
3F3 Digital Signal Processing

Section 2: Digital Filters

• A filter is a device which passes some signals 'more' than others (`selectivity’),
e.g. a sinewave of one frequency more than one at another frequency.

• We will deal with linear time-invariant (LTI) digital filters.

• Recall that a linear system is defined by the principle of linear superposition:

• If the linear system's parameters (coefficients) are constant, then it is Linear
Time Invariant (LTI).

 [Some of the the material in this section is adapted from notes byDr Punskaya, Dr Doucet and Dr Macleod]

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

3F3 Digital Signal Processing

Write the input data sequence as:

And the corresponding output sequence as:

x

3F3 Digital Signal Processing

The linear time-invariant digital filter can then be described by the difference

equation:

A direct form implementation of (3.1) is:

 xn

yn b0 bM

a1 aN

= unit delay

3F3 Digital Signal Processing

The operations shown in the Figure above are the full set of possible linear

operations:

• constant delays (by any number of samples),

• addition or subtraction of signal paths,

• multiplication (scaling) of signal paths by constants - (incl. -1),

Any other operations make the system non-linear.

3F3 Digital Signal Processing Matlab filter functions

Matlab has a filter command for implementation of linear digital filters.

The format is

 y = filter(b, a, x);

where

 b = [b0 b1 b2 ... bM]; a = [1 a1 a2 a3 ... aN];

So to compute the first P samples of the filter’s impulse response,

 y = filter(b, a, [1 zeros(1,P)]);

Or step response,
 y = filter(b, a, [ones(1,P)]);

To evaluate the frequency response at n points equally spaced in the normalised frequency
range µ=0 to µ= , Matlab's function freqz is used:

 freqz(b,a,n);

3F3 Digital Signal Processing

Filtering example:

Generate a Gaussian random noise sequence:

Matlab code:

x=randn(100000,1);

plot(x)

plot(abs(dft(x)))

soundsc(x,44100)

a=[1 -0.99 0.9801];

b=[1 –0.1 –0.56];

y=filter(b,a,x);

plot(y)

plot(abs(dft(y)))

soundsc(y,44100)

Selective amplification

Of one frequency

3F3 Digital Signal Processing

Impulse Response

3F3 Digital Signal Processing

The roots of the numerator polynomial in H(z) are known as the zeros, and the roots of

the denominator polynomial as poles. In particular, factorize H(z) top and bottom:

Transfer Function, Poles and Zeros

3F3 Digital Signal Processing

Frequency Response

3F3 Digital Signal Processing

 System has 2 poles (x)
and 2 zeros (o) Im (z)

X

X

O

unit circle

O
-1 1

Proceed around the unit

circle with

3F3 Digital Signal Processing

Im (z)

X

X

O

unit circle

O
-1 1

Transfer function:

Frequency response:

C1C2

D1D2
=

C1

C2

D2

D1

3F3 Digital Signal Processing

Im (z)

X

X

O

unit circle

O
-1 1 C1

C2

D2

D1

The magnitude of the frequency

response is given by times the

product of the distances from the zeros

to divided by the product of

the distances from the poles to

The phase response is given by the sum

of the angles from the zeros to

minus the sum of the angles from the

poles to plus a linear phase

term (M-N)

3F3 Digital Signal Processing

Im (z)

X

X

O

unit circle

O
-1 1 C1

C2

D2

D1

Thus when 'is close

to' a pole, the magnitude of the

response rises (resonance).

When 'is close to' a

zero, the magnitude falls (a

null).

The phase response – more

difficult to get “intuition”, but

similar principle applies

3F3 Digital Signal Processing

Calculate frequency response of filter in Matlab:

b=[1 -0.1 -0.56];

a=[1 -0.9 0.81];

freqz(b,a)

Peak close to pole frequency

Troughs at zero frequencies

3F3 Digital Signal Processing

Distance from unit

circle to zero

Distance from unit

circle to pole

3F3 Digital Signal Processing

Design of Filters

The 4 classical standard frequency magnitude responses are:

 Lowpass, Highpass, Bandpass, and Bandstop

Consider e.g. Lowpass:

Gain

1.0

Pass band Stop band

Transition band

0
Normalised Frequency

fp fs
 Frequency band where signal is passed is the pass band

Frequency band where signal is removed is stop band

3F3 Digital Signal Processing

17

Ideal Filters – Magnitude Response

Ideal Filters are usually such that they admit a gain of 1 in a given

passband (where signal is passed) and 0 in their stopband (where

signal is removed).

3F3 Digital Signal Processing

It is impossible to implement the above responses (or any response with finite width constant

magnitude sections). Any realisable filter can only approximate it.

 [Another requirement for realisability is that the filter must be causal (i.e. hn=0, n<0).]

Hence a typical filter specification must specify maximum permissible deviations from the ideal

 - a maximum passband ripple p and a maximum stopband amplitude s

(or minimum stopband attenuation) :

3F3 Digital Signal Processing

These are often expressed in dB:

 passband ripple = 20 log10 (1+p) dB;

 or peak-to-peak passband ripple 20 log10 (1+2p) dB;

 minimum stopband attenuation = -20 log10 (s) dB.

Example: p = 6%:

 peak-to-peak passband ripple 20 log10 (1+2p) = 1dB;

 s = 0.01:

 minimum stopband attenuation = -20 log10 (s) = 40dB.

The bandedge frequencies are often called corner frequencies, particularly when

 associated with specified gain or attenuation (eg gain = -3dB).

3F3 Digital Signal Processing

Other standard responses:

Gain

1.0

Pass band
Stop band

Transition band

0

Normalised Frequency

High Pass:

fp fs

3F3 Digital Signal Processing

Gain

1.0

0

Normalised Frequency

Band Pass:

Pass band

Stop band
Stop band

Transition bands

3F3 Digital Signal Processing

Gain

1.0

0

Normalised Frequency

Band Stop:

3F3 Digital Signal Processing

FIR Filters

The simplest class of digital filters are the Finite Impulse Response

(FIR) filters, which have the following structure:

and difference equation:

 xn

yn

b0 bM

= unit delay

3F3 Digital Signal Processing

Can immediately obtain the impulse response, with xn= dn

Hence the impulse response is of finite length M+1, as required

FIR filters also known as feedforward or non-recursive, or transversal

3F3 Digital Signal Processing

Design of FIR filters

Given the desired frequency response D() of a filter, can compute an

appropriate inverse DTFT to obtain its ideal impulse response. Since

the coefficients of an FIR filter equate to its impulse response, this

would produce an “ideal” FIR filter.

However, this “ideal” impulse response is not actually constrained to be of

finite length, and it may be non-causal (i.e. have non-zero response at

negative time). Somehow we must generate an impulse response

which is of limited duration, and causal.

In order to obtain the coefficients, simply inverse DTFT the desired

response (since impulse response is inverse DTFT of frequency

response):

3F3 Digital Signal Processing

 -c +c

D()

3F3 Digital Signal Processing

27

The ideal filter coefficients can in this case be calculated exactly:

This 'sinc' response is symmetric about sample n=0, and infinite in extent :

n

-10 -8 -6 -4 -2 0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3F3 Digital Signal Processing

28

To implement an order-M FIR filter, assume we select only a finite length section of dn.

For the sinc response shown above, the best section to select (that is, the one which gives

 minimum total squared error) is symmetric about 0. The resulting filter is non-causal,

but it can be made causal simply by adding delay:

This selection operation is equivalent to multiplying the ideal coefficients by a

 rectangular window extending from -M/2 to M/2 (prior to delaying by M/2).

We can compute the resulting filter frequency response, which can now be thought of as a

 truncated Fourier series approximation of D(), given by the DTFT of

3F3 Digital Signal Processing

29

This is illustrated below for the case M=24 (length 25)

 and c= /2 (cut-off frequency = 0.25 x sample frequency).

 Note the well known Gibb's phenomenon (an oscillatory error, increasing in magnitude

 close to any discontinuities in D()).

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

Normalised radian frequency

D

3F3 Digital Signal Processing

30

The actual filter would require an added delay of M/2 samples to make it causal. This

 does not affect the amplitude response, but introduces a linear phase term to the

frequency response.

Now replot the frequency response on a dB amplitude scale.

The sidelobes due to the rectangular window can be clearly seen:

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

Normalised radian frequency

| D |

(dB)

Mainlobe First sidelobe

Sidelobes

3F3 Digital Signal Processing

31

The high sidelobe level close to the passband, and the

slow decay of sidelobe level away from the passband,

make this an unsatisfactory response for most purposes.

 Use of a window function

A good solution is to create the required finite number of

filter coefficients by multiplying the (delayed by M/2) infinite-length coefficient

vector dn by a finite-length window wn with non-rectangular shape, e.g. the raised

cosine (Hann or Hanning) window function,

3F3 Digital Signal Processing

32

Leading to a much improved frequency response, illustrated below:

The sidelobes have been greatly reduced, but the transition from

passband to stopband has been widened. The -3dB frequency has moved

from 1.55 rad/sample down to 1.45 rad/sample, illustrating the general point

that the choice of window affects the frequencies at which specified gains

are achieved.

Again plotting the response on a dB amplitude scale, we have:

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

Normalised radian frequency

D

3F3 Digital Signal Processing

33

The greatly reduced first sidelobe level, more rapid decay of sidelobes,

and the broader transition band, are clearly seen.

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

Normalised radian frequency

| D |

(dB)

Transition band

3F3 Digital Signal Processing

34

Analysis

Frequency domain

convolution

3F3 Digital Signal Processing

35

To see the effect of the frequency domain convolution, see the example below,

for a rectangle window of length 16:

3F3 Digital Signal Processing

36

Example window functions:

3F3 Digital Signal Processing

37

3F3 Digital Signal Processing

38

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
Hanning window =0.5,=0.5

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
Hamming window =0.54,=0.46

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2
Rectangle window =1,=0

Note Hanning window tapers to

zero at edges, hence has faster roll-off

of sidelobes at high frequencies, cf.

Fourier Series

Hamming

window has

discontinuity

at edges

3F3 Digital Signal Processing

39

3F3 Digital Signal Processing

40

1
2 3

3F3 Digital Signal Processing

41

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

200

400

600

800

1000

1200

|W
(e

j
)|

1

2 3

Note good overlap of

sidelobes

3F3 Digital Signal Processing

42

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

|W
(e

j
)|

Hanning Window

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
5

|W
(e

j
)|

Hanning

Rectangle Window

Hanning Window
Hanning Window achieves good sidelobe

cancellation, but broader central lobe compared to

rectangle window.

Sidelobes decay much more rapidly and linearly on the

log-log scale

3F3 Digital Signal Processing

43

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

|W
(e

j
)|

Hamming Window

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-6

10
-4

10
-2

10
0

10
2

10
4

|W
(e

j
)|

Rectangle Window

Hamming Window

Hamming Window achieves close to optimal

cancellation of the second sidelobe, but again broader

central lobe compared to rectangle window.

Sidelobes are nearly constant amplitude

Hamming Window

3F3 Digital Signal Processing

44

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

|W
(e

j
)|

Hanning vs. Hamming Window

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
5

|W
(e

j
)|

Rectangle Window

Hanning

Hamming

Hanning vs. Hamming Windows:

3F3 Digital Signal Processing

45

Numerous window functions available – see Matlab command `Window’

Each offer different tradeoffs of transition width, sidelobe level, …

Examples include:

 Rectangle

 Hann or Hanning

 Hamming,

 Blackman,

 Kaiser - includes a 'ripple control' parameter ß which allows the designer to

 tradeoff passband ripple against transition width.

3F3 Digital Signal Processing

46

Using the window method for FIR filter design

The window method is conceptually simple and can quickly design filters to

approximate a given target response. However, it does not explicitly impose

amplitude response constraints, such as passband ripple, stopband attenuation, or

3dB points, so it has to be used iteratively to produce designs which meet such

specifications.

 There are 5 steps in the window design method for FIR filters.

1.Select a suitable window function.

2.Specify an 'ideal' response D().

3.Compute the coefficients of the ̀ ideal’ filter.

4.Multiply the ideal coefficients by the window function to give the filter

coefficients and delay to make causal

5.Evaluate the frequency response of the resulting filter, and iterate 1-5 if necessary

3F3 Digital Signal Processing

47

Example:

Obtain the coefficients of an FIR lowpass digital filter to meet these specifications:

 passband edge frequency (1dB attenuation) 1.5 kHz

 transition width 0.5 kHz

 stopband attenuation >50 dB

 sampling frequency 8 kHz

3F3 Digital Signal Processing

48

Step 1 – Select a suitable window function

Choosing a suitable window function can be done with the aid of published data such

as this [taken from "Digital Signal Processing" by Ifeachor and Jervis, Addison-

Wesley]:

Name of

window

function

Transition

width/ sample

frequency

Passband

ripple (dB)

Main lobe

relative to

largest side

lobe (dB)

Maximum

stopband

attenuation

(dB)

Rectangular

0.9 / N

0.75

13

21

Hann(ing)

3.1/N

0.055

31

44

Hamming

3.3/N

0.019

41

53

Blackman

5.5/N

0.0017

57

74

Kaiser

(=4.54)

2.93/N

0.0274

50

Kaiser

(=8.96)

5.71/N

0.000275

90

3F3 Digital Signal Processing

49

However, the above table is worst-case.

For example, in earlier example the use of a Hanning window achieved a main lobe level

of –42dB (cf –31 dB) and a normalised transition width of 0.7/2 = 0.11 (cf 3.1/N =

3.1/25 = 0.124).

Using the table, the required stopband attenuation (50dB) can probably be obtained by

the use of Hamming, Blackman or Kaiser windows.

Try a Hamming window. The table indicates that the transition width (in normalised

freq.) is 3.3/N.

Require a normalised transition width of 0.5/8 = 0.0625, so the required N is 52.8 (ie.

N=53).

3F3 Digital Signal Processing

50

Step 2 – Specify an 'ideal' response D()

The smearing effect of the window causes the transition region to spread about the

chosen ideal bandedge:

Hence choose an 'ideal' bandedge A which lies in the middle of the wanted transition

region, i.e. frequency = 1.5+0.5/2 = 1.75 kHz

So, A = 1.75/8 x 2 rad/sample.

A

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

Normalised radian frequency

| D |

(dB)

Transition band

3F3 Digital Signal Processing

51

Step 3 – Compute the coefficients of the ideal filter

The ideal filter coefficients dn are given by the inverse Discrete time Fourier transform of

D(),

In practice, this may not be computable in closed form for more complex D(). Can then

approximate by numerical integration, or by discretisation of D() on a fine grid and

inverse DFT-ing, i.e. take inverse DFT of:

where the second condition ensures that the coefficients are real-valued.

-200 -150 -100 -50 0 50 100 150 200
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

d
n

3F3 Digital Signal Processing

52

STEP 4 – Multiply to obtain the filter coefficients

Now multiply by the chosen window function, i.e. Hamming with length 53:

Notice though that the filter is non-causal since it has non-zero values for n<0.

This is `fixed’ by delaying the impulse response by (in this case) 26 samples. The resulting

frequency magnitude response is unchanged, but a constant delay of 26 samples is

introduced into the filter output (= a linear phase term in the frequency response):

-200 -150 -100 -50 0 50 100 150 200
-0.2

0

0.2

0.4

0.6

n

-200 -150 -100 -50 0 50 100 150 200
-0.5

0

0.5

1

n

d
n

w
n

w
n
 d

n

3F3 Digital Signal Processing

53

0 10 20 30 40 50 60
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n

Final windowed, causal filter FIR coefficients

3F3 Digital Signal Processing

54

Step 5 – Evaluate the frequency response and iterate

Compute the resulting frequency response of the windowed filter.

If the resulting filter does not meet the specifications, either adjust D() (for example,

move the band edge) and repeat from step 2, or adjust the filter length and repeat from step

4, or change the window (and filter length) and repeat from step 4.

In our example the specifications are almost met. A small reduction in the edge frequency

A of the ideal response, and repeat of the design process steps 2-4, is all that is required in

this case to meet the specification.

3F3 Digital Signal Processing

55

Performance of the window method of FIR filter design

The window method is conceptually simple and easy to use iteratively. It can be used for

non-linear-phase as well as linear-phase responses.

However, it is inflexible; for example, if a bandpass filter has different upper and lower

transition bandwidths, the narrower of them dictates the filter length. There is no

independent control over passband ripple and stopband attenuation. The bandedge

frequencies are not explicitly controlled by the method.

It has no guaranteed optimality - a shorter filter meeting the specifications can almost

always be designed.

3F3 Digital Signal Processing

56

Matlab implementation of the window method

Matlab has two routines for FIR filter design by the window method, FIR1 and FIR2.

B = FIR2(N,F,M) designs an Nth order FIR digital filter and returns the filter

coefficients in length N+1 vector B.

 Vectors F and M specify the frequency and magnitude breakpoints for the filter such that

PLOT(F,M) would show a plot of the desired frequency response.

 The frequencies in F must be between 0.0 < F < 1.0, with 1.0 corresponding to half the

sample rate. They must be in increasing order and start with 0.0 and end with 1.0.

 Note the frequency normalisation used by Matlab, where 1.0 equals half the sample rate.

By default FIR2 uses a Hamming window. Other available windows can be specified as an

optional trailing argument. For example, B = FIR2(N,F,M,bartlett(N+1)) uses a

Bartlett window, or B = FIR2(N,F,M,chebwin(N+1,R)) uses a Chebyshev window.

Other windows are computed using routines Boxcar, Hanning, Bartlett,

Blackman, Kaiser and Chebwin.

3F3 Digital Signal Processing

57

and then taking out a common factor exp(-jM/2):

If the filter length M+1 is odd, then the final term in curly brackets above is the single term

bM/2, that is the centre coefficient ('tap') of the filter.

Design of Linear Phase Filters

The frequency response of the direct form FIR filter may be rearranged by

grouping the terms involving the first and last coefficients, the second and next

to last, etc.:

3F3 Digital Signal Processing

58

Symmetric impulse response: if we put bM = b0, bM-1 = b1, etc., and note that

exp(jq)+exp(-jq) = 2cos(q), the frequency response becomes

3F3 Digital Signal Processing

59

This is a purely real function A() (sum of cosines) multiplied by a linear phase term,

hence the response has linear phase, corresponding to a pure delay of M/2 samples, ie

half the filter length – i.e. there is no relative phase distortion of the frequency

components of the signal.

A similar argument can be used to simplify antisymmetric impulse responses in terms of a

sum of sine functions (such filters do not give a pure delay, although the phase still has a

linear form /2-m/2)

Note that symmetric FIR filters can be implemented using the folded delay line

structure shown below, which uses N/2 (or (N+1)/2) multipliers rather than N, so the

longer symmetric filter may be no more computationally intensive than a shorter non-

linear phase one:

xn

b0 b(N-1)/2

yn

3F3 Digital Signal Processing

60

3F3 Digital Signal Processing

61

3F3 Digital Signal Processing

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 /

|H
(e

j
)|

LS filter design, LP cutoff at 0.375, P=20 desired points

M=20

M=30

M=40

Desired response A
d
, `*'

Example low-pass LS filter design:

3F3 Digital Signal Processing

63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
FIR LS design, P=100 points

M=200

M=100

3F3 Digital Signal Processing

64

Minimax Design of Linear Phase FIR filters

A second method of Linear Phase FIR design considered is non-linear optimisation.

For example the classic algorithm devised by Parks and McClellan, which designs linear

phase (symmetric) filters or antisymmetric filters. The filters designed by the Parks and

McClellan algorithm have minimised maximum error ("minimax error") with respect to a

given target magnitude frequency response, i.e. minimise the following error with respect to

the filter coefficients:

The method uses an efficient algorithm called the Remez exchange algorithm. Better

performance with guaranteed error bounds compared to LS filter design, but more complex

to implement the design.

3F3 Digital Signal Processing

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Example: Remez Exchange designed FIR filter with order M=40,

desired response shown as `+’.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1200

-1000

-800

-600

-400

-200

0

Normalized Frequency (rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-120

-100

-80

-60

-40

-20

0

20

Normalized Frequency (rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

|H|

3F3 Digital Signal Processing

66

Further options for FIR filter design

More general non-linear optimisation (least squared error or minimax) can of course

be used to design linear or non-linear phase FIR filters to meet more general frequency

and/or time domain requirements.

 Matlab has suitable optimisation routines.

3F3 Digital Signal Processing

67

IIR filter design

To give an Infinite Impulse Response (IIR), a filter must be recursive, that is, incorporate

feedback. (But recursive filters are not necessarily IIR). The terms "Recursive" or

"IIR" filter are used to describe filters with both feedback and feedforward terms.

There are two classes of method for designing IIR filters:

 (i) generation of a digital filter from an analogue prototype,

 (ii) direct non-linear optimisation of the transfer function.

3F3 Digital Signal Processing

68

Design of an IIR transfer function from an analogue prototype

Analogue filter designs are represented as Laplace-domain (s-domain) transfer functions.

The following methods of generating a digital filter from the analogue prototype are not

much used:

• Impulse invariant design - The digital filter impulse response equals the sampled

impulse response of the analogue filter. But the resulting frequency response may be

significantly different (due to aliasing).

• Step invariant design – As above but step responses are equal. Used in control

system analysis.

• Ramp invariant design – As above but ramp responses are equal.

• Forward difference (Euler) – resulting digital filter may be unstable.

• Backward difference.

The most useful method in practice is the bilinear transform.

3F3 Digital Signal Processing

69

Properties of the bilinear transform

The bilinear transform produces a digital filter whose frequency response has the same

characteristics as the frequency response of the analogue filter (but its impulse response

may then be quite different).

There are excellent design procedures for analogue prototype filters, so it is sensible to

utilise the analogue technology for digital design.

We define the bilinear transform (also known as Tustin's transformation) as the

substitution:

•Note 1. Although the ratio could have been written (z-1)/(z+1), that causes unnecessary

algebra later, when converting the resulting transfer function into a digital filter;

•Note 2. In some sources you will see the factor (2/T) multiplying the RHS of the

bilinear transform; this is an optional scaling, but it cancels and does not affect the final

result.

3F3 Digital Signal Processing

70

To derive the properties of the bilinear transform, solve for z, and put s = a+jw:

Look at two important cases:

1. The imaginary axis, i.e. a=0. This corresponds to the boundary of stability for the

analogue filter’s poles.

 With a=0, we have

 Hence, the imaginary (frequency) axis in the s-plane maps to the unit circle in the z-plane

2. With a<0, i.e. the left half-plane in the s-plane we have

 22

22
2

1

1
 hence ;

1

1

1

1

w

w

w

w

=

=

=

a

a
z

ja

ja

s

s
z

3F3 Digital Signal Processing

71

Thus we conclude that the bilinear transform maps the Left half s-plane onto the interior of

the unit circle in the z-plane:

This property will allow us to obtain a suitable frequency response for the digital filter, and

also to ensure the stability of the digital filter.

s-plane
z-plane

1

1

3F3 Digital Signal Processing

72

Hence the BLT preserves the following important features of H(jw):

 (1) the w mapping is monotonic, and

 (2) w = 0 is mapped to = 0, and w = is mapped to = (half the

sampling frequency). Thus, for example, a lowpass response that decays to zero at w =

produces a lowpass digital filter response that decays to zero at = .

Figure - Frequency warping

 If the frequency response of the analogue filter at frequency w is H(jw), then the frequency

response of the digital filter at the corresponding frequency = 2 arctan(w) is also H(jw).

Hence -3dB frequencies become -3dB frequencies, minimax responses remain minimax, etc.

– see derivation shortly.

0

1

2

3

0 1 2 3 4 5 6 7

w (rad/sec)

(rad/

sample)

3F3 Digital Signal Processing

73

Stability of the filter

Suppose the analogue prototype H(s) has a stable pole at a+jw, i.e.

Then the digital filter is obtained by substituting ,

Since H(s) has a pole at a+jw, has a pole at because

However, we know that lies within the unit circle. Hence the filter is

guaranteed stable provided H(s) is stable.

Bilinear transform

3F3 Digital Signal Processing

74

Frequency Response of the Filter

The frequency response of the analogue filter is

The frequency response of the digital filter is

Hence we can see that the frequency response is warped by a function

Analogue Frequency Digital Frequency

3F3 Digital Signal Processing

75

Design using the bilinear transform

The steps of the bilinear transform method are as follows:

1. “Warp” the digital critical (e.g. bandedge or "corner") frequencies i , in other words

compute the corresponding analogue critical frequencies w i = tan(i/2).

2. Design an analogue filter which satisfies the resulting filter response specification.

3. Apply the bilinear transform to the s-domain transfer function of the analogue filter to

generate the required z-domain transfer function.

3F3 Digital Signal Processing

76

 Example – Bilinear Transform

Design a first order lowpass digital filter with -3dB frequency of 1kHz and a sampling

frequency of 8kHz

Consider the first order analogue lowpass filter

which has a gain of 1 (0dB) at zero frequency, and a gain of -3dB (= 0.5) at wc rad/sec (the

"cutoff frequency ").

First calculate the normalised digital cutoff frequency:

Calculate the equivalent pre-warped analogue filter cutoff frequency:

 Cs

sH
w

=
1

1

3F3 Digital Signal Processing

77

Apply Bilinear Transform:

Normalise to unity for

 recursive implementation

i.e. as a direct form implementation:

Keep 0.2929 factorised to save

one multiply

3F3 Digital Signal Processing

78

Note that the digital filter response at zero frequency equals 1, as for the analogue

filter, and the digital filter response at = equals 0, as for the analogue filter at

w = . The –3dB frequency is = /4, as intended.

3F3 Digital Signal Processing

79

Pole-zero diagram for digital design.

Note that:

a) The filter is stable, as expected

b) The design process has added an extra zero compared to the prototype

 - this is typical of filters designed by the bilinear transform.

X Re(z)

Imag(z)

1-1
O

3F3 Digital Signal Processing

80

There is a Matlab routine BILINEAR which computes the bilinear transformation.

The example above could be computed, for example, by typing

[NUMd,DENd] = BILINEAR([0.4142],[1 0.4142],0.5)

which returns

NUMd =

 0.2929 0.2929

DENd =

 1.0000 -0.4142

3F3 Digital Signal Processing

81

Analogue filter prototypes

Analogue designs exist for all the standard filter types (lowpass, highpass, bandpass,

bandstop). The common approach is to define a standard lowpass filter, and to use

standard analogue-analogue transformations from lowpass to the other types, prior to

performing the bilinear transform.

It is also possible to transform from lowpass to other filter types directly in the digital

domain, but we do not study these transformations here.

Important families of analogue filter (lowpass) responses are described in this section,

including:

3F3 Digital Signal Processing

82

1. Butterworth – maximally flat frequency response near w=0

2. Chebyshev – equiripple response up to wc, monotonically decreasing > wc

3. Elliptic – equiripple in passband, equiripple in stopband.

3F3 Digital Signal Processing

83

Butterworth (maximally flat)

An Nth-order lowpass Butterworth filter has transfer function H(s) satisfying

This has unit gain at zero frequency (s = j0), and a gain of -3dB (= 0.5) at s = jwc.

The poles of H(s)H(-s) are solutions of

 i.e. at

as illustrated on the right for N = 3 and N = 4:

N=3 N=4

X

X X

X

XX

wc

w

Re(s)

Imag(s)=

X

X X

X

XX

wc

w

Re(s)

Imag(s)=

X X

3F3 Digital Signal Processing

84

Clearly, if li is a root of H(s), then - li is a root of H(-s).

Thus we can immediately identify the poles of H(s) as those roots lying in the left half-

plane, for a stable filter, say , so that

The frequency magnitude response is obtained as:

 (*)

Butterworth filters are known as "maximally flat" because the first 2N-1 derivatives of (*)

w.r.t. w are 0 at w = 0.

Matlab routine BUTTER designs digital Butterworth filters (using the bilinear transform):

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and

returns the filter coefficients in length N+1 vectors B and A. The cut-off frequency Wn must

be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.

 N

C

jHjHjH
2

2

1

1

ww
www

==

3F3 Digital Signal Processing

85

Butterworth order estimation

Equation (*) can be used for estimating the order of Butterworth filter required to meet a

given specification.

For example, assume that a digital filter is required with a -3dB point at c = /4, and it

must provide at least 40dB of attenuation above s = /2.

Warping the critical frequencies gives wc = tan(/8) = 0.4142 and ws = tan(/4) = 1.

40dB corresponds to |H(ej)|2 = 10-4, so find N by solving

 2N>10.45

Hence, since N must be integer, choose N = 6.

Matlab provides a function buttord for calculation of the required Butterworth order

4

2

1
10

1
N

S Cw w

3F3 Digital Signal Processing

86

Other Types of Analogue Filter

There is a wide range of closed form analogue filters. Some are all-pole; others have zeros.

Some have monotonic responses; some equiripple. Each involve different degrees of

flexibility and trade-offs in specifying transition bandwidth, ripple amplitude in

passband/stopband and phase linearity.

The meaning of "equiripple" is illustrated in the Figure, which shows a type I Chebyshev

response which is equiripple in the passband 0<w <wc=1, and monotonic in the stopband.

Figure - Type I fourth order Chebyshev LPF frequency response

For a given bandedge frequency, ripple specification, and filter order, narrower transition

bandwidth can be traded off against worse phase linearity

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

normalised digital frequency

am
p

li
tu

d
e

re
sp

o
n

se

3F3 Digital Signal Processing

87

Chebyshev filters are characterised by the frequency response:

Where Tn(w) are so-called Chebyshev polynomials.

Elliptic filters allow for equiripple in both pass and stopbands. They are governed by a similar

form:

Where E(w) is a particular ratio of polynomials.

Other filter types include Bessel filters, which are almost linear phase.

3F3 Digital Signal Processing

88

Transformation between different filter types (lowpass to highpass, etc.)

Analogue prototypes are typically lowpass. In order to convert to other types of filter

one can first convert the analogue prototype in the analogue domain, then use

the bilinear transform to move to digital as before.

The following procedures may be used, assuming a lowpass prototype with cutoff

frequency equal to 1:

1. Lowpass to Lowpass

2. Lowpass to Highpass

3. Lowpass to Bandpass

4. Lowpass to Bandstop

3F3 Digital Signal Processing

89

3F3 Digital Signal Processing

90

Example: The transfer function of a second order Butterworth lowpass filter with cutoff

frequency 1 is

From this, a second order highpass filter with cutoff frequency wc can be designed:

From here, a digital highpass filter can be designed, using the bilinear transform and setting

12

1
2 ss

 22

2

2
212

1

ss

s

ss cccc
=

 wwww

3F3 Digital Signal Processing

91

Comparison of IIR and FIR filters

If the desired filter is highly selective (that is, its frequency response has small transition

bandwidths or "steep sides"), then the impulse response will be long in the time domain.

Examples include narrowband filters and lowpass /highpass /bandpass filters with steep

cutoffs.

 For an FIR filter, a long impulse response means the filter is long (high order), so it requires

many multiplications, additions and delays per sample.

 An IIR filter has active poles as well as zeros. Poles, acting as high-Q resonators, can provide

highly selective frequency responses (hence long impulse responses) using much lower filter

order than the equivalent FIR filter, hence much lower computational cost.

Although it is still true that a more selective response requires a higher order filter.

 On the other hand, the closer to linear the phase is required to be, the higher the order of IIR

filter that is needed. Also the internal wordlengths in IIR filters need generally to be higher

than those in FIR filters; this may increase the implementation cost (e.g in VLSI).

An FIR filter is inherently stable, unlike an IIR filter. Hence an FIR implementation

involving inaccurate (finite precision, or 'quantised') coefficients will be stable, whereas an

IIR one might not. (However, it is desirable in either case to compute the actual frequency

response of the filter, using the actual quantised values of the coefficients, to check the

design.)

3F3 Digital Signal Processing

92

Implementation of digital filters

So far we have designed a digital filter to meet prescribed

specifications, with the result expressed as a rational transfer function

H(z). We now consider implementation.

If speed is the main concern, then if multiplications take longer than

additions, we aim to reduce the number of multiplications; otherwise

to reduce the total operation count.

3F3 Digital Signal Processing

93

The use of fixed-point arithmetic takes much less area than floating-point

(so is cheaper) or can be made to go faster. The area of a fixed-point

parallel multiplier is proportional to the product of the coefficient and data

wordlengths, making wordlength reduction advantageous.

Hence much work has gone into structures which allow reductions in

 the number of multipliers; or

 the total operation count (multipliers, adders and perhaps delays); or

 data or coefficient wordlengths

If power consumption is the concern, then reducing total operation count

and wordlength are desirable. Also fixed point is much better than floating

point. Since general multiplication takes much more power than addition,

we try to reduce the number of multiplications, or to replace general

multiplications by, for example, binary shifts (i.e. multiply/divide by powers

of 2)

3F3 Digital Signal Processing

94

Recall the Direct Form I implementation considered so far:

3F3 Digital Signal Processing

95

Structures for IIR filters - Cascade and Parallel

Implementing a digital filter in direct form is satisfactory in (for example) Matlab's filter

routine, where double precision floating-point is used.

However in fixed point or VLSI implementations direct form is not usually a good idea:

1. alternative structures may decrease multiplications or overall computation load;

2. when fixed-point coefficients are used, the response of alternative structures is much less

sensitive to coefficient imprecision (coefficient quantisation); and

3. when fixed-point data are used, alternative structures may add less quantisation noise into

the output signal.

We therefore consider alternative forms of IIR filter – cascade and parallel

3F3 Digital Signal Processing

96

Canonic form IIR sections

The earlier Figure showed an implementation with separate FIR and IIR stages, called Direct

Form I.

We can minimise the number of delay stores by putting the feedback stage first and then using

the same delay stores for both parts, since:

. This is called the canonic form ('canonic' means minimum), or Direct Form II.

A canonic form filter can be of arbitrary order, but the following example has 2 poles and 2

zeros; this is called a biquadratic section:

[Check for yourself that

this gives the same output

as the Direct Form I

Structure]

xn

yn

b0 b2

a1 a2

X

+

X

X

X

X

+

+ +

b1

3F3 Digital Signal Processing

97

And for general filter orders:

3F3 Digital Signal Processing

98

Cascade form IIR filters

3F3 Digital Signal Processing

99

Cascades typically use first and second order (biquadratic) sections

To obtain complex (resonant) roots with real filter coefficients requires at least a second-order

section. Each complex root, with its inevitable conjugate, can be implemented by a single

second-order section. For example, a root at r exp(j) and its conjugate r exp(-j) generate the

real-coefficient second-order polynomial

 (1 - r exp(j)z-1)(1 - r exp(-j)z-1) = 1 - 2rcos()z-1 + r2z-2

so, to place zeros at r exp(±j), set b0 = 1, b1 = -2rcos(), b2 = r2.

(In principle, b0, b1 & b2 could all be multiplied by a common scale factor, but it is usually

advantageous to set b0 = 1 throughout, to avoid unnecessary multiplications, and use a

single overall gain factor.)

Or to place poles at r exp(±j), set a1 = -2rcos(), a2 = r2.

Real poles/ zeros may be implemented by first or second order sections.

3F3 Digital Signal Processing

100

Parallel form IIR filters
An IIR filter can be implemented as a parallel summation of low order sections:

H1(z)

H2(z)

H3(z)

Partial Fraction Expansion is used to compute the numerator coefficients of the parallel form.

1 2 1 1

0 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 21 1 1 1

b b z b z A A z C C z
B

a z a z c z c z a z a z c z c z

=

The parallel form is little used, because:

• It sometimes has an advantage over the cascade realisation in terms of internally generated

quantisation noise, but not much.

• Longer coefficient wordlengths are usually required.

• Zeros on the unit circle in the overall transfer function are not preserved, therefore no saving

of multipliers can be obtained for filters having such zeros.

3F3 Digital Signal Processing

101

When using fixed-point arithmetic many other considerations

come into play; some of the most important are:

• Overflow – overflow of fixed point registers can easily

occur. Scalings can be applied to the filter coefficients to

make this unlikely/ impossible.

• Quantisation noise – this becomes a more significant effect

in fixed point implementations.

• Nonlinear effects – in extreme cases with IIR filters limit

cycles can be present when there is no change input;

similarly dead bands can occur where the filter does not

respond to certain low level inputs

• Generally much harder to do the design – software exists to

assist, but nowadays most (but not all!) implementations are

in floating point arithmetic.

3F3 Digital Signal Processing

102

FIR filter implementation by fast convolution

A length-N FIR filter requires in general N multiplications and N-1 additions per output

sample. If the filter is symmetric, the number of multiplications may be halved, as

explained before. But for a highly selective response (narrow transition band) the filter

order may be high. An alternative method of FIR filtering, called fast convolution, uses

the FFT to reduce the computation load.

The key result is that if

signal vector x = [x0 x1 ... xN-1] has DFT X = [X0 X1 ... XN-1],

and vector h = [h0 h1 ... hN-1] has DFT H = [H0 H1 ... HN-1],

then the inverse DFT y of HX = [X0H0, X1H1, ... XN-1HN-1] is the

circular convolution of x and h, defined as:

3F3 Digital Signal Processing

103

[Use separate variables

n_1 and n_2 to distinguish

terms in the two summations]

[Reorder summations]

[Summation is a Geometric

Progression – check you can get

this result yourself]

[Required result]

3F3 Digital Signal Processing

104

Now, we show how to use this result to give a fast FIR filtering method. Consider filtering

a sequence x with a filter h having order M. The required convolution is:

Now, choose a frame length N>>M. We notice that for M-1<n<N,

 mod(n-m,N)=n-m

In other words, the result of cyclic convolution is the same as that of standard convolution:

This means that we can use fast cyclic convolution methods (based on DFT/FFT) to

calculate the filtered output for n=M,…,N-1

Standard convolution

(`filtering’)
Cyclic convolution

3F3 Digital Signal Processing

105

The overlap-save method filters a long sequence of data x in chunks of length N-M, as

follows:

STEP 1

hn is the impulse response of the FIR filter, and is of length M+1. Choose a much longer

blocklength N, append N-(M+1) zeros to make the vector h and compute its DFT H via

the FFT. Note that H only needs to be calculated once.

0

M

N-1

hn

3F3 Digital Signal Processing

106

STEP 2 – For k=0, 1, 2, …

Construct the kth `frame’ of data xk as follows:

 1 1 1k k N M M k N M k N M k N M
x x x x

 =

x

[When k=0, set previous frame values to zero]

N data points

Last M data points

from previous frame

 N-M new data points

3F3 Digital Signal Processing

107

Then compute the DFT Xk of the vector xk, multiply Xk by H sample-by-sample, and IDFT

the result to give yk. The last N-M samples of yk are the next N-M filter outputs:

for k=1: ... % [Note Matlab convention to start at k=1]

 if k==1

 X=fft([zeros(1,M) x((1:N-M))]);

 else

 X=fft([x((k-1)*(N-M)+(1-M:N-M))]);

 end

 y=real(ifft(H.*X));

 output((k-1)*(N-M)+(1:N-M)) = y(M+1:N); %last N-M samples of y

end

FIR filter implementation by fast convolution is an example of a block based signal

processing method.

The saving can be significant - for example if M=100 and N=1024, the FFT-based method

(assuming efficient FFTs are used for real data) requires about 33% the number of

operations of the direct method.

