpass filter has different upper and lower 

transition bandwidths, the narrower of them dictates the filter length.  There is no 

independent control over passband ripple and stopband attenuation.  The bandedge 

frequencies are not explicitly controlled by the method. 

  

It has no guaranteed optimality - a shorter filter meeting the specifications can almost 

always be designed. 
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Matlab implementation of the window method 

Matlab has two routines for FIR filter design by the window method, FIR1 and FIR2. 

 

B = FIR2(N,F,M) designs an Nth order FIR digital filter and returns the filter 

coefficients in length N+1 vector B. 

 Vectors F and M specify the frequency and magnitude breakpoints for the filter such that 

PLOT(F,M) would show a plot of the desired frequency response. 

 The frequencies in F must be between 0.0 < F < 1.0, with 1.0 corresponding to half the 

sample rate. They must be in increasing order and start with 0.0 and end with 1.0. 

 Note the frequency normalisation used by Matlab, where 1.0 equals half the sample rate. 

By default FIR2 uses a Hamming window.  Other available windows can be specified as an 

optional trailing argument.  For example, B = FIR2(N,F,M,bartlett(N+1)) uses a 

Bartlett window, or B = FIR2(N,F,M,chebwin(N+1,R)) uses a Chebyshev window.  

Other windows are computed using routines Boxcar, Hanning, Bartlett, 

Blackman, Kaiser and Chebwin. 
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and then taking out a common factor exp( -jM/2): 

  

    

 

 

 

If the filter length M+1 is odd, then the final term in curly brackets above is the single term 

bM/2, that is the centre coefficient ('tap') of the filter. 

 

 

 

 

 

 

 

Design of Linear Phase Filters 

The frequency response of the direct form FIR filter may be rearranged by 

grouping the terms involving the first and last coefficients, the second and next 

to last, etc.: 
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Symmetric impulse response: if we put bM = b0, bM-1 = b1, etc., and note that 

exp(jq)+exp(-jq) = 2cos(q), the frequency response becomes 
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This is a purely real function A() (sum of cosines) multiplied by a linear phase term, 

hence the response has linear phase, corresponding to a pure delay of M/2 samples, ie 

half the filter length – i.e. there is no relative phase distortion of the frequency 

components of the signal. 

A similar argument can be used to simplify antisymmetric impulse responses in terms of a 

sum of sine functions (such filters do not give a pure delay, although the phase still has a 

linear form /2-m/2) 

 

 

 

 

Note that  symmetric FIR filters can be implemented using the folded delay line 

structure shown below, which uses N/2 (or (N+1)/2) multipliers rather than N, so the 

longer symmetric filter may be no more computationally intensive than a shorter non-

linear phase one: 

 

 
xn 

b0 b(N-1)/2 

yn 
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Minimax Design of Linear Phase FIR filters 

 

A second method of Linear Phase FIR design considered is non-linear optimisation.   

For example the classic algorithm devised by Parks and McClellan, which designs linear 

phase (symmetric) filters or antisymmetric filters. The filters designed by the Parks and 

McClellan algorithm have minimised maximum error ("minimax error") with respect to a 

given target magnitude frequency response, i.e. minimise the following error with respect to 

the filter coefficients: 

  

 

 

The method uses an efficient algorithm called the Remez exchange algorithm.  Better 

performance with guaranteed error bounds compared to LS filter design, but more complex 

to implement the design. 
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Further options for FIR filter design 

  

More general non-linear optimisation (least squared error or minimax) can of course 

be used to design linear or non-linear phase FIR filters to meet more general frequency 

and/or time domain requirements.  

 

 Matlab has suitable optimisation routines. 
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IIR filter design 
 

To give an Infinite Impulse Response (IIR), a filter must be recursive, that is, incorporate 

feedback.  (But recursive filters are not necessarily  IIR).  The terms "Recursive" or 

"IIR" filter are used to describe filters with both feedback and feedforward terms.   

  

There are two classes of method for designing IIR filters:  

  

 (i) generation of a digital filter from an analogue prototype,   

 

 (ii) direct non-linear optimisation of the transfer function. 
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Design of an IIR transfer function from an analogue prototype 

Analogue filter designs are represented as Laplace-domain (s-domain) transfer functions.  

The following methods of generating a digital filter from the analogue prototype are not 

much used: 

•       Impulse invariant design - The digital filter impulse response equals the sampled 

impulse response of the analogue filter.  But the resulting frequency response may be 

significantly different (due to aliasing).  

•       Step invariant design – As above but step responses are equal.  Used in control 

system analysis. 

•       Ramp invariant design – As above but ramp responses are equal. 

•       Forward difference (Euler) – resulting digital filter may be unstable. 

•       Backward difference. 

 

The most useful method in practice is the bilinear transform. 
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Properties of the bilinear transform 

The bilinear transform produces a digital filter whose frequency response has the same 

characteristics as the frequency response of the analogue filter (but its impulse response 

may then be quite different).   

There are excellent design procedures for analogue prototype filters, so it is sensible to 

utilise the analogue technology for digital design. 

 

We define the bilinear transform (also known as Tustin's transformation) as the 

substitution: 

 

 

 

•Note 1. Although the ratio could have been written (z-1)/(z+1), that causes unnecessary 

algebra later, when converting the resulting transfer function into a digital filter; 

•Note 2. In some sources you will see the factor  (2/T)  multiplying the RHS of the 

bilinear transform; this is an optional scaling, but it cancels and does not affect the final 

result. 
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To derive the properties of the bilinear transform, solve for z, and put s = a+jw: 

 

 

 

 

Look at two important cases: 

1. The imaginary axis, i.e. a=0. This corresponds to the boundary of stability for the 

analogue filter’s poles. 

 With a=0, we have  

 

 

 Hence, the imaginary (frequency) axis in the s-plane maps to the unit circle in the z-plane 

2. With a<0, i.e. the left half-plane in the s-plane we have 
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Thus we conclude that the bilinear transform maps the Left half s-plane onto the interior of 

the unit circle in the z-plane: 

 

 

 

 

 

 

 

 

 

 

 

This property will allow us to obtain a suitable frequency response for the digital filter, and 

also to ensure the stability of the digital filter. 

 

s-plane 
z-plane 

1 

1 
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Hence the BLT preserves the following important features of H(jw): 

  

 (1) the w mapping is monotonic, and 

  

 (2)  w = 0 is mapped to  = 0, and w =  is mapped to  =   (half the 

sampling frequency).  Thus, for example, a lowpass response that decays to zero at w =  

produces a lowpass digital filter response that decays to zero at  = . 

  

 

 

 

 

Figure - Frequency warping 

 If the frequency response of the analogue filter at frequency w is H(jw), then the frequency 

response of the digital filter at the corresponding frequency  = 2 arctan(w) is also H(jw).  

Hence -3dB frequencies become -3dB frequencies, minimax responses remain minimax, etc. 

– see derivation shortly. 
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Stability of the filter 

Suppose the analogue prototype H(s) has a stable pole at a+jw, i.e. 

 

 

Then the digital filter               is obtained by substituting                          , 

 

 

Since H(s) has a pole at a+jw,                          has a pole at                              because 

 

 

 

However, we know that                           lies within the unit circle. Hence the filter is 

guaranteed stable provided H(s) is stable. 

 

  

Bilinear transform 
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Frequency Response of the Filter 

The frequency response of the analogue filter is 

 

 

The frequency response of the digital filter is  

 

 

 

 

 

 

 

Hence we can see that the frequency response is warped by a function  

 

 

 

 

 

 

 

 

Analogue Frequency Digital Frequency 
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Design using the bilinear transform 

  

The steps of the bilinear transform method are as follows: 

  

1. “Warp” the digital critical (e.g. bandedge or "corner") frequencies i , in other words 

compute the corresponding analogue critical frequencies w i = tan(i/2). 

  

2. Design an analogue filter which satisfies the resulting filter response specification. 

 

3. Apply the bilinear transform  to the s-domain transfer function of the analogue filter to 

generate the required z-domain transfer function. 
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 Example – Bilinear Transform 

  

Design  a first order lowpass digital filter with -3dB frequency of 1kHz and a sampling 

frequency of 8kHz 

Consider the first order analogue lowpass filter 

          

 

 

which has a gain of 1 (0dB) at zero frequency, and a gain of -3dB ( = 0.5 ) at wc rad/sec (the 

"cutoff frequency "). 

First calculate the normalised digital cutoff frequency: 

 

 

Calculate the equivalent pre-warped analogue filter cutoff frequency: 

 

 

 
 Cs
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Apply Bilinear Transform: 

Normalise to unity for 

 recursive implementation 

i.e. as a direct form implementation: 

Keep 0.2929 factorised to save 

one multiply 
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Note that the digital filter response at zero frequency equals 1, as for the analogue 

filter, and the digital filter response at  =   equals 0, as for the analogue filter at 

w = .  The –3dB frequency is  = /4, as intended. 
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Pole-zero diagram for digital design.  
 

Note that: 

a) The filter is stable, as expected 

b) The design process has added an extra zero compared to the prototype 

  - this is typical of filters designed by the bilinear transform. 

X Re(z)

Imag(z)

1-1
O
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There is a Matlab routine BILINEAR which computes the bilinear transformation.  

 

 

The example above could be computed, for example, by typing 

 

 

[NUMd,DENd] = BILINEAR([0.4142],[1 0.4142],0.5) 

 

which returns 

NUMd =  

    0.2929    0.2929 

DENd =  

    1.0000   -0.4142 
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Analogue filter prototypes    

  

Analogue designs exist for all the standard filter types (lowpass, highpass, bandpass, 

bandstop).  The common approach is to define a standard lowpass filter, and to use 

standard analogue-analogue transformations from lowpass to the other types, prior to 

performing the bilinear transform.  

 

 

It is also possible to transform from lowpass to other filter types directly in the digital 

domain, but we do not study these transformations here. 

 

 

Important families of analogue filter (lowpass) responses are described in this section, 

including: 
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1. Butterworth – maximally flat frequency response near w=0 

 

 

 

 

2. Chebyshev – equiripple response up to wc, monotonically decreasing > wc 

 

 

 

 

 

3. Elliptic – equiripple in passband, equiripple in stopband. 
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Butterworth (maximally flat) 

 

An Nth-order lowpass Butterworth filter has transfer function H(s) satisfying 

  

     

  

This has unit gain at zero frequency (s = j0), and a gain of -3dB ( = 0.5 ) at s = jwc. 

The poles of H(s)H(-s) are solutions of  

  

 

 

 i.e. at  

 

 

as illustrated on the right  for N = 3 and N = 4: 

  

 

 

N=3 N=4 

X

X X

X

XX

wc

w

Re(s)

Imag(s)=

X

X X

X

XX

wc

w

Re(s)

Imag(s)=

X X



3F3 Digital Signal Processing 

84 

Clearly, if li is a root of H(s), then  - li is a root of H(-s).  

Thus we can immediately identify the poles of H(s) as those roots lying in the left half-

plane, for a stable filter, say                                 , so that  

 

 

 

The frequency magnitude response is obtained as: 

 

        (*) 

 

Butterworth filters are known as "maximally flat" because the first 2N-1 derivatives of (*) 

w.r.t. w are 0 at w = 0. 

  

Matlab routine BUTTER designs digital Butterworth filters (using the bilinear transform):  

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and 

returns the filter coefficients in length N+1 vectors B and A.  The cut-off frequency Wn must 

be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. 
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Butterworth order estimation 

  

Equation (*) can be used for estimating the order of Butterworth filter required to meet a 

given specification. 

For example, assume that a digital filter is required with a -3dB point at c = /4, and it 

must provide at least 40dB of attenuation above s = /2. 

Warping the critical frequencies gives wc =  tan(/8) = 0.4142 and ws =  tan(/4) = 1. 

40dB corresponds to |H(ej)|2 = 10-4, so find N by solving 

  

          2N>10.45 

  

Hence, since N must be integer, choose N = 6. 

 

Matlab provides a function buttord for calculation of the required Butterworth order 
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Other Types of Analogue Filter 

There is a wide range of closed form analogue filters.  Some are all-pole; others have zeros.  

Some have monotonic responses; some equiripple. Each involve different degrees of 

flexibility and trade-offs in specifying transition bandwidth, ripple amplitude in 

passband/stopband and phase linearity.  

The meaning of "equiripple" is illustrated in the Figure, which shows a type I Chebyshev 

response which is equiripple in the passband 0<w <wc=1, and monotonic in the stopband. 

 

 

 

 

 

 

Figure - Type I fourth order Chebyshev LPF frequency response 

  

For a given bandedge frequency, ripple specification, and filter order, narrower transition 

bandwidth can be traded off against worse phase linearity 
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Chebyshev filters are characterised by the frequency response: 

 

 

 

Where Tn(w) are so-called Chebyshev polynomials. 

 

Elliptic filters allow for equiripple in both pass and stopbands. They are governed by a similar 

form: 

 

 

 

 

Where E(w) is a particular ratio of polynomials.  

 

Other filter types include Bessel filters, which are almost linear phase. 
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Transformation between different filter types (lowpass to highpass, etc.) 

Analogue prototypes are typically lowpass. In order to convert to other types of filter 

one can first convert the analogue prototype in the analogue domain, then use 

the bilinear transform to move to digital as before.  

The following procedures may be used, assuming a lowpass prototype with cutoff 

frequency equal to 1: 

1. Lowpass to Lowpass 

 

2. Lowpass to Highpass 

 

3. Lowpass to Bandpass 

 

4. Lowpass to Bandstop 
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Example:  The transfer function of a second order Butterworth lowpass filter with cutoff 

frequency 1 is 

          

 

From this, a second order highpass filter with cutoff frequency wc can be designed: 

 

 

 

 

From here, a digital highpass filter can be designed, using the bilinear transform and setting 

 

  

 

 

  

 

 

12

1
2  ss

    22

2

2
212

1

ss

s

ss cccc 
=

 wwww



3F3 Digital Signal Processing 

91 

Comparison of IIR and FIR filters 

If the desired filter is highly selective (that is, its frequency response has small transition 

bandwidths or "steep sides"), then the impulse response will be long in the time domain.  

Examples include narrowband filters and lowpass /highpass /bandpass filters with steep 

cutoffs. 

 For an FIR filter, a long impulse response means the filter is long (high order), so it requires 

many multiplications, additions and delays per sample. 

 An IIR filter has active poles as well as zeros.  Poles, acting as high-Q resonators, can provide 

highly selective frequency responses (hence long impulse responses) using much  lower filter 

order than the equivalent FIR filter, hence much lower computational cost. 

Although it is still true that a more selective response requires a higher order filter. 

 On the other hand, the closer to linear the phase is required to be, the higher the order of IIR 

filter that is needed.  Also the internal wordlengths in IIR filters need generally to be higher 

than those in FIR filters; this may increase the implementation cost (e.g in VLSI). 

An FIR filter is inherently stable, unlike an IIR filter.  Hence an FIR implementation 

involving inaccurate (finite precision, or 'quantised') coefficients will be stable, whereas an 

IIR one might not.  (However, it is desirable in either case to compute the actual frequency 

response of the filter, using the actual quantised values of the coefficients, to check the 

design.) 
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Implementation of digital filters 

 

So far we have designed a digital filter to meet prescribed 

specifications, with the result expressed as a rational transfer function 

H(z).  We now consider implementation.  

 

If speed is the main concern, then if multiplications take longer than 

additions, we aim to reduce the number of multiplications; otherwise 

to reduce the total operation count. 
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The use of fixed-point arithmetic takes much less area than floating-point 

(so is cheaper) or can be made to go faster.  The area of a fixed-point 

parallel multiplier is proportional to the product of the coefficient and data 

wordlengths, making wordlength reduction advantageous. 

 

Hence much work has gone into structures which allow reductions in 

 the number of multipliers; or 

 the total operation count (multipliers, adders and perhaps delays); or 

 data or coefficient wordlengths 

 

If power consumption is the concern, then reducing total operation count 

and wordlength are desirable.  Also fixed point is much better than floating 

point.  Since general multiplication takes much more power than addition, 

we try to reduce the number of multiplications, or to replace general 

multiplications by, for example, binary shifts (i.e. multiply/divide by powers 

of 2) 
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Recall the Direct Form I implementation considered so far: 
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Structures for IIR filters - Cascade and Parallel 
 

Implementing a digital filter in direct form is satisfactory in (for example) Matlab's  filter  

routine, where double precision floating-point is used. 
 

However in fixed point or VLSI implementations direct form is not usually a good idea: 

 
1. alternative structures may decrease multiplications or overall computation load; 

 
2. when fixed-point coefficients are used, the response of alternative structures is much less 

sensitive to coefficient imprecision (coefficient quantisation); and 

 
3. when fixed-point data are used, alternative structures may add less quantisation noise into 

the output signal. 
 

 

We therefore consider alternative forms of IIR filter – cascade and parallel 
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Canonic form IIR sections 
 

The earlier Figure  showed an implementation with separate FIR and IIR stages, called Direct 

Form I. 

 

We can minimise the number of delay stores by putting the feedback stage first and then using 

the same delay stores for both parts, since: 

 

 

 

.  This is called the canonic form ('canonic' means minimum), or Direct Form II. 

 

A canonic form filter can be of arbitrary order, but the following example has 2 poles and 2 

zeros; this is called a biquadratic section: 

 
[Check for yourself that  

this gives the same output 

as the Direct Form I  

Structure] 
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And for general filter orders: 
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Cascade form IIR filters 
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Cascades typically use first and second order (biquadratic) sections 
 

To obtain complex (resonant) roots with real filter coefficients requires at least a second-order 

section.  Each complex root, with its inevitable conjugate, can be implemented by a single 

second-order section.  For example, a root at r exp(j) and its conjugate r exp(-j) generate the 

real-coefficient second-order polynomial 

 

 (1 - r exp(j)z-1 )(1 - r exp(-j)z-1 ) = 1 - 2rcos()z-1 + r2z-2    

 

so, to place zeros at r exp(±j), set b0 = 1,  b1 = -2rcos(),  b2 = r2. 

 

(In principle, b0, b1 & b2 could all be multiplied by a common scale factor, but it is usually 

advantageous to set b0 = 1 throughout, to avoid unnecessary multiplications, and use a 

single overall gain factor.) 

 

Or to place poles at r exp(±j), set          a1 = -2rcos(),  a2 = r2. 

 

Real poles/ zeros may be implemented by first or second order sections. 
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Parallel form IIR filters 
An IIR filter can be implemented as a parallel summation of low order sections: 

 

H1(z)

H2(z)

H3(z)

 
 

Partial Fraction Expansion is used to compute the numerator coefficients of the parallel form. 

    

       

1 2 1 1

0 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 21 1 1 1

b b z b z A A z C C z
B

a z a z c z c z a z a z c z c z

   

       

   
=  

         

 

The parallel form is little used, because: 

 

• It sometimes has an advantage over the cascade realisation in terms of internally generated 

quantisation noise, but not much. 

• Longer coefficient wordlengths are usually required. 

• Zeros on the unit circle in the overall transfer function are not preserved, therefore no saving 

of multipliers can be obtained for filters having such zeros. 
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When using fixed-point arithmetic many other considerations 

come into play; some of the most important are: 

• Overflow – overflow of fixed point registers can easily 

occur. Scalings can be applied to the filter coefficients to 

make this unlikely/ impossible. 

• Quantisation noise – this becomes a more significant effect 

in fixed point implementations. 

• Nonlinear effects – in extreme cases with IIR filters limit 

cycles can be present when there is no change input; 

similarly dead bands can occur where the filter does not 

respond to certain low level inputs 

• Generally much harder to do the design – software exists to 

assist, but nowadays most (but not all!) implementations are 

in floating point arithmetic. 
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FIR filter implementation by fast convolution 
 

A length-N FIR filter requires in general N multiplications and N-1 additions per output 

sample.  If the filter is symmetric, the number of multiplications may be halved, as 

explained before.  But for a highly selective response (narrow transition band) the filter 

order may be high.  An alternative method of FIR filtering, called fast convolution, uses 

the FFT to reduce the computation load. 

 

The key result is that if 

signal vector x = [x0 x1 ... xN-1] has DFT X = [X0 X1 ... XN-1], 

and vector h = [h0 h1 ... hN-1] has DFT H = [H0 H1 ... HN-1], 

then the inverse DFT y of  HX = [X0H0,  X1H1, ... XN-1HN-1] is the 

circular convolution of x and h, defined as: 
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[Use separate variables  

n_1 and n_2 to distinguish  

terms in the two summations] 

[Reorder summations] 

[Summation is a Geometric  

Progression – check you can get  

this result yourself ] 

[Required result] 
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Now, we show how to use this result to give a fast FIR filtering method. Consider filtering  

a sequence x with a filter h having order M. The required convolution is: 

 

 

 

Now, choose a frame length N>>M. We notice that for  M-1<n<N,  

   mod(n-m,N)=n-m 

In other words, the result of cyclic convolution is the same as that of standard convolution: 

 

 

 

 

 

 

This means that we can use fast cyclic convolution methods (based on DFT/FFT) to 

calculate the filtered output for n=M,…,N-1 

  

 

 

 

 

 

 

 

 

  

 

Standard convolution 

(`filtering’) 
Cyclic convolution 
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The overlap-save method filters a long sequence of data x in chunks of length N-M, as 

follows: 

 

 

 

STEP 1 

 

hn is the impulse response of the FIR filter, and is of length M+1.  Choose a much longer 

blocklength N, append N-(M+1) zeros to make the vector h and compute its DFT H via 

the FFT.  Note that H only needs to be calculated once. 

 

 

 

 
 

0 

M 

N-1 

hn 
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STEP 2 – For k=0, 1, 2, … 

 

Construct the kth  `frame’ of data xk as follows: 

 

 

 

        1 1 1k k N M M k N M k N M k N M
x x x x

       
 =
 

x  

 

 

 

 

[When k=0, set previous frame values to zero] 

 

 
 

 

 

 

 

N data points 

Last M data points 

from previous frame 

 N-M new data points 
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Then compute the DFT Xk of the vector xk, multiply Xk by H sample-by-sample, and IDFT 

the result to give yk.  The last N-M samples of yk are the next N-M filter outputs: 

 
for k=1: ...  % [Note Matlab convention to start at k=1] 

   if k==1 

      X=fft([ zeros(1,M) x((1:N-M))]); 

   else 

      X=fft([ x((k-1)*(N-M)+(1-M:N-M))]); 

   end 

   y=real(ifft(H.*X)); 

   output((k-1)*(N-M)+(1:N-M)) = y(M+1:N); %last N-M samples of y 

end 

 

FIR filter implementation by fast convolution is an example of a block based signal 

processing method. 

 

The saving can be significant - for example if M=100 and N=1024, the FFT-based method 

(assuming efficient FFTs are used for real data) requires about 33% the number of 

operations of the direct method. 

 


