
4F7 Adaptive Filters (and Spectrum Estimation)

Introduction, Wiener Filter and Steepest Descent

Sumeetpal Singh
Email : sss40@eng.cam.ac.uk

1

1 Preliminaries

As handouts you will receive

• All the lecture slides

• Examples sheets
Some exercises require matlab files available at
www-sigproc.eng.cam.ac.uk/~sss40/teaching.html

Course textbooks
http://www.eng.cam.ac.uk/teaching

/courses/y4/Booklist-IIB-GrpF.pdf

2

2 In Part 1 of this course we will

• Motivate the need for Filtering and Adaptive Filters

• Study the popular ones
– Least Mean Square (LMS) and its variants
– Recursive Least Squares
– the Kalman filter
– Hidden Markov Models (HMM)

• We will try to understand these filters
– with motivating examples
– by converting problem descriptions into filtering tasks
– by simulating them
– with some simple analysis

• Matlab code supplied in handouts and on website
– Try them for practical experience (very important)

3

3 Course Requirements (Part 1)

• Revise linear algebra, probability, calculus for functions of several vari-
ables

• Appreciate the differences between the adaptive filters studied
– when would you use a particular method
– understand limitations

• Know how to formulate a given problem as a filtering task

• Understand the main steps in the simple analysis we do

• Acquire practical experience with the various filters using Matlab

4

4 Filtering Defined

• Filtering is the process of removing “noise” from a measured signal in
order to reveal or enhance information about some quantity of interest

• Any real data will include some degree of noise from various possible
sources

• The noise could be introduced by the measuring system itself

• The noise could be due to the physical environment in which the source
generating the signal of interest is immersed in

• Assume you have measurements about some signal of interest available
to you at discrete time instances n = 0, 1, 2, . . .

• Filtering, means extracting information about a quantity of interest at
time n using the data measured up to and including time n

• Prediction, means to derive information about some quantity of inter-
est at some time n+m in the future (m > 0) using the data measured
up to and including time n

5

5 State-space Model

• A very useful statistical model may be described by the following set
of equations:

Xn+1 = AXn + bn + Vn

Yn = CXn + dn + Wn

where A,C are matrices, bn, dn are a known deterministic sequence of
vectors, {Vn}n≥0 is a i.i.d. zero mean Gaussian noise with variance Q,
{Wn}n≥0 is a i.i.d. zero mean Gaussian noise with variance R

• {Xn}n≥0 is known as the hidden state sequence while {Yn}n≥0 is
the observation sequence (Is there a model when {Xn}n≥0 and/or
{Yn}n≥0 is finite (or discrete) valued?)

• The filtering problem is: at time n, given {Y1, . . . , Yn}, we wish to
obtain an estimate of Xn

6

6 Application: Object Tracking

• Let

Xn = [xPosition, xVelocity, yPosn, yVel]T

of a target, if

C =

(
1 0 0 0
0 0 1 0

)

we observe only the targets postition (shown in Figure on next page)

• Important for military applications

• You can also consider measurements model where only the bearing
and/or range of the target is measured

7

7 Application: Finance

• Consider the evolution of the price of a financial asset, like a share price
or a foreign exchange rate, Sn

• The volatility of the price ratio, or of {log(Sn/Sn−1)}n≥1 is of consid-
erable interest to the financial analyst

• Shown on the next page is the adjusted values Sn (weekly values) of
the MSFT shares (Microsoft) from 13/03/2000–04/10/2007
On the right-hand side is the plot of {log(Sn/Sn−1)}n≥1

8

0 100 200 300 400 500 600 700 800
10

15

20

25

30

35

40

45
MSFT adjusted weekly share price (USD): Jan 2000 to Oct 2013

0 100 200 300 400 500 600 700 800
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Log returns: log(S
n
/S

n−1
)

9

• Notice how {Yn = log(Sn/Sn−1)}n≥1 looks like Yn = βnWn where
Wn is Gaussian with mean 0 and variance 1 while the variance of Yn

is being modulated by βn, which is known as the volatility

• We would like to estimate this volatility and we may do so by consid-
ering the following model

Xn+1 = φXn + σVn

Yn = β exp(Xn)Wn

where (φ, σ, β) are known constants and Vn is Gaussian with mean 0
and variance 1

• The filtering problem is: at time n, given {Y1, . . . , Yn}, we wish to
obtain an estimate of Xn

• We can approximately solve this problem by “linearising the model”
and then use the Kalman filter which we learn in this course

10

• We will return to the state-space formulation later in the course. We
now start with a more simple formulation that requires stationarity of
the signals involved

• The state-space formulation arose later because of new applications
where non-stationarity was intrinsic to the problems

11

8 More Mathematical notation

• Bold symbols will denote matrices or vectors
– bold capital letter denotes a matrix, e.g., A
– bold lowercase letter denotes a vector, e.g., p

• superscript “T” denotes transpose, “H” Hermitian transpose

• for a function f : R
M → R, let ∇f (y) denote

∇f (x)|x=y =

[
∂f (y)

∂x1
, . . . ,

∂f (y)

∂xM

]T

12

9 Wiener model: the setup

• The input signal {u (n)}

• The reference signal {d (n)}

• The filter h = [h0, h1, . . . , hM−1]
T ∈ R

M

• The output signal {y (n)} is

y (n) =

M−1∑

k=0

hku (n − k) = uT (n)h

• The error signal {e (n)}

e (n) = d (n) − uT (n)h

13

10 Performance criterion

• Now that we have all the signals, we need a performance function – the
Wiener filter is a solution to an optimization problem

• The cost function is

Jn (h) , E
{

e2 (n)
}

,

expanding gives

e2 (n) = d2 (n) + hTu (n)uT (n)h − 2hTu (n) d (n) ,

taking the expectation yields

Jn (h) = E
{

d2 (n)
}

+ hTE
{
u (n)uT (n)

}
h

− 2hTE {u (n) d (n)}

• We call
– σ2

d (n) = E
{
d2 (n)

}
reference signal power

– R (n) = E
{
u (n)uT (n)

}
input signal autocorrelation matrix

– p (n) = E {u (n) d (n)}, crosscorrelation vector

14

11 Stationarity assumptions

•R (n) = E
{
u (n)uT (n)

}
input signal autocorrelation matrix,

[R (n)]i,j = E {u (n − i + 1) u (n − j + 1)}

If {u (n)} is 2nd-order stationary then,

E {u (n − i + 1) u (n − j + 1)} = E [u (0) u (i − j)]

= ru (i − j)

• p (n) = E {u (n) d (n)}, crosscorrelation of input and reference signal,
[p (n)]i = E {u (n − i + 1) d (n)}
If {u (n)} and {d (n)} are jointly stationary then,

E {u (n − i + 1) d (n)}

= E {u (−i + 1) d (0)}

= rud (−i + 1)

• It is the time-shift that the statistics depend on

15

12 Wiener filter

• Stationarity assumptions imply a time-independent cost,

J (h) = σ2
d + hTRh−2hTp,

which is also quadratic in h

• To minimise, set the gradient to zero, i.e., ▽J (h) = 0, which gives

2Rh−2p = 0 (Normal Equation)

hopt = R−1p (Wiener-Hopf filter)

• Normal equation has an orthogonality interpretation

E{u (n)
[
d (n) − uT (n)hopt

]
} = 0

e (n) and u (n) are orthogonal

16

13 Remarks on Wiener filter

• We defined a time-independent cost function and the Wiener filter
minimised it

• Didn’t need to know {d (n)} or {u (n)} but only 2nd order statistics
– σ2

d = E
{
d2 (n)

}
reference signal power ×

– R = E
{
u (n)uT (n)

}
input signal autocorrelation matrix X

– p = E {u (n) d (n)}, crosscorrelation X

• In practice we can solve for hopt= R−1p without requiring R, p, or
inverting any matrices

17

14 Application: Noise Cancelation

• The principle behind this application is as follows. You have a signal
of interest which is being corrupted by a source of interference. You
can make measurements of this signal of interest but not without the
corrupting interference

• However, you are also able to make measurements at the source of the
interference itself where the interference dominates over the signal of
interest

• The measured interference signal is filtered so that it becomes a replica
of the interference signal that is present in the measurements of the
signal of interest

• Now subtract this replica from the corrupted signal of interest to leave
only the signal of interest. This is illustrated in following example

18

• Correction to Figure: x(k) should be u(k) in this figure

• The adaptive filter aims to minimise the error between the filtered noise
and the output of Mic 1

• Recovered signal is d(n) − hTu(n)

19

• Mic 1: Reference signal

d(n) = s(n)︸︷︷︸
signal of interest

+ v(n)︸︷︷︸
noise

s (n) and v (n) statistically independent

• Aim: recover signal of interest

• Method: use another mic, Mic 2, to record only noise, u(n)

• Obviously u (n) 6= v (n) but u (n) and v (n) are correlated

• Now filter recorded noise u (n) with h to make it more like v(n)

• Recovered signal is d(n) − hTu(n)

20

15 Application: Channel equalization

• Channel equalizers are important for reliable communication of digital
data over non-ideal channels. Let {x(n)} be the digital signal to be
transmitted over the channel. This signal takes as values plus or minus
1.

• This signal is input to a pulse generator which produces a pulse of
amplitude A at time n if x(n) = 1 or −A otherwise. These pulses are
modulated and transmitted over the channel.

• The receiver demodulates and samples the received waveform which
produces the signal {u(n)}. The demodulated signal is distorted by
the channel. The pulse shapes are distorted causing neighboring pulses
to interfere with each other, which is known as Intersymbol Interference
(ISI).

• A model for {u(n)} is

u(n) =

n∑

k=0

x(k)h′(n − k) + v(n).

21

• This model is motivated by physical reasons: the signal is subject to
multi-path fading which means that the received signal is the sum of
delayed scaled versions. Here v(n) is additive noise.

• The decision on the transmitted bit is a simple threshold device:

x̂(n) =

{
1 if u(n) ≥ 0
−1 otherwise

• To improve the chances of correct decisions, an equalizer is used to
minimise the channel distortion.

22

• A copy of {x (n)}T
n=1 is available at the receiver

– called a training signal in comms literature
– this copy will be our reference signal though, {d (n)}T

n=1 =

{x (n)}T
n=1

• The receiver will
– filter {u (n)}n≥0 with h to give y(n)

– adapt h to try to make {y (n)}T
n=1 and {d (n)}T

n=1 identical
– the receiver has only T time points to do so

• The designed h will then be used for time n > T

• h should invert the effect of the channel

23

Channel Equalization

24

16 Application: Echo Cancellation

• A hands-free unit includes a microphone and a loudspeaker

• Voice of far speaker, comes out of loudspeaker, reflected (the echo), and
sent back through mic to the far speaker

• Echoes prohibit a normal conversation and must be cancelled. Mathe-
matically,
– u (n) our of loudspeaker (speech signal of the far speaker)
– s (n) signal of near speaker
– Hroom[u](n), the echo

• Call the signal into the mic d (n),

d (n) = Hroom[u](n)︸ ︷︷ ︸
echo

+ s (n)︸︷︷︸
near speaker speech

25

LOUDSPEAKER

ADAPTIVE FILTER

_
+

MIC
TX

RX

Echo Cancellation

26

17 Four Classes of Applications

• Adaptive filters have been successfully applied in diverse fields such as
communications, radar, seismology, biomedical engineering

• Although the applications are diverse, they share a basic common fea-
ture

• An input signal is filtered and compared to a desired response. This
yields the error signal which is used to adjust the filter that is being
applied to the input signal. The adjustable coefficients of the filter may
take the form of tap weights

• The essential difference between the various applications of adaptive
filtering is the manner in which the input signal and desired response are
defined. There are four basic classes of adaptive filtering applications
as discussed below

27

Identification: A mathematical model is essential component for anal-
ysis and control. An adaptive filter is used to provide a linear model that
represents the best fit (in some sense) to an unknown plant. The plant and
adaptive filter are driven by the same input and the plant output supplies
the desired response. If the plant is dynamic in nature, the adaptive filter
may be able to track the time-varying plant model provided it changes
slower than the adaptation rate.

PLANT

_

+

SYS OUTPUT

ADAPTIVE FILTER

SYS INPUT
d

yu

e

28

Inverse modeling: The function of the adaptive filter here is to provide
the best fitting (in some sense) inverse model to the unknown noisy

plant. Ideally the inverse model will have a transfer function equal to the
inverse of the plant’s transfer function. The desired response is a delayed
version of the plant’s input. In some instances a delay is not necessary.

DELAY

_

+

ADAPTIVE FILTER

d

y

e

PLANT
u

SYS OUTPUT

SYS INPUT

29

Prediction: The function of the adaptive filter is to provide the best
prediction (in some sense) of the present value of the input signal. The in-
put of the filter are the past values, hence the delay. The desired response
is the present value.

_

+

ADAPTIVE FILTER

d

y

e

DELAY
u

SYS INPUT

SYS OUTPUT 2

SYS OUTPUT 1

30

Interference cancellation: The adaptive filter is used to cancel inter-
ference which is present along side the signal of interest in the primary

signal. The input to the filter is the reference signal. This signal is de-
rived from a sensor located relative to the sensor supplying the primary
signal in such a way that the signal of interest is undetectable. The adap-
tive filter will synthesise the interference in the primary signal using the
reference signal which is then subtracted from the primary signal.

_

+

ADAPTIVE FILTER

d

y

e

u

SYS OUTPUT

PRIMARY SIGNAL

REF SIGNAL

31

18 Gradient Descent

• Consider the real valued function f : R
M → R and we wish to min-

imise it
– one way is to identify the set

{x : ∇f (x) = 0}

and test each point to find the minima

• An iterative way: let x(k) be our current best solution. We improve it
by

x(k + 1) = x(k) −
µ

2
∇f (x(k))

where µ is the stepsize

• For example, if M = 1 and f (x) = x2,

x(k + 1) = x(k) − µx(k)

= x(k)(1 − µ),

and |1 − µ| < 1 implies x(k) → 0

32

19 Steepest Descent

• J (h) for Wiener filtering is a convex function and can be minimised
by gradient descent

• Adaptation in the negative direction of the gradient

h (n + 1) = h (n) −
µ

2
▽ J (h (n))

• Gradient of J is

▽J (h (n)) = 2Rh (n) − 2p

= 2E
{
u (k)uT (k)

}
h (n)

− 2E {u (k) d (k)}

Since true for any k, set k = n and let e (n) = d (n) − uT (n)h (n).

• The Steepest Descent (SD) algorithm is

h (n + 1) = h (n) + µE {u (n) e (n)} , n ≥ 0

• Computational complexity: O
(
M2

)
(multiplications)

33

20 Matlab code for an example

% autocorrelation matrix

R=[1.1 0.5; 0.5 1.1];

% crosscorrelation matrix

p=[0.5271; -0.4458];

% initial filter value & stepsize

h=[-1;-1];

mu=0.001;

% record the evolution of the h

T=1000;

H=[];

% SD algorithm

for k=1:T

h=h-mu*(R*h-p);

H=[H,h];

end

34

•R =

[
1.1 0.5
0.5 1.1

]
, p =

[
0.5272
−0.4458

]
⇒ hopt =

[
0.8360
−0.7853

]

• Results obtained using 4 different stepsizes µ
– what will be the effect of the different stepsizes?

• Thus is just an example; we wouldn’t use SD for such simple problems
– when would we use SD though?

• Error in plots measured as
∥∥h (n) − hopt

∥∥
1

35

50 100 150 200 250 300 350

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

h(n) (above) and ‖h (n) − hopt‖1
against iteration number n for µ = 0.01

36

50 100 150 200 250 300 350

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

h(n) (above) and ‖h (n) − hopt‖1
against iteration number n for µ = 1

37

50 100 150 200 250 300 350

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000
10

−1

10
0

10
1

h(n) (above) and ‖h (n) − hopt‖1
against iteration number n for µ = 0.001

38

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
50

10
100

10
150

10
200

10
250

10
300

Evolution of
∥∥h (n) − hopt

∥∥
1 against iteration number for µ = 4

39

21 Convergence of SD

• We have seen SD performance depends critically on the stepsizes
– either converges slowly, fast or diverges

•R = E
{
u (n)uT (n)

}
is symmetric and positive semidefinite,

vTRv = vTE
{
u (n)uT (n)

}
v = E

{∣∣∣vTu (n)
∣∣∣
2
}

≥ 0

• Let λk and vk be respectively the kth eigenvalue and eigenvector of R,
i.e., Rvk = λkvk (note λk ≥ 0 (why?))

R [v1, · · · ,vM]︸ ︷︷ ︸
Q

= [v1 · · · vM] diag (λ1, . . . , λM)︸ ︷︷ ︸
Λ

• and if R is non-singular (invertible), eigenvectors can be chosen to be
orthonormal,

QTQ = I

• Note QTQQ−1= IQ−1, we have Q−1 = QT

40

• Thus,

R = QΛQT

• SD update rule is h (n + 1) = h (n) + µ (p − Rh (n)), using Rhopt =
p,

h (n + 1) = h (n) + µR
(
hopt − h (n)

)
,

subtracting hopt from both sides,

h (n + 1) − hopt = h (n) − hopt − µR
(
h (n) − hopt

)

= (I − µR)
(
h (n) − hopt

)

=
(
I − µQΛQT

) (
h (n) − hopt

)
,

where last line follows eigendecomposition

• Now multiply by QT

QT
(
h (n + 1) − hopt

)
= QT

(
I − µQΛQT

)

×
(
h (n) − hopt

)

= (I − µΛ)QT
(
h (n) − hopt

)

41

• This expression is very convenient,
setting ν (n) = QT

(
h (n)−hopt

)
gives

ν (n + 1) = (I − µΛ) ν (n)

• (I − µΛ) is a diagonal matrix. In component form,

ν (n) = [ν1 (n) , . . . , νM (n)]T ,

gives, for k = 1, . . . ,M ,

νk (n + 1) = (1 − µλk) νk (n)

= (1 − µλk)n+1 νk (0)

• We can now assert stability, νk (n) → 0 provided |1 − µλk| < 1, or

0 < µ < 2/λk

• Since we want h (n) → hopt, we require ν (n) → 0, or equivalently
νk (n) → 0 for all k

• Thus we get the stability condition

0 < µ < 2/λmax

42

• In our example, R =

[
1.1 0.5
0.5 1.1

]
⇒ λmax = 1.6 and λmin = 0.6

⇒ µ < 1.25

• This explains observed divergence of µ = 4

43

