4F7 (Adaptive Filters and) Spectrum Estimation

Fitting the Moving Average Model

Sumeetpal Singh
Email: sss40@eng.cam.ac.uk
Modification history: S. Godsill, P. Rayner ≤ 2008. Revised by S.S. Singh

1 Parametric methods: The MA Model $(P=0)$

- The MA model is a FIR filter driven by white noise. The Yule-Walker equations simplifies to

$$
\left[\begin{array}{l}
R_{X X}[0] \tag{1}\\
R_{X X}[1] \\
\vdots \\
R_{X X}[Q]
\end{array}\right]=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
\vdots \\
c_{Q}
\end{array}\right]
$$

- However the solution of this equation is not trivial since the c_{i}, given in a previous lecture, is the convolution of the MA coefficients b_{i} and the impulse response of the ARMA model
- The ARMA model impulse response is

$$
x_{n}=\sum_{m=-\infty}^{\infty} h_{m} w_{n-m} \stackrel{(\text { causal })}{=} \sum_{m=0}^{\infty} h_{m} w_{n-m}
$$

- Comparing with the MA model, $\sum_{m=0}^{Q} b_{m} w_{n-m}$, we see that $h_{i}=b_{i}$
- Using $h_{i}=b_{i}$, the expression for c_{r} given before may be rewritten as:

$$
c_{r}= \begin{cases}\sum_{q=r}^{Q} b_{q} b_{q-r} & \text { if } r \leq Q \tag{2}\\ 0 & \text { if } r>Q\end{cases}
$$

- (2) is valid for negative r too and for $r<0$

$$
c_{r}=c_{|r|}
$$

- The convolution of the following two infinite sequences
$\ldots 0, b_{0}, b_{1}, \ldots b_{Q}, 0, \ldots$
$\ldots 0, b_{Q}, \ldots b_{1}, b_{0}, 0, \ldots$
gives c_{r}, i.e. $c_{r}=\left(\left\{b_{-n}\right\} *\left\{b_{n}\right\}\right)(r)$
- Let $\mathcal{Z}\left(\left\{x_{n}\right\}\right)=\sum_{n=-\infty}^{+\infty} x_{n} z^{-n}$ be the 'bilateral' z-transform of the sequence $\left\{x_{n}\right\}$

$$
\begin{align*}
\sum_{r=-Q}^{Q} c_{|r|} z^{-r} & =\mathcal{Z}\left(\left\{b_{n}\right\} *\left\{b_{-n}\right\}\right) \tag{3}\\
& =B(z) B\left(z^{-1}\right) \quad\left(\text { since } \mathcal{Z}\left\{b_{-n}\right\}=B\left(z^{-1}\right)\right) \tag{4}
\end{align*}
$$

and substituting for c_{r} from equation 1 :

$$
\begin{equation*}
B(z) B\left(z^{-1}\right)=\sum_{r=-Q}^{Q} R_{X X}[|r|] z^{-r} \tag{5}
\end{equation*}
$$

- Let the zeros of $B(z),\{z \in \mathbb{C}: B(z)=0\}$, be $n_{1}, n_{2}, \ldots, n_{Q}$. Then, it is obvious that $n_{1}^{-1}, n_{2}^{-1}, \ldots, n_{Q}^{-1}$ are the zeros of $B\left(z^{-1}\right)$.
- The zeros of $B(z) B\left(z^{-1}\right)$ are $\left\{n_{i}, n_{i}^{-1}\right\}_{i=1}^{Q}$

If a zero n_{i} lies inside (or on) the unit circle, then the corresponding
inverse zero $1 / n_{i}$ lies outside (or on) the unit circle

- Technical condition: assume all the zeros of $B(z)$ lie inside the unit circle so that the MA process is invertible. Invertible means you can express w_{n} using x_{n} and its past values.
- Now identify the zeros of $B(z)$ by finding the zeros of the RHS of (5) that lie within the unit circle.
- Once we have the roots n_{i} of $B(z)$ it is straightforward to reassemble $B(z)$ from the zeros, up to an unknown scale factor g
- You can always write $B(z)=b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\cdots+b_{Q} z^{-Q}$ as

$$
\begin{aligned}
B(z) & =g \prod_{i=1}^{Q}\left(1-z^{-1} n_{i}\right) \\
& =g\left(b_{0}^{\prime}+b_{1}^{\prime} z^{-1}+b_{2}^{\prime} z^{-2}+\cdots+b_{Q}^{\prime} z^{-Q}\right)
\end{aligned}
$$

with $b_{0}^{\prime}=1$.

- Solve for the scale factor g

$$
\underbrace{\sum_{n=0}^{Q} b_{n}^{2}=c_{0}}_{\text {eqn }(2)} \text { and } \overbrace{c_{0}=R_{X X}[0]}^{\text {eqn (1) }}
$$

- Hence

$$
\sum_{i=0}^{Q}\left(g b_{i}^{\prime}\right)^{2}=R_{X X}[0]
$$

from which:

$$
g=\sqrt{\frac{R_{X X}[0]}{\sum_{i=0}^{Q}\left(b_{i}^{\prime}\right)^{2}}}
$$

and finally:

$$
b_{i}=g \times b_{i}^{\prime}=\sqrt{\frac{R_{X X}[0]}{\sum_{i=0}^{Q}\left(b_{i}^{\prime}\right)^{2}}} b_{i}^{\prime}
$$

Example It is required to fit an MA model to the correlation data:

$$
\left[\begin{array}{c}
R_{X X}[0] \\
R_{X X}[1] \\
R_{X X}[2]
\end{array}\right]=\left[\begin{array}{c}
4.06 \\
-2.85 \\
.9
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
& \sum_{r=-Q}^{Q} R_{X X}(r) z^{-r} \\
& =0.9 z^{-2}-2.85 z^{-1}+4.06-2.85 z+0.9 z^{2}
\end{aligned}
$$

Factorisation of this polynomial gives the roots:

```
0.8333 土 j 0.6455
    0.75\pmj0.5808 ( }n1,\mp@subsup{n}{2}{}\mathrm{ roots inside unit circle)
```

which are plotted in figure 1. The roots inside the unit circle are identified
with $B(z)$.

$$
\begin{aligned}
B(z) & =g\left(1-z^{-1} n_{1}\right)\left(1-z^{-1} n_{2}\right) \\
& =g\left(1-z^{-1}\left(n_{1}+n_{2}\right)+z^{-2} n_{1} n_{2}\right) \\
& =g\left(1-z^{-1} 1.5+z^{-2} 0.9\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
B(z) & =\sqrt{\frac{4.06}{1+1.5^{2}+0.9^{2}}}\left(1-1.5 z^{-1}+0.9 z^{-2}\right) \\
& =1-1.5 z^{-1}+0.9 z^{-2}
\end{aligned}
$$

and the corresponding MA model is:

$$
x_{n}=w_{n}-1.5 w_{n-1}+0.9 w_{n-2}
$$

where w_{n} is white noise with variance equal to 1 .

Figure 1: Zeros of $B(z), B\left(z^{-1}\right)$

