
4F7 Digital Filters and Spectral Estimation
Examples Sheet - Spectrum Estimation

Revision questions

1. Determine the Discrete-time Fourier Transform (DTFT) of the following functions,
which have infinite time duration:

(a) xn = exp(iω0n)

(b) xn = sin(ω0n)

2. Determine and sketch the magnitude of the DTFT of the following function,

xn =

{
exp(inπ/5), n = 0, 1, ..., 31

0, otherwise

paying particular attention to central lobe and side lobe characteristics.

3. Determine the power spectrum of the following random processes:

(a)
xn = A sin(ω0n+ φ)

where A and ω0 are constants and φ is uniformly distributed between 0 and
2π.

(b)
xn = A sin(ω0n+ φ) + vn

where A and ω0 are constants and φ is uniformly distributed between 0 and
2π and vn is random white Gaussian noise with variance σ2

v .

Power Spectrum Estimation

4. Consider a random process {Xn} composed of two random phase sine-waves:

xn = A sin(ω1n+ φ1) +B sin(ω2n+ φ2) + vn

where A and B are constants, ω2 > ω1, φ1 and φ2 are independent and uniformly
distributed between 0 and 2π and vn is white noise with variance σ2

v .

(a) Determine and sketch the power spectrum of the process.
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(b) Sketch (approximately) the expected value of the periodogram constructed
from N data points measured from the random process.

(c) Two frequency components can be approximately resolved if the centre (or
main) lobes of the expected value of the periodogram do not overlap. Assuming
the main lobe width is c/M (for some constant c) where M is the window
length, determine the relationship between the number of samples N used to
construct the periodogram and ω2−ω1 so that these frequencies can be resolved.

5. The modified periodogram applies a window to the data before computing the
DTFT:

ŜM(ejω) =
1

NU

∣∣∣∣∣
N−1∑
n=0

wnxne
−jnω

∣∣∣∣∣
2

where U = 1
N

∑N−1
n=0 |wn|2.

(a) Show that the expected value of the modified periodogram is:

E[ŜM(ejω)] =
1

NU

+N−1∑
k=−(N−1)

vkRXX [k]e−jkω

where
vk = ({wn} ∗ {w−n}) (k)

i.e. the convolution of wk with itself time-reversed.

(b) Comment on the relationship of this result with the expected value of the
standard periodogram and discuss how the modified periodogram might achieve
a different trade-off between frequency resolution and variance of the estimate.

6. A stationary random phase complex exponential is given by

xn = exp(i(nω0 + φ))

where φ is uniformly distributed between 0 and 2π.

(a) What is the power spectrum for this process? (For a complex process, the
autocorrelation function is defined as RXX [k] = E[x∗nxn+k], and the power
spectrum is the DTFT of RXX .)

(b) Write an expression for the periodogram estimate for a sample of N data points
measured from the process.

(c) Hence determine the mean and variance of the periodogram for this process.
Does this agree with the ‘rule of thumb’ that the variance of the periodogram
is approximately equal to the true power spectrum squared? If not, why is it
that this process could be different from the rule?

7. (a) State the variance of periodogram power spectral estimates of white Gaussian
noise having variance σ2. Comment on the significance of this result for power
spectrum estimation of noise-like processes.
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(b) The Bartlett procedure segments the available data into K contiguous subse-
quences of length NB and computes a spectral estimate from:

ŜX(ejω) =
1

K

K−1∑
k=0

Ŝ
(k)
X (ejω)

where S
(k)
X (ejω) is the periodogram of the kth subsequence.

Show that the Bartlett procedure reduces the variance of the spectral estimate
of white noise by K times.

(c) For general signals, show that the Bartlett procedure is biased as for the peri-
odogram but asymptotically unbiased.

(d) Show that the frequency resolution of the Bartlett method is K times worse
than that of the periodogram applied to the same data overall length.

Parametric Methods

8. Estimates are made of the correlation function of a particular signal and the values
obtained are:

RXX [0] = 7.24

RXX [1] = 3.6

Determine the parameter values of the 1st order MA model

H(z) = b0 + b1z
−1

which matches these correlation by:
(a) Directly solving of the MA equations

RXX [0]
RXX [1]
...
RXX [Q]

 =


c0
c1
...
cQ


where

cr =

{ ∑Q
q=r bq bq−r , r ≤ Q

0 , r > Q

(b) By spectral factorisation.

Sketch the power spectral estimate obtained using this MA model.

9. Fit a 1st order AR model

H(z) =
1

a0 + a1z−1

to the correlation data given in the previous question and sketch the resulting spec-
tral estimate. Do you have any reason to suppose that this estimate is better than
that obtained using the MA model?
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10. The ARMA(P,Q) model is

xn = −
P∑
p=1

apxn−p +

Q∑
q=0

bqwn−q

where {wn} is a white noise sequence with mean zero and unit variance. The
estimated autocorrelation function of {xn} at lags k = 0, 1, 2, 3, 4 are

R̂XX [0] = 2, R̂XX [1] = 1, R̂XX [2] = −1, R̂XX [3] = 0.5, R̂XX [4] = 0.

For P = 1 and Q = 1, estimate a1, b0 and b1 using these R̂XX values. Why would
you not consider the model ARMA(0,1)?

11. (Computer exercise) Consider the autoregressive random process

xn = −a1xn−1 − a2xn−2 + b0wn

where wn is zero mean unit variance white noise.
(a) With a1 = 0, a2 = 0.81 and b0 = 1 generate 24 samples of the random process
xn.
(b) Estimate the autocorrelation sequence using the biased (and unbiased) estimate
in the lecture notes and compare it to the true autocorrelation sequence.
(c) Using your estimated autocorrelation sequence, estimate the power spectrum of

xn by computing the Fourier transform of R̂XX . (Hint: periodogram)

(d) Using the estimate R̂XX from (b), use the Yule-Walker equations to estimate
a1, a2 and b0 and comment on the accuracy of your estimates.
(e) Estimate the power spectrum using the estimated values from (d) as follows:

ŜX(ejω) =
b20

|1 + a1e−jω + a2e−2jω|2

(f) Compare your power spectrum estimates with the true power spectrum. Repeat
the above experiment with more data, i.e. more than 24 points.
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Suitable past tripos questions: years 2010–2016. (Note that only topics covered in
lectures will be assessed.)

Worked solutions

Q1 a)

X(eiω) =
+∞∑

n=−∞

xne
−inω

=
+∞∑

n=−∞

exp(iω0n)e−inω

=
+∞∑

n=−∞

exp(i(ω0 − ω)n)

= 2π
+∞∑

m=−∞

δ(ω − ω0 + 2πm)

b) Use

sin(ω0n) =
1

2j
(exp(iω0n)− exp(−iω0n))

and the answer to Q1a.

Q2

X(eiω) =
+∞∑

n=−∞

xne
−inω

=
N−1∑
n=0

exp(in(ω0 − ω))

=
1− exp(i(ω0 − ω))N

1− exp(i(ω0 − ω))

= exp(i(N − 1)(ω0 − ω)/2)
sin((ω0 − ω)N/2)

sin((ω0 − ω)/2)

and

|X(eiω)| =
∣∣∣∣sin((ω0 − ω)N/2)

sin((ω0 − ω)/2)

∣∣∣∣
with ω0 = 0.2π, see figure.

Q3 (a) Standard material - see e.g. 3F3 lecture notes. (b) Get this by noting that the
sine and noise terms are uncorrelated. Hence you can calculate the power spectrum
of each term and add them together to get the result.

Q4 a) From Q3 we have the power spectrum of a single random phase sine wave in
noise. To get the two-sine version, notice that both sine terms and the noise
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Figure 1: plot of |X(eiωT )| =
∣∣∣ sin((ω0−ωT )N/2)

sin((ω0−ωT )/2)

∣∣∣
term are mutually uncorrelated (check this if you are unsure). Hence to get
overall power spectrum, just add together the power spectra of the sine waves
with that of the noise (white).

b) Expected value of the periodogram is (see lecture notes):

E[ŜX(ejω)] =
1

2π

∫ π

−π
W (ejθ)SX(ej(ω−θ)) dθ (1)

i.e. the convolution of the true power spectrum with the spectrum of the win-
dow. The convolution is easy to sketch since the power spectrum is a train of
delta functions plus a noise floor. From lectures, W (ejω) = (1/N) (sin(Nω/2)/ sin(ω/2))2.

c) Need ω2 − ω1 > c/M where M = 2N − 1.
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Q5 a)

E[ŜM(ejω)] =
1

NU
E

∣∣∣∣∣
N−1∑
n=0

wnxne
−jnω

∣∣∣∣∣
2

=
1

NU
E[

∞∑
n=−∞

wnxne
−jnω

∞∑
m=−∞

wmxme
+jmω]

=
1

NU

∞∑
n=−∞

∞∑
m=−∞

wnwmE[xnxm]e−j(n−m)ω

=
1

NU

∞∑
n=−∞

∞∑
m=−∞

wnwmRXX [n−m]e−j(n−m)ω

=
1

NU

∞∑
n=−∞

∞∑
k=−∞

wnwn−kRXX [k]e−jkω with k = n−m

=
1

NU

∞∑
k=−∞

{
∞∑

n=−∞

wnwn−k}RXX [k]e−jkω

=
1

NU

∞∑
k=−∞

vkRXX [k]e−jkω

b) Hence

E[ŜM(ejω)] =
1

2πNU
SX(ejω) ∗ |W (ejω)|2.

Modified periodogram allows choice of a window function with suitable spec-
tral leakage and spectral smearing properties to the application. This contrasts
with the periodogram, in which the windowing function is fixed as the rectan-
gular window - narrow central lobe but very severe sidelobes.

Q6 a) Power spectrum is a train of delta functions centred at frequency ω0:

S(eiω) = 2π
+∞∑

n=−∞

δ(ω − ω0 + 2πn)

b) The periodogram is

N × Ŝ(eiω) = |
N−1∑
n=0

xn exp(−inω)|2

= |
N−1∑
n=0

exp(i(nω0 + φ)) exp(−inω)|2

= | exp(iφ)|2|
N−1∑
n=0

exp(−in(ω − ω0))|2

= |
N−1∑
n=0

exp(−in(ω − ω0))|2
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(Further simplification unnecessary for this question.) The important point
here for the next parts is that the periodogram estimate does not depend on
the value of the random variable φ. Hence the variance of the periodogram
estimate is zero, see next part.

c) The mean is the rectangular window spectrum shifted across in frequency to
center frequency ω0. The variance is, however, zero. Thus in this case the
variance is not the rule of thumb. i.e. for single complex exponentials the
periodogram gives no variability. This is because the periodogram of a complex
exponential is constant whatever the phase of the exponential

Q7 a) Variance of periodogram is approximately σ4 for all data lengths, becoming
exact as data length goes to infinity. This means that the variance does not
decrease as data length increases. We can expect the periodogram of other
non-Gaussian noise processes to behave similarly.

b) For white Gaussian noise, each of the K subsequences of data are statistically
independent so that the periodogram estimates for each subsequence are also
statistically independent. Consider a particular frequency component Ŝ

(k)
X (ejω)

from each of the K periodograms. In order to ease the notation, let

Zk ≡ Ŝ
(k)
X (ejωiT ).

By independence

var

(
1

K

K∑
k=1

Zk

)
=

1

K2

K∑
k=1

var (Zk)

i.e. the variance of the spectrum estimate has been reduced by a factor of K.
To be more precise,

var(Zk) = σ4

(
1 +

{
sin(NBω)

NB sin(ω)

}2
)

assuming N = NBK, with N being the total number of data points available.
When the data is not segmented (K = 1) the variance has the same expression
except that NB should be replaced by N . The ratio of these two quantities
tends to 1/K as N increases.

c) E[ŜX(ejω)] = E[ 1
K

∑K
k=1 Ŝ

(k)
X (ejω)]. Each expectation term is an expectation

of a periodogram estimate for each sub-block. Hence, as for the periodogram
the method is biased but asymptotically unbiased.

d) Clearly each periodogram in the summation corresponds to a data window
length NB = N/K, where N is the total number of data points available. (Note
the value of the window length in the expected value of the periodogram is
2×datalength−1) Hence each periodogram estimate in the Bartlett summation
hasK times poorer resolution, since central lobe of window spectrum isK times
wider than that of the full perdiodogram estimate for all N data points.
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Q8 Either method should give:

b0 = 2.0 b1 = 1.8

Remember that the spectral factorisation method only gives the roots of the poly-
nomial and the scaling must be calculated separately.

(a) By direct solution (Q = 1)[
RXX [0]
RXX [1]

]
=

[
c0
c1

]
=

[ ∑1
q=0 b

2
q∑1

q=1 bqbq−1

]
=

[
b20 + b21
b1b0

]
.

Inserting values [
7.24
3.6

]
=

[
b20 + b21
b1b0

]
Solve to get

b1 = 3.6/b0

7.24 = b20 +
3.62

b20
b40 − 7.24b20 + 3.62 = 0

(b20 − 4)(b20 − 3.24) = 0. For b0 = ±2, b1 = ±1.8 and so two possible MA models.

(b) By spectral factorization: first solve for the zeros of
∑Q

r=−QRXX [r]z−r.

RXX [−1]z +RXX [0] +RXX [1]z−1

= 3.6z + 7.24 + 3.6z−1

= z
(
3.6 + 7.24z−1 + 3.6z−2

)
= z

(
z−1 +

7.24 + 0.76

7.2

)(
z−1 +

7.24− 0.76

7.2

)
=

(
1 +

8

7.2
z

)(
z−1 +

6.48

7.2

)
The root in the unit circle is −7.2/8 = −0.9.

Now g (1− z−1(−0.9)) is to be solved for g.

c0 = g2 + 0.92g2

7.24 = g2(1 + 0.92)

g =

√
7.24

1 + 0.92
= 2

So the MA model is B(z) = 2 + 1.8z−1, or b0 = 2, b1 = 1.8. The MA spectrum
corresponding to the model is shown in figure 2
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Figure 2:

Q9 The AR coefficients are:

b0 = 2.3345 a0 = 1 a1 = −0.4972

To fit the AR model use the Yule-Walker equations P=1,Q=0:

RXX [0]a1 = RXX [−1]

a1 =
−3.6

7.24
.

Now solve for b0:

b20 = [ RXX [0] RXX [−1] ][ 1 a1 ]T

= RXX [0]− RXX [1]2

RXX [0]
= 2.3352

H(z) =
b0

1 + a1z−1
=

2.335

1− 3.6
7.24

z−1
.

Power spectrum is S(ejωT ) = |H(ejωT )|2. The AR spectrum corresponding to the
model is shown in figure 3

Without any prior knowledge of the physical system which produced the signals,
one spectral estimate should not be preferred over the other. However, the 1st or-
der MA model assumes that the signal correlation is zero for lags greater than 1
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whereas the AR model assumes that the correlation function satisfies the AR dif-
ference equation so that the correlation function is not zero for lags greater than 1.
It might be argued that this is a more reasonable reflection of what might be the
case in the system which generated the signal.

Q10 The signal model is xn = −a1xn−1 + b0wn + b1wn−1. The Yule-Walker equations are
c0 = b0h0 + b1h1, c1 = b1h0 and RXX [0] + a1RXX [−1]

RXX [1] + a1RXX [0]
RXX [2] + a1RXX [1]

 =

 b0h0 + b1h1
b1h0
0


Use the third equation to solve for a1 to get a1 = −R̂XX [2]/R̂XX [1] = 1.

Note now we have 2 equations and unknowns b0, b1, h0, h1. Observe that

yn = xn + a1xn−1

is an ARMA(0,1) model and find its coefficients. We need RY Y [0] and RY Y [1].

RY Y [0] = E(ynyn)

= E
(
xnxn + a21xn−1xn−1 + 2a1xnxn−1

)
= 2RXX [0] + 2RXX [1]

11



Similarly

RY Y [1] = E(yn+1yn)

= E
(
xn+1xn + a21xnxn−1 + a1xn+1xn−1 + a1xnxn

)
= RXX [0] + 2RXX [1] +RXX [2]

So R̂Y Y [0] = 6 and R̂Y Y [1] = 3

Now factorise the polynomial
∑Q

r=−Q R̂Y Y [r]z−r = 3z+ 6 + 3z−1 = 3(1 + z)(1 + z−1)

Take the root z = −1. (Nothing within the unit circle in this example.) Now write
B(z) = g(1− z−1n1) where n1 = −1 is the chosen root.

The constant g is √
R̂Y Y [0]

1 + (−n1)2
=
√

3

The MA model parameters are: b0 = g =
√

3, b1 = g × (−n1) =
√

3.

The ARMA(0,1) will give an autocorellation value of 0 for lags larger than 1 which
is inconsistent with the data. So the ARMA(1,1) model is preferable.

Q11 See Matlab code on course webpage.

S.S. Singh
(Previous versions: Simon Godsill, Peter Rayner)
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