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1 Outline

e The LMS algorithm

e Overview of LMS issues concerning step-size bound and convergence

e Some simulation examples

e The normalised LMS (NLMS)



> Least Mean Square (LMS)

e Steepest Descent (SD) was
h(n+1)=h(n

e Often VJ (h(n)) = —2FE {u(n)e(n)} is unknown or too difficult to

derive

e Remedy is to use the instantaneous approximation —2u (n)e (n) for

VJ(h(n))
e Using this approximation we get the LMS algorithm
e(n)=d(n) —h'(n)u(n),
h(n+1)=h(n)+ pe(n)u(n)



e This is desirable because
— We do not need knowledge of R and p anymore
— If statistics are changing over time, it adapts accordingly
— Complexity: 2M + 1 multiplications and 2M additions per iteration.
Not M? multiplications like SD

e Undesirable because we have to choose u when R not known, subtle
convergence analysis



3 Application: Noise Cancellation

e Mic 1: Reference signal

d(n) = s(n) + v(n)
<~ ~~
signal of interest  noise
s (n) and v (n) statistically independent
e Aim: recover signal of interest
e Method: use another mic, Mic 2, to record noise only, u(n)
e Although u (n) # v (n), u(n) and v (n) are correlated
e Now filter recorded noise w (n) to minimise E{e(n)?}, i.e. to cancel

v(n)

e Recovered signal is e(n) = d(n) — h(n)!

u(n) and not y(n)

e Run Matlab demo on webpage



e We are going to see an example with speech s(n) generated as a mean
0 variance 1 Gaussian random variable

e Mic 1’s noise was 0.5sin(ng + 0.5)
e Mic 2’s noise was 10sin(ns)

e Mic 1 and 2’s noise are both sinusoids but with different amplitudes
and phase shifts

e You could increase the phase shift but you will need a larger value for

M

e Run Matlab demo on webpage



2 LMS convergence in mean

e Write the reference signal model as
d(n) = u” (n) Byt + < (n)
e (n) = d(n) —u’ (n) hop

where hgpt = R~!p denotes the optimal vector (Wiener filter) that
h (n) should converge to

e For this reference signal model, the LMS becomes
h(n+1)=h(n)+ pu(n)
x (uT (n) hopt + & (n) — u” (n) h (n))
—h(n) + pu(n)u’ (n)
X (hopt —h(n)) + pu(n) e (n)
b (14 1) = hop = (T=pu (n) u” (1)) (B () = hop)
+pu(n)e(n)



e This looks like a noisy version of the SD recursion
h(n+1) —hep = (I-pR) (h(n) — hop)
o Verify that F {u(n)e(n)} = 0 using hypy = R™!p
e Introducing the expectation operator gives
E{h(n+1)—hgp}
—E { (I—/Lu (n) u’ (n)) (h(n) — hopt)}
+pE fu(n)e ()}
0
~ (I—ME {u(n> u’ (n>}) E {h(n) — hopy )
(Independence approximation)
= (I-uR) FE {h (n) — hopt}




o Independence approximation assumes h (n) — hgpt is independent of
u(n)ul(n)
— Since h (n) function of u (0), u(1), ..., u(n — 1) and all previous
desired signals this is not true
— However, the approximation is better justified for a “block” LMS
type update scheme where the filter is updated at multiples of some
block length L, i.e. when n = kL and not otherwise



e [dea is to not update h(n) except when n is an integer multiple of L,

ie.n=kLtork=0,1,...
h(n+1) =h(n)+ p(n+ 1)e(n)u(n)
e(n) = d(n) — h(n) u(n)

| p ifn/L = integer
pln) = { 0 otherwise

e Also L should be much larger than filter length M
e This means h(kL) =h(kL+1)=---=h(kL+ L —1)

e Re-use the previous derivation which is still valid:

E{h(n+1)—hgy}=E { (I — p(n + 1>u<n>u<n>T) (h(n) - hopt)}
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e Whenn +1= kL + L we have
E{h(n+1) ~hop } = B { (1= pm(mju(n)”) (h(kL) = hoy) }

~ E{T— pu(n)u(n)”} E {h(kL) — hoy
E {h(k’L + L) — hopt} ~(I—-—uR)E {h(kL) — hopt}
e This analysis uses the fact that (u(0), ..., u(7))

and (u(j),...,u(j + M — 1)), for j > 4, become independent as j — ¢
increases. True for some ARMA time-series.

e We are back to the SD scenario and so

2
E{h(n)} — hoy if0<p<

)\max

e Behaviour predicted using the analysis of the block LMS agrees with
experiments and computer simulations even for L = 1

e We will always use u(n) = u for all n. Block LMS version just to
understand long-term behaviour
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e The point of the LMS was that we don’t have access to R, so how to
compute Apax?

e Using the fact that
M
S A =tr(R)= ME {u2 (n)}
k=1

we have that Apax < 224:1 AN. = ME {u2 (n)}

e Note that we can estimate {u2 (n)} by a simple sample average and
the new tighter bound on the stepsize is

2 2
<

Vs ME{u?(n)}  Amax
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e With a fixed stepsize, {h (n)},~ will never settle at hqpg, but rather
oscillate about hgpt. Even if h (n) = hgpt then

b (14 1) = hop. = pra(n)e(n) = g (n) (dn) = u” (n) by )

and because u (n) e (n) is random, h (n + 1) will move away from hgy

5 LMS main points

e Simple to implement

e Works fine is many applications if filter order and stepsize is chosen
properly

e There is a trade-off effect with the stepsize choice
— large p yields better tracking ability in a non-stationary environment

but will have larger fluctuations of h(n) about converged value
—small 1 has poorer tracking ability but less of such fluctuations
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¢ Adaptive stepsize: Normalised LMS (NLMS)

e We showed that LMS was stable provided
2

S ME {u?(n)}

(4

e What if E {u?(n)} varied, which would be true for a non-stationary
input signal

e LMS should be able to adapt its step-size automatically

e The instantaneous estimate of M F {u2 (n)} isul (n)u(n)
/ /

p __p
ut(n)u(n) — Ju(n)|’
a constant that should < 2, e.g. , 0.25 < ¢/ < 0.75. We make 1/
smaller because of the poor quality estimate for M E {u2 (n)} in the

denominator

where 1 is

e Now replace the LMS stepsize with
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e This choice of stepsize gives the Normalized Least Mean Squares
(NLMS)

hin+1)=h(n a e(n)u(n
(n+1) (HHU(H)HQ() (n)

where ' is relabelled to g. NLMS is the LMS algorithm with a data-
dependent stepsize

e Note small amplitudes will now adversely effect the NLMS. To better
stabilise the NLMS use

hin+1)=h(n i e(n)u(n
(n+1) <>+HU(7®)H2+6(> (n)

where € is a small constant, e.g. 0.0001.
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7 Comparing NLMS and LMS

e Compare the stability of the LMS and NLMS for different values of
stepsize. You will see that the NLMS is stable for 0 < u < 2. You
will still need to tune u to get the desired convergence behaviour (or
fluctuations of h (n) once it has stabilized) though.

e Run the NLMS example on the course website
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