4F7 Adaptive Filters (and Spectrum Estimation)

Kalman Filter

Sumeetpal Singh
Email: sss40@eng.cam.ac.uk

1 Outline

- State space model
- Kalman filter
- Examples

2 Parameter Estimation

- We have repeated observations of a random variable x through

$$
y(n)=x+v(n) \quad \text { for } n=1,2, \ldots
$$

where $\{v(n)\}$ is a zero-mean scalar noise sequence, $E(v(n) v(l))=0$ for $n \neq l, E(v(n) x)=0, E\left\{v(n)^{2}\right\}=\sigma_{v}^{2}, \sigma_{0}^{2}=E\left(x^{2}\right), E(x)=0$

- Aim: at time $n, n>0$, compute the optimum linear estimator for x using $\{y(1), \ldots, y(n)\}$. That is we want a linear estimator of x of the form

$$
\widehat{x}(n)=\sum_{i=1}^{n} a_{i} y(i)
$$

where the coeffecients a_{i} are chosen so that the mean square error

$$
E\left\{(x-\widehat{x}(n))^{2}\right\}
$$

is minimised

- Then, find a recursion for $\widehat{x}(n)$, i.e. relate $\widehat{x}(n+1)$ with $\widehat{x}(n)$
- The solution to this problem is

$$
\widehat{x}(n+1)=\frac{\sigma(n)^{2}}{\sigma(n)^{2}+\sigma_{v}^{2}}(y(n+1)-\widehat{x}(n))+\widehat{x}(n)
$$

where $\sigma(n)^{2}=E\left((x-\widehat{x}(n))^{2}\right)$ satisfies the recursion

$$
\sigma(n)^{2}=\sigma(n-1)^{2}-\frac{\sigma(n-1)^{4}}{\sigma(n-1)^{2}+\sigma_{v}^{2}}
$$

- Initialise by setting $\sigma(0)^{2}=E\left(x^{2}\right)$ and $\widehat{x}(0)=0$
- This model is too simple though

3 Linear Estimator with state dynamics

- We now extend the linear estimation problem to

$$
\begin{aligned}
x(n+1) & =x(n)+w(n+1) \\
y(n) & =x(n)+v(n)
\end{aligned}
$$

where $\{w(n)\}$ and $\{v(n)\}$ independent zero-mean random variables satisfying

$$
\begin{aligned}
E(v(n) v(l)) & =\sigma_{v}^{2} \delta_{n, l} \\
E(w(n) w(l)) & =\sigma_{w}^{2} \delta_{n, l},
\end{aligned}
$$

where $\delta_{n, l}=0$ for $n \neq l, \delta_{n, l}=1$ for $n=l, E\left(x(0)^{2}\right)=\sigma(0)^{2}$, $E(x(0))=0$. Noises $\{w(n)\}$ and $\{v(n)\}$ are independent of $x(0)$.

- Aim: at time n, compute the optimum linear estimator for $x(n)$ using $\{y(1), \ldots, y(n)\}$, i.e., $\widehat{x}(n)=\sum_{i=1}^{n} a_{i} y(i)$. Then, find a recursion relating $\widehat{x}(n+1)$ with $\widehat{x}(n)$
- Same problem as before except $x(n)$ has dynamics
- The solution to this problem is

$$
\begin{aligned}
\widehat{x}(n+1) & =\frac{\sigma(n)^{2}+\sigma_{w}^{2}}{\sigma(n)^{2}+\sigma_{w}^{2}+\sigma_{v}^{2}}(y(n+1)-\widehat{x}(n))+\widehat{x}(n) \\
& =K(n)(y(n+1)-\widehat{x}(n))+\widehat{x}(n)
\end{aligned}
$$

where

$$
\sigma(n)^{2}=\sigma(n-1)^{2}+\sigma_{w}^{2}-\frac{\left(\sigma(n-1)^{2}+\sigma_{w}^{2}\right)^{2}}{\sigma(n-1)^{2}+\sigma_{w}^{2}+\sigma_{v}^{2}}
$$

(Initialisation as before.)

4 A State-Space Model

- A simple state-space model is the following

$$
\begin{aligned}
x(n+1) & =x(n)+w(n+1) \\
y(n) & =x(n)+v(n)
\end{aligned}
$$

where $\{w(n)\}$ and $\{v(n)\}$ independent zero-mean random variables satisfying

$$
\begin{aligned}
E(v(n) v(k)) & =\sigma_{v}^{2} \delta_{n, k} \\
E(w(n) w(k)) & =\sigma_{w}^{2} \delta_{n, k}
\end{aligned}
$$

- We gave a recursion for the optimum linear estimator of $x(n)$ using $\{y(1), \ldots, y(n)\}$, i.e. linear in the sense $\widehat{x}(n)=\sum_{i=1}^{n} a_{i} y(i)$.
- The recursion that related $\widehat{x}(n+1)$ to $\widehat{x}(n)$ is the Kalman filter
- Consider a state space model with vector valued states and observations

$$
\begin{array}{ll}
\text { State Equation } & \mathbf{x}(n)=\mathbf{A}(n) \mathbf{x}(n-1)+\mathbf{w}(n) \\
\text { Observation Equation } & \mathbf{y}(n)=\mathbf{C}(n) \mathbf{x}(n)+\mathbf{v}(n)
\end{array}
$$

where $\{\mathbf{w}(n)\}$ and $\{\mathbf{v}(n)\}$ are independent zero-mean random variables (vectors) with

$$
\begin{aligned}
E\left(\mathbf{v}(n) \mathbf{v}^{\mathrm{T}}(k)\right) & =\mathbf{Q}_{v}(n) \delta_{n, k} \\
E\left(\mathbf{w}(n) \mathbf{w}^{\mathrm{T}}(k)\right) & =\mathbf{Q}_{w}(n) \delta_{n, k}
\end{aligned}
$$

and $\mathbf{x}(0)$ has mean $\mathbf{m}(0)$ and covariance matrix $\mathbf{P}(0) .\{\mathbf{w}(n)\},\{\mathbf{v}(n)\}$ and $\mathbf{x}(0)$ are independent

- The aim is to derive the Kalman filter for this more complicated model. The previous solutions can be recovered as a special case

5 An example of a state-space model

- We want to track a target but only have access to noisy measurements of its position
- A 1D target model
- the target's position at time t is $p(t)$
- the target's velocity at time t is $\dot{p}(t)$
- we know that $\frac{d}{d t} p(t)=\dot{p}(t)$, and $\frac{d}{d t} \dot{p}(t)=\ddot{p}(t)$ where $\ddot{p}(t)$ is the acceleration
- We are able to measure the target's position with error
- We will discretise this model with a time step T

$$
\begin{aligned}
p(n T) & =p((n-1) T)+T \dot{p}((n-1) T), \\
\dot{p}(n T) & =\dot{p}((n-1) T)+T \ddot{p}((n-1) T)
\end{aligned}
$$

- The discretised observation model is

$$
y(n T)=p(n T)+v(n T)
$$

where $v(n T)$ is zero mean white noise

- Now define the following variables

$$
\begin{aligned}
\mathbf{x}(n) & =[p(n T), \dot{p}(n T)]^{\mathrm{T}}, \\
y(n) & =y(n T)
\end{aligned}
$$

- We can write

$$
\begin{aligned}
& \mathbf{x}(n)=\left[\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right] \mathbf{x}(n-1)+\left[\begin{array}{c}
0 \\
T
\end{array}\right] w(n), \\
& y(n)=[1,0] \mathbf{x}(n)+v(n)
\end{aligned}
$$

The accelleration is being modelled as noise $w(n)$

- In the literature, the state dynamics is also defined as

$$
\mathbf{x}(n)=\left[\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right] \mathbf{x}(n-1)+\left[\begin{array}{c}
T / 2 \\
T
\end{array}\right] w(n)
$$

${ }_{6}$ Derivation of the Kalman Filter

- The optimum linear estimator of $\mathbf{x}(n)$ using all the measurement vectors up to time n may be expressed as

$$
\hat{\mathbf{x}}(n)=\mathbf{K}^{\prime}(n) \hat{\mathbf{x}}(n-1)+\mathbf{K}(n) \mathbf{y}(n)
$$

where $\hat{\mathbf{x}}(n-1)$ is the best linear unbiased estimate of $\mathbf{x}(n-1)$ based on the observations $\mathbf{y}(1), \ldots, \mathbf{y}(n-1)$

- $\mathbf{K}^{\prime}(n), \mathbf{K}(n)$ are the gain matrices to be derived
- We will resolve $\mathbf{K}^{\prime}(n)$ be requiring unbiasedness of $\hat{\mathbf{x}}(n)$ and $\mathbf{K}(n)$ by minimising the MSE
- Define the estimation error

$$
\mathbf{e}(n)=\mathbf{x}(n)-\hat{\mathbf{x}}(n)
$$

and the corresponding error covariance matrix

$$
\mathbf{P}(n)=E\left\{\mathbf{e}(n) \mathbf{e}(n)^{\mathrm{T}}\right\}
$$

- We will need the following matrix differentiation formulae

$$
\left.\begin{array}{rl}
\frac{d}{d \mathbf{K}} \operatorname{tr}(\mathbf{K A}) & =\mathbf{A}^{\mathrm{T}} \\
\frac{d}{d \mathbf{K}} \operatorname{tr}\left(\mathbf{A} \mathbf{K}^{\mathrm{T}}\right) & =\mathbf{A} \\
\frac{d}{d \mathbf{K}} \operatorname{tr}(\mathbf{K} \mathbf{A K}
\end{array}\right)=2 \mathbf{K} \mathbf{A} .
$$

- Assuming $\mathbf{K}=\left[k_{i, j}\right]$, understand $\frac{d g(\mathbf{K})}{d \mathbf{K}}$ as the matrix with i, j element equal to $\frac{d g(\mathbf{K})}{d k_{i, j}}$
- Now check this for $\frac{d}{d \mathbf{K}} \operatorname{tr}(\mathbf{K A})$

$$
\frac{d \operatorname{tr}(\mathbf{K A})}{d k_{i, j}}=\frac{d}{d k_{i, j}} \sum_{l, m} k_{l, m} a_{m, l}=a_{j, i}
$$

-Let $\hat{\mathbf{x}}(n \mid n-1)=\mathbf{A}(n) \hat{\mathbf{x}}(n-1)$ and

$$
\mathbf{e}(n \mid n-1)=\mathbf{x}(n)-\hat{\mathbf{x}}(n \mid n-1)
$$

and the corresponding error covariance matrix

$$
\mathbf{P}(n \mid n-1)=E\left\{\mathbf{e}(n \mid n-1) \mathbf{e}(n \mid n-1)^{\mathrm{T}}\right\}
$$

- Now calculate $\mathbf{P}(n \mid n-1)$

$$
\begin{aligned}
& (\mathbf{x}(n)-\hat{\mathbf{x}}(n \mid n-1))(\mathbf{x}(n)-\hat{\mathbf{x}}(n \mid n-1))^{\mathrm{T}} \\
& =(\mathbf{A}(n)[\mathbf{x}(n-1)-\hat{\mathbf{x}}(n-1)]+\mathbf{w}(n)) \\
& \times(\mathbf{A}(n)[\mathbf{x}(n-1)-\hat{\mathbf{x}}(n-1)]+\mathbf{w}(n))^{\mathrm{T}} \\
& =\mathbf{A}(n)[\mathbf{x}(n-1)-\hat{\mathbf{x}}(n-1)] \\
& \times[\mathbf{x}(n-1)-\hat{\mathbf{x}}(n-1)]^{\mathrm{T}} \mathbf{A}(n)^{\mathrm{T}} \\
& +\mathbf{w}(n) \mathbf{w}(n)^{\mathrm{T}}+(\text { terms involving one } \mathbf{w}(n))
\end{aligned}
$$

- Take the expectation

$$
\mathbf{P}(n \mid n-1)=\mathbf{A}(n) \mathbf{P}(n-1) \mathbf{A}(n)^{\mathrm{T}}+\mathbf{Q}_{w}(n)
$$

- Once $\mathbf{y}(n)$ is received, using gain matrices $\mathbf{K}^{\prime}(n), \mathbf{K}(n)$, the estimate is updated to

$$
\hat{\mathbf{x}}(n)=\mathbf{K}^{\prime}(n) \hat{\mathbf{x}}(n-1)+\mathbf{K}(n) \mathbf{y}(n)
$$

- What restrictions are imposed on $\mathbf{K}^{\prime}(n), \mathbf{K}(n)$ when we require $\hat{\mathbf{x}}(n)$ to be unbiased?

$$
\hat{\mathbf{x}}(n)=\mathbf{K}^{\prime}(n) \hat{\mathbf{x}}(n-1)+\mathbf{K}(n)[\mathbf{C}(n) \mathbf{x}(n)+\mathbf{v}(n)]
$$

Take the expectation

$$
\begin{aligned}
E\{\hat{\mathbf{x}}(n)\} & =\mathbf{K}^{\prime}(n) E\{\hat{\mathbf{x}}(n-1)\} \\
& +\mathbf{K}(n) E\{[\mathbf{C}(n) \mathbf{x}(n)+\mathbf{v}(n)]\} \\
& =\mathbf{K}^{\prime}(n) E\{\mathbf{x}(n-1)\}+\mathbf{K}(n) \mathbf{C}(n) \mathbf{A}(n) E\{\mathbf{x}(n-1)\}
\end{aligned}
$$

Thus for unbiasedness, i.e. $E\{\hat{\mathbf{x}}(n)\}=E\{\mathbf{x}(n)\}=\mathbf{A}(n) E\{\mathbf{x}(n-1)\}$

$$
\mathbf{K}^{\prime}(n)+\mathbf{K}(n) \mathbf{C}(n) \mathbf{A}(n)=\mathbf{A}(n)
$$

- Thus $\hat{\mathbf{x}}(n)$ is

$$
\hat{\mathbf{x}}(n)=\hat{\mathbf{x}}(n \mid n-1)+\mathbf{K}(n)[\mathbf{y}(n)-\mathbf{C}(n) \hat{\mathbf{x}}(n \mid n-1)]
$$

- Next step is to compute $E\left\{\mathbf{e}(n) \mathbf{e}(n)^{\mathrm{T}}\right\}$. By subtracting $\mathbf{x}(n)$ from both sides of the previous equation, the error is

$$
\mathbf{e}(n)=[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{e}(n \mid n-1)-\mathbf{K}(n) \mathbf{v}(n)
$$

- Expand the error $\mathbf{e}(n) \mathbf{e}(n)^{\mathrm{T}}$ to get

$$
\begin{aligned}
\mathbf{e}(n) \mathbf{e}(n)^{\mathrm{T}} & =[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{e}(n \mid n-1) \\
& \times \mathbf{e}(n \mid n-1)^{\mathrm{T}}[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)]^{\mathrm{T}} \\
& +\mathbf{K}(n) \mathbf{v}(n) \mathbf{v}(n)^{\mathrm{T}} \mathbf{K}(n)^{\mathrm{T}} \\
& +(\text { terms involving one } \mathbf{v}(n))
\end{aligned}
$$

- Take the expectation to get

$$
\begin{aligned}
\mathbf{P}(n) & =[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1)[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)]^{\mathrm{T}} \\
& +\mathbf{K}(n) \mathbf{Q}_{v}(n) \mathbf{K}(n)^{\mathrm{T}}
\end{aligned}
$$

- Now separate $\mathbf{K}(n)$ terms, take the trace and differentiate

$$
\begin{aligned}
\frac{d}{d \mathbf{K}(n)} \operatorname{tr}(\mathbf{P}(n)) & =-2[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}} \\
& +2 \mathbf{K}(n) \mathbf{Q}_{v}(n)
\end{aligned}
$$

- Set the derivative to 0 and solve for $\mathbf{K}(n)$

$$
\begin{aligned}
& \quad[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}}=\mathbf{K}(n) \mathbf{Q}_{v}(n) \\
& \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}}=\mathbf{K}(n) \mathbf{Q}_{v}(n)+\mathbf{K}(n) \mathbf{C}(n) \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}} \\
& \mathbf{K}(n)=\mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}}\left[\mathbf{Q}_{v}(n)+\mathbf{C}(n) \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}}\right]^{-1}
\end{aligned}
$$

- Having found $\mathbf{K}(n)$, simplify the above expression for $\mathbf{P}(n)$

$$
\begin{aligned}
\mathbf{P}(n) & =[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1)[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)]^{\mathrm{T}} \\
& +\mathbf{K}(n) \mathbf{Q}_{v}(n) \mathbf{K}(n)^{\mathrm{T}} \\
& =[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1) \\
& -[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}} \mathbf{K}(n)^{\mathrm{T}} \\
& +\mathbf{K}(n) \mathbf{Q}_{v}(n) \mathbf{K}(n)^{\mathrm{T}} \\
\mathbf{P}(n) & =[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1)
\end{aligned}
$$

7 Summary of Kalman filter equations
State Equation $\quad \mathbf{x}(n)=\mathbf{A}(n) \mathbf{x}(n-1)+\mathbf{w}(n)$
Observation Equation $\mathbf{y}(n)=\mathbf{C}(n) \mathbf{x}(n)+\mathbf{v}(n)$
and $\mathbf{x}(0)$ has mean $\mathbf{m}(0)$ and covariance matrix $\mathbf{P}(0)$
Initialization: $\hat{\mathbf{x}}(0)=\mathbf{m}(0)$ and $\mathbf{P}(0)$
Computation: for $n=1,2, \ldots$.
Prediction step:

$$
\begin{aligned}
\hat{\mathbf{x}}(n \mid n-1) & =\mathbf{A}(n) \hat{\mathbf{x}}(n-1) \\
\mathbf{P}(n \mid n-1) & =\mathbf{A}(n) \mathbf{P}(n-1) \mathbf{A}(n)^{\mathrm{T}}+\mathbf{Q}_{w}(n)
\end{aligned}
$$

Gain calculation:

$$
\begin{aligned}
& \mathbf{K}(n)=\mathbf{P}(n \mid n-1) \\
& \times \mathbf{C}(n)^{\mathrm{T}}\left[\mathbf{Q}_{v}(n)+\mathbf{C}(n) \mathbf{P}(n \mid n-1) \mathbf{C}(n)^{\mathrm{T}}\right]^{-1}
\end{aligned}
$$

Update step:

$$
\begin{aligned}
\hat{\mathbf{x}}(n) & =\hat{\mathbf{x}}(n \mid n-1)+\mathbf{K}(n)[\mathbf{y}(n)-\mathbf{C}(n) \hat{\mathbf{x}}(n \mid n-1)] \\
\mathbf{P}(n) & =[\mathbf{I}-\mathbf{K}(n) \mathbf{C}(n)] \mathbf{P}(n \mid n-1)
\end{aligned}
$$

Apply the Kalman filter to the following model:

$$
\begin{aligned}
x(n+1) & =x(n)+w(n+1) \\
y(n) & =x(n)+v(n)
\end{aligned}
$$

where $\{w(n)\}$ and $\{v(n)\}$ independent zero-mean random variables satisfying

$$
E(v(n) v(k))=\sigma_{v}^{2} \delta_{n, k}
$$

$$
E(w(n) w(k))=\sigma_{w}^{2} \delta_{n, k}
$$

Also $E\left(x(0)^{2}\right)=\sigma(0)^{2}, E(x(0))=0$
Prediction step:

$$
\begin{aligned}
\hat{x}(n \mid n-1) & =\hat{x}(n-1) \\
\sigma(n \mid n-1)^{2} & =\sigma(n-1)^{2}+\sigma_{w}^{2}
\end{aligned}
$$

Gain calculation:

$$
K(n)=\frac{\sigma(n-1)^{2}+\sigma_{w}^{2}}{\sigma_{v}^{2}+\sigma(n-1)^{2}+\sigma_{w}^{2}}
$$

Update step:

$$
\begin{aligned}
\hat{x}(n) & =\hat{x}(n-1)+K(n)[y(n)-\hat{x}(n-1)] \\
\sigma(n)^{2} & =[1-K(n)]\left(\sigma(n-1)^{2}+\sigma_{w}^{2}\right)
\end{aligned}
$$

