4F7 Adaptive Filters (and Spectrum Estimation)

Estimation for Hidden Markov Models

Sumeetpal Singh

Engineering Department

Email: sss40@eng.cam.ac.uk

Course website:
www-sigproc.eng.cam.ac.uk/~sss40/teaching.html

1 Motivating Example

At a casino a fair die is used but occasionally switch to a biased die

The fair die has prob. $1 / 6$ for each number turning up but the biased die has
(outcome, prob) $=\{(1,0.1),(2,0.1),(3,0.1),(4,0.1),(5,0.1),(6,0.5)\}$

After each roll the next die to be used is selected with probabilities:
$\operatorname{Prob}($ next=fair|current=fair)=0.95,
$\operatorname{Prob}($ next $=$ biased \mid current $=$ fair $)=0.05$,
$\operatorname{Prob}($ next=fair|current=biased) $=0.1$,
$\operatorname{Prob}($ next $=$ biased \mid current $=$ biased $)=0.9$,

Here are example outcomes of 20 throws of the fair die 15555321342421355115 and the unfair die
66446266665666632666

Problem: given the outcomes from throws 1 to T, how do we evaluate the probability of cheating?

2 Definition of a Hidden Markov Model

1. Set of states: $S=\{1,2, \ldots, n\}$
2. Set of observations: $O=\{1,2, \ldots, m\}$
3. State transition probability matrix P with
$[P]_{i, j}=p_{i, j}=\operatorname{Pr}($ next state $j \mid$ current state $i)$
4. Observation probability matrix Q with
$[Q]_{i, j}=q_{i, j}=\operatorname{Pr}($ of getting obs. j in state $i)$
5. Initial state distribution at time 0 :
$\pi_{0}=\left(\pi_{0}(1), \pi_{0}(2), \ldots, \pi_{0}(n)\right)$
The HMM is now completely specified given ingredients 1 to 5

Main points: The hidden state process $\left\{x_{t}\right\}_{t=0}^{t=T}$ is a Markov chain. We don't observe the realization of the hidden state process directly but do so via an observation process $\left\{y_{t}\right\}_{t=1}^{t=T}$

We would like to perform the following tasks ...

Filtering: compute $\pi_{t}\left(x_{t}\right)=\operatorname{Pr}\left(x_{t} \mid y_{1: t}\right)$ at time t recursively where $y_{1: t}$ denotes the set of observations $\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$

Smoothing: given $\left\{y_{1}, y_{2}, \ldots, y_{T}\right\}$ compute $\operatorname{Pr}\left(x_{t} \mid y_{1: T}\right)$ for all $t=0,1, \ldots, T$. This is solved by the forwardbackward algorithm

Maximum a posteriori (MAP) estimate

$$
x_{0: T}^{*}=\arg \max _{x_{0: T}} \operatorname{Pr}\left(x_{0: T} \mid y_{1: T}\right)
$$

This is solved by the Viterbi algorithm

3 The Law of the HMM

The probability of getting hidden states $x_{0: T}$ and observing $y_{1: T}$ is

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{0: T}, y_{1: T}\right) \\
& =\pi_{0}\left(x_{0}\right) p_{x_{0}, x_{1}} q_{x_{1}, y_{1}} p_{x_{1}, x_{2}} q_{x_{2}, y_{2}} \cdots p_{x_{T-1}, x_{T}} q_{x_{T}, y_{T}}
\end{aligned}
$$

We write this expression using the fact that the hidden state process is Markov chain

$$
\operatorname{Pr}\left(x_{0: T}\right)=\pi_{0}\left(x_{0}\right) p_{x_{0}, x_{1}} p_{x_{1}, x_{2}} \cdots p_{x_{T-1}, x_{T}}
$$

and the observation probability $\operatorname{Pr}\left(y_{1: T} \mid x_{0: T}\right)$ factors as

$$
\prod_{i=1}^{T} \operatorname{Pr}\left(y_{i} \mid x_{i}\right)=\prod_{i=1}^{T} q_{x_{i}, y_{i}}
$$

4 Filtering

To solve filtering problem, let $\pi_{t}(i)=\operatorname{Pr}\left(x_{t}=i \mid y_{1: t}\right)$. There are two main steps. The first is the prediction step Prediction: $\operatorname{Pr}\left(x_{t+1} \mid y_{1: t}\right)=\sum_{x_{t}} p_{x_{t}, x_{t+1}} \pi_{t}\left(x_{t}\right)$
The second step is the update step
Update: $\pi_{t+1}\left(x_{t+1}\right)=\frac{q_{x_{t+1}, y_{t+1}} \operatorname{Pr}\left(x_{t+1} \mid y_{1: t}\right)}{\sum_{x_{t+1}} q_{x_{t+1}, y_{t+1}} \operatorname{Pr}\left(x_{t+1} \mid y_{1: t}\right)}$
We can combine both steps and write it in matrix form. Regard π_{t} as the vector $\left[\pi_{t}(1), \pi_{t}(2), \ldots, \pi_{t}(n)\right]^{\top}$ and let $B\left(y_{t+1}\right)$ be the diagonal matrix

$$
B\left(y_{t+1}\right)=\left[\begin{array}{cccc}
q_{1, y_{t+1}} & 0 & \cdots & 0 \\
0 & q_{2, y_{t+1}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & q_{n, y_{t+1}}
\end{array}\right]
$$

then

$$
\pi_{t+1}^{\top}=\frac{\pi_{t}^{\top} P B\left(y_{t+1}\right)}{\pi_{t}^{\top} P B\left(y_{t+1}\right) 1}
$$

where $1=[1,1, \ldots, 1]^{\top}$

5 Smoothing

To solve the smoothing problem, we need the following result

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{t+1}, y_{t+2}, \ldots, y_{T} \mid x_{t}\right) \\
& =\sum_{x_{t+1}=1}^{n} \operatorname{Pr}\left(y_{t+2}, y_{t+3}, \ldots, y_{T} \mid x_{t+1}\right) q_{x_{t+1}, y_{t+1}} p_{x_{t}, x_{t+1}}
\end{aligned}
$$

We derive this result as follows:

$$
\begin{aligned}
\operatorname{Pr}\left(y_{t+1: T} \mid x_{t}\right) & =\sum_{x_{t+1}} \operatorname{Pr}\left(y_{t+1: T}, x_{t+1} \mid x_{t}\right) \\
& =\sum_{x_{t+1}} \underbrace{\operatorname{Pr}\left(y_{t+2: T}, \mid y_{t+1}, x_{t+1}, x_{t}\right)}_{\operatorname{Pr}\left(y_{t+2: T} \mid x_{t+1}\right)} \\
& \times \underbrace{}_{q_{x_{t+1}, y_{t+1}}^{\operatorname{Pr}\left(y_{t+1} \mid x_{t+1}, x_{t}\right)} \underbrace{\operatorname{Pr}\left(x_{t+1} \mid x_{t}\right)}_{p_{x_{t}, x_{t+1}}}}
\end{aligned}
$$

We call $\beta_{t}\left(x_{t}\right)=\operatorname{Pr}\left(y_{t+1}, y_{t+2}, \ldots, y_{T} \mid x_{t}\right)$ the backward recursion

It is computed starting at $T-1$ in the following order $\beta_{T-1}, \beta_{T-2}, \ldots, \beta_{0}$

It admits a recursion similar to the filter π_{t} and can be expressed as

$$
\beta_{t}=P B\left(y_{t+1}\right) \beta_{t+1}
$$

with $\beta_{T}=[1, \ldots, 1]^{\top}$ (initialized to the vector of ones)

Once we have computed β_{t},

$$
\operatorname{Pr}\left(x_{t} \mid y_{1: T}\right)=\frac{\pi_{t}\left(x_{t}\right) \beta_{t}\left(x_{t}\right)}{\pi_{t}^{\top} \beta_{t}}
$$

Additional Reading:
Rabiner, L.W., "A tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of the IEEE, vol. 77, no. 2, 1989. (availabe on course website)

