# 4F7 Adaptive Filters (and Spectrum Estimation) 

Least Mean Square (LMS) Algorithm<br>Sumeetpal Singh<br>Engineering Department<br>Email:sss40@eng.cam.ac.uk

## 1 Outline

- The LMS algorithm
- Overview of LMS issues concerning step-size bound and convergence
- Some simulation examples
- The normalised LMS (NLMS)


## 2 Least Mean Square (LMS)

- Steepest Descent (SD) was

$$
\begin{aligned}
\mathbf{h}(n+1) & =\mathbf{h}(n)-\frac{\mu}{2} \nabla J(\mathbf{h}(n)) \\
& =\mathbf{h}(n)+\mu E\{\mathbf{u}(n) e(n)\}
\end{aligned}
$$

- Often $\nabla J(\mathbf{h}(n))=-2 E\{\mathbf{u}(n) e(n)\}$ is unknown or too difficult to derive
- Remedy is to use the instantaneous approximation $-2 \mathbf{u}(n) e(n)$ for $\nabla J(\mathbf{h}(n))$
- Using this approximation we get the LMS algorithm

$$
\begin{aligned}
e(n) & =d(n)-\mathbf{h}^{\mathrm{T}}(n) \mathbf{u}(n), \\
\mathbf{h}(n+1) & =\mathbf{h}(n)+\mu e(n) \mathbf{u}(n)
\end{aligned}
$$

- This is desirable because
- We do not need knowledge of $\mathbf{R}$ and $\mathbf{p}$ anymore
- If statistics are changing over time, it adapts accordingly
- Complexity: $2 M+1$ multiplications and $2 M$ additions per iteration.

Not $M^{2}$ multiplications like SD

- Undesirable because we have to choose $\mu$ when $\mathbf{R}$ not known, subtle convergence analysis


## 3 Application: Noise Cancellation

- Mic 1: Reference signal

$$
d(n)=\underbrace{s(n)}_{\text {signal of interest }}+\underbrace{v(n)}_{\text {noise }}
$$

$s(n)$ and $v(n)$ statistically independent

- Aim: recover signal of interest
- Method: use another mic, Mic 2, to record noise only, $u(n)$
- Although $u(n) \neq v(n), u(n)$ and $v(n)$ are correlated
- Now filter recorded noise $u(n)$ to minimise $E\left\{e(n)^{2}\right\}$, i.e. to cancel $v(n)$
- Recovered signal is $e(n)=d(n)-\mathbf{h}(n)^{T} \mathbf{u}(n)$ and not $y(n)$
- Run Matlab demo on webpage
- We are going to see an example with speech $s(n)$ generated as a mean 0 variance 1 Gaussian random variable
- Mic 1's noise was $0.5 \sin \left(n \frac{\pi}{2}+0.5\right)$
- Mic 2's noise was $10 \sin \left(n \frac{\pi}{2}\right)$
- Mic 1 and 2's noise are both sinusoids but with different amplitudes and phase shifts
- You could increase the phase shift but you will need a larger value for M
- Run Matlab demo on webpage

4 LMS convergence in mean

- Write the reference signal model as

$$
\begin{aligned}
& d(n)=\mathbf{u}^{\mathrm{T}}(n) \mathbf{h}_{\mathrm{opt}}+\varepsilon(n) \\
& \varepsilon(n)=d(n)-\mathbf{u}^{\mathrm{T}}(n) \mathbf{h}_{\mathrm{opt}}
\end{aligned}
$$

where $\mathbf{h}_{\text {opt }}=\mathbf{R}^{-1} \mathbf{p}$ denotes the optimal vector (Wiener filter) that $\mathbf{h}(n)$ should converge to

- For this reference signal model, the LMS becomes

$$
\begin{aligned}
\mathbf{h}(n+1) & =\mathbf{h}(n)+\mu \mathbf{u}(n) \\
& \times\left(\mathbf{u}^{\mathrm{T}}(n) \mathbf{h}_{\mathrm{opt}}+\varepsilon(n)-\mathbf{u}^{\mathrm{T}}(n) \mathbf{h}(n)\right) \\
& =\mathbf{h}(n)+\mu \mathbf{u}(n) \mathbf{u}^{\mathrm{T}}(n) \\
& \times\left(\mathbf{h}_{\mathrm{opt}}-\mathbf{h}(n)\right)+\mu \mathbf{u}(n) \varepsilon(n) \\
\mathbf{h}(n+1)-\mathbf{h}_{\mathrm{opt}} & =\left(\mathbf{I}-\mu \mathbf{u}(n) \mathbf{u}^{\mathrm{T}}(n)\right)\left(\mathbf{h}(n)-\mathbf{h}_{\mathrm{opt}}\right) \\
& +\mu \mathbf{u}(n) \varepsilon(n)
\end{aligned}
$$

- This looks like a noisy version of the SD recursion

$$
\mathbf{h}(n+1)-\mathbf{h}_{\mathrm{opt}}=(\mathbf{I}-\mu \mathbf{R})\left(\mathbf{h}(n)-\mathbf{h}_{\mathrm{opt}}\right)
$$

- Verify that $E\{\mathbf{u}(n) \varepsilon(n)\}=0$ using $\mathbf{h}_{\text {opt }}=\mathbf{R}^{-1} \mathbf{p}$
- Introducing the expectation operator gives

$$
\begin{aligned}
& E\left\{\mathbf{h}(n+1)-\mathbf{h}_{\mathrm{opt}}\right\} \\
& =E\left\{\left(\mathbf{I}-\mu \mathbf{u}(n) \mathbf{u}^{\mathrm{T}}(n)\right)\left(\mathbf{h}(n)-\mathbf{h}_{\mathrm{opt}}\right)\right\} \\
& +\mu \underbrace{E\{\mathbf{u}(n) \varepsilon(n)\}}_{=0} \\
& \approx\left(\mathbf{I}-\mu E\left\{\mathbf{u}(n) \mathbf{u}^{\mathrm{T}}(n)\right\}\right) E\left\{\mathbf{h}(n)-\mathbf{h}_{\mathrm{opt}}\right\} \\
& \\
& \quad(\text { Independence approximation }) \\
& =(\mathbf{I}-\mu \mathbf{R}) E\left\{\mathbf{h}(n)-\mathbf{h}_{\mathrm{opt}}\right\}
\end{aligned}
$$

- Independence approximation assumes $\mathbf{h}(n)-\mathbf{h}_{\text {opt }}$ is independent of $\mathbf{u}(n) \mathbf{u}^{\mathrm{T}}(n)$
- Since $\mathbf{h}(n)$ function of $\mathbf{u}(0), \mathbf{u}(1), \ldots, \mathbf{u}(n-1)$ and all previous desired signals this is not true
- However, the approximation is better justified for a "block" LMS type update scheme where the filter is updated at multiples of some block length $L$, i.e. when $n=k L$ and not otherwise
- Idea is to not update $\mathbf{h}(n)$ except when $n$ is an integer multiple of $L$, i.e. $n=k L$ for $k=0,1, \ldots$

$$
\begin{aligned}
\mathbf{h}(n+1) & =\mathbf{h}(n)+\mu(n+1) e(n) \mathbf{u}(n) \\
e(n) & =d(n)-\mathbf{h}(n)^{T} \mathbf{u}(n) \\
\mu(n) & =\left\{\begin{array}{cc}
\mu & \text { if } n / L=\text { integer } \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Also $L$ should be much larger than filter length $M$
- This means $\mathbf{h}(k L)=\mathbf{h}(k L+1)=\cdots=\mathbf{h}(k L+L-1)$
- Re-use the previous derivation which is still valid:
$E\left\{\mathbf{h}(n+1)-\mathbf{h}_{\mathrm{opt}}\right\}=E\left\{\left(\mathbf{I}-\mu(n+1) \mathbf{u}(n) \mathbf{u}(n)^{T}\right)\left(\mathbf{h}(n)-\mathbf{h}_{\mathrm{opt}}\right)\right\}$
- When $n+1=k L+L$ we have

$$
\begin{aligned}
E\left\{\mathbf{h}(n+1)-\mathbf{h}_{\mathrm{opt}}\right\} & =E\left\{\left(\mathbf{I}-\mu \mathbf{u}(n) \mathbf{u}(n)^{T}\right)\left(\mathbf{h}(k L)-\mathbf{h}_{\mathrm{opt}}\right)\right\} \\
& \approx E\left\{\mathbf{I}-\mu \mathbf{u}(n) \mathbf{u}(n)^{T}\right\} E\left\{\mathbf{h}(k L)-\mathbf{h}_{\mathrm{opt}}\right\} \\
E\left\{\mathbf{h}(k L+L)-\mathbf{h}_{\mathrm{opt}}\right\} & \approx(\mathbf{I}-\mu \mathbf{R}) E\left\{\mathbf{h}(k L)-\mathbf{h}_{\mathrm{opt}}\right\}
\end{aligned}
$$

- This analysis uses the fact that $(u(0), \ldots, u(i))$ and $(u(j), \ldots, u(j+M-1))$, for $j>i$, become independent as $j-i$ increases. True for some ARMA time-series.
- We are back to the SD scenario and so

$$
E\{\mathbf{h}(n)\} \rightarrow \mathbf{h}_{\mathrm{opt}} \quad \text { if } 0<\mu<\frac{2}{\lambda_{\max }}
$$

- Behaviour predicted using the analysis of the block LMS agrees with experiments and computer simulations even for $L=1$
- We will always use $\mu(n)=\mu$ for all $n$. Block LMS version just to understand long-term behaviour
- The point of the LMS was that we don't have access to $\mathbf{R}$, so how to compute $\lambda_{\text {max }}$ ?
- Using the fact that

$$
\sum_{k=1}^{M} \lambda_{k}=\operatorname{tr}(\mathbf{R})=M E\left\{u^{2}(n)\right\}
$$

we have that $\lambda_{\max }<\sum_{k=1}^{M} \lambda_{k}=M E\left\{u^{2}(n)\right\}$

- Note that we can estimate $E\left\{u^{2}(n)\right\}$ by a simple sample average and the new tighter bound on the stepsize is

$$
0<\mu<\frac{2}{M E\left\{u^{2}(n)\right\}}<\frac{2}{\lambda_{\max }}
$$

- With a fixed stepsize, $\{\mathbf{h}(n)\}_{n \geq 0}$ will never settle at $\mathbf{h}_{\text {opt }}$, but rather oscillate about $\mathbf{h}_{\text {opt }}$. Even if $\mathbf{h}(n)=\mathbf{h}_{\text {opt }}$ then

$$
\mathbf{h}(n+1)-\mathbf{h}_{\mathrm{opt}}=\mu \mathbf{u}(n) e(n)=\mu \mathbf{u}(n)\left(d(n)-\mathbf{u}^{\mathrm{T}}(n) \mathbf{h}_{\mathrm{opt}}\right)
$$

and because $\mathbf{u}(n) e(n)$ is random, $\mathbf{h}(n+1)$ will move away from $\mathbf{h}_{\text {opt }}$

## ${ }_{5}$ LMS main points

- Simple to implement
- Works fine is many applications if filter order and stepsize is chosen properly
- There is a trade-off effect with the stepsize choice
- large $\mu$ yields better tracking ability in a non-stationary environment but will have larger fluctuations of $\mathbf{h}(n)$ about converged value - small $\mu$ has poorer tracking ability but less of such fluctuations


## 6 Adaptive stepsize: Normalised LMS (NLMS)

- We showed that LMS was stable provided

$$
\mu<\frac{2}{M E\left\{u^{2}(n)\right\}}
$$

- What if $E\left\{u^{2}(n)\right\}$ varied, which would be true for a non-stationary input signal
- LMS should be able to adapt its step-size automatically
- The instantaneous estimate of $M E\left\{u^{2}(n)\right\}$ is $\mathbf{u}^{\mathrm{T}}(n) \mathbf{u}(n)$
- Now replace the LMS stepsize with $\frac{\mu^{\prime}}{\mathbf{u}^{\mathrm{T}}(n) \mathbf{u}(n)}=\frac{\mu^{\prime}}{\|\mathbf{u}(n)\|^{2}}$ where $\mu^{\prime}$ is a constant that should $<2$, e.g., $0.25<\mu^{\prime}<0.75$. We make $\mu^{\prime}$ smaller because of the poor quality estimate for $\operatorname{ME}\left\{u^{2}(n)\right\}$ in the denominator
- This choice of stepsize gives the Normalized Least Mean Squares (NLMS)

$$
\begin{aligned}
e(n) & =d(n)-\mathbf{u}^{\mathrm{T}}(n) \mathbf{h}(n) \\
\mathbf{h}(n+1) & =\mathbf{h}(n)+\frac{\mu}{\|\mathbf{u}(n)\|^{2}} e(n) \mathbf{u}(n)
\end{aligned}
$$

where $\mu^{\prime}$ is relabelled to $\mu$. NLMS is the LMS algorithm with a datadependent stepsize

- Note small amplitudes will now adversely effect the NLMS. To better stabilise the NLMS use

$$
\mathbf{h}(n+1)=\mathbf{h}(n)+\frac{\mu}{\|\mathbf{u}(n)\|^{2}+\epsilon} e(n) \mathbf{u}(n)
$$

where $\epsilon$ is a small constant, e.g. 0.0001 .

## ${ }_{7}$ Comparing NLMS and LMS

- Compare the stability of the LMS and NLMS for different values of stepsize. You will see that the NLMS is stable for $0<\mu<2$. You will still need to tune $\mu$ to get the desired convergence behaviour (or fluctuations of $\mathbf{h}(n)$ once it has stabilized) though.
- Run the NLMS example on the course website

