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1. The LMS algorithm is

h (n+ 1) = h (n)− µ

2
∇J (h) |h=h(n)

Now compute the partial derivatives.

Compute the expectation:

E {h (n+ 1)} = (1− µα)E {h (n)}+ µE (u (n) e (n))

Use the approximation

E
(
u (n)uT (n)h (n)

)
≈ E

(
u (n)uT (n)

)
E (h (n))

which was verified in lectures for a block-type update scheme. Thus

E {h(n+ 1)} = (1− µα)E {h(n)}+ µp− µRE {h(n)}

Replace left and right-hand side by the limit h to get

αh = p−Rh

h = (R + αI)−1 p.

We denote λmin and λmax the smallest and largest eigenvalues of R. The smallest
and largest eigenvalues of R + αI are thus equal to λmin + α and λmax + α. To
ensure convergence,

µ <
2

λmax + α
.

This algorithm can be beneficial if λmin is very small. In this case, the ratio
λmax/λmin is large and the speed of convergence is slow. By adding α, it speeds
up the convergence of the algorithm since it reduces the eigenvalue spread.

2. Take the expectation of Ĉ

E
{
Ĉ
}

= a1E {y1}+ a2E {y2}

= (a1 + a2)C

where the results follows since

E {y1} = C + E {e1} = C,

E {y2} = C + E {e2} = C.
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For the estimate to be unbiased, we require

a1 + a2 = 1.

Compute the variance of the estimate:

var
{
Ĉ
}

= E

{(
Ĉ − E

{
Ĉ
})2}

= E
{

(a1y1 + a2y2 − (a1C + a2C))2
}

= E
{

(a1e1 + a2e2)
2
}
.

Now substitute a2 = 1− a1 in var{Ĉ}:

var
{
Ĉ
}

= E
{

(a1 (e1 − e2) + e2)
2
}

= a21E
{

(e1 − e2)2
}

+ 2a1E {(e1 − e2) e2}+ E
{
e22
}
.

Taking the derivative with respect to a1 and setting it to zero gives

a1 =
E {(e2 − e1) e2}

E
{

(e1 − e2)2
} =

σ22
σ21 + σ22

,

a2 =
σ21

σ21 + σ22
.

The result is very intuitive. If σ22 � σ21, then the measurement y2 is trusted less
as a1 ≈ 1, a2 ≈ 0.

3. Define the augmented state z (n) =
[
x (n) v (n)

]T
which satisfies

z (n) =

[
A BAv

0 Av

]
z (n− 1) +

[
BBv

Bv

]
e (n) ,

y (n) =
[
C 0

]
z (n) + w (n) .

4. The state-space representation is

x (n) = x (n− 1) = α,

y (n) = x (n) + w (n)

with E {x (0)} = 0 and E{x(0)2} = σ2α.

In lectures we derived the Kalman filter:

x̂ (n) = x̂ (n− 1) +
σ2 (n)

σ2 (n) + σ2w
(y (n)− x̂ (n− 1)) ,

σ2 (n) = σ2(n− 1)

(
1− σ2 (n− 1)

σ2 (n− 1) + σ2w

)
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with σ2 (0) = σ2α. Note that σ2 (n) is a positive sequence decreasing over time, i.e.
σ2 (n) < σ2 (n− 1) . Assume σ2(n) has a limit. Call the limit σ2. Now solve

σ2 = σ2
(

1− σ2

σ2 + σ2w

)
to get the answer, which is σ2 = 0. Thus the Kalman filter converges towards the
true value of the parameter.

5. Consider first the case when p ≥ q:

x (n) =
[
α (n) α (n− 1) · · · α (n− p+ 1)

]T
,

F (n) =


a1 a2 · · · ap
1 0 · · · 0

. . .
. . .

...
1 0

 , G (n) =


1
0
...
0

 ,
H (n) = [ b0 · · · bq−1 0 · · · 0︸ ︷︷ ︸

q−p

].

The State and Observation Equation is:

x (n) = F (n)x (n− 1) + G (n) v(n)

y (n) = H (n)x (n− 1) + w(n)

Consider now the case where p < q then

x (n) =
[
α (n) α (n− 1) · · · α (n− q + 1)

]T
,

F (n) =



a1 a1 · · · ap
1

1
1

. . .
. . .

1


, G (n) =


1
0
...
0

 ,

H (n) = [ b0 · · · bq−1 ].
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