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4F7 Adaptive filters and Spectrum estimation
Examples Paper 2

1. Regularised LMS. Let
J (h) = E{¢*(n)} + a ||h|?

where

e(n)=d(n)—hTu(n).
e Show that the LMS update rule for h (n) is
h(n+1)=(1—-pa)h(n)+ pu(n)e(n).

e Show that if lim E {h(n)} exists then it satisfies
n—oo

h=lim E{h(n)}=(R+al) 'p

n—o0

where R =F {u(n)u’ (n)}, p=E {u(n)d(n)} and clearly state any approx-
imations used.

e What is the requirement for the stepsize p to ensure convergence? When
could the use of this algorithm be beneficial?

2. A constant variable C is measured through two different sensors. The measure-
ments are noisy and have different accuracy,

y1 = C+e
y2 = CHe

T . . .
where e = (€1 e2) " is a zero-mean noise term of covariance
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Consider the following estimate of C'

~

C = a1y1 + azyo.

Find (a1, a2) so that C' is unbiased and has minimum variance.



3. Consider the following state-space model

x(n) = Ax(n—1)+Bv(n)
y(n) = Cx(n)+w(n)

where {w (n)} is a white noise sequence but noise sequence {v (n)} satisfies
v(n)=A,v(n—1)+B,e(n)

where sequence {e (n)} is a white noise sequence. How could the Kalman filter be
applied to estimate x(n) from the observation sequence y(n)?

4. Assume we observe for n > 0
y(n) =a+w(n) (1)

where {w (n)} is a zero-mean white noise sequence of variance o2 and « is a random
variable with mean zero and standard deviation oy,.

e Give the state-space representation for the signal (1).

e Derive the Kalman filter to obtain the L. m.m.s.e. & (n) of a given {y (0),...,y (n)}.
What is the limit of the covariance of this estimate as n — 0o?

5. Consider the following autoregressive-moving average model

a(n) = Zaia(n—i)—l—v(n),

T
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B(n) = bia(n — i) +w(n).
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and give a state-space representation of this model. Distinguish the cases where
p>qandp<q.



