
4F7 Adaptive Filters (and Spectrum Estimation)

Least Mean Square (LMS) Algorithm
Sumeetpal Singh

Engineering Department
Email : sss40@eng.cam.ac.uk

1



1 Outline

• The LMS algorithm

•Overview of LMS issues concerning step-size bound and convergence

• Some simulation examples

• The normalised LMS (NLMS)

2



2 Least Mean Square (LMS)

• Steepest Descent (SD) was

h (n + 1) = h (n)− µ

2
∇J (h (n))

= h (n) + µE {u (n) e (n)}

•Often ∇J (h (n)) = −2E {u (n) e (n)} is unknown or too difficult to
derive

•Remedy is to use the instantaneous approximation −2u (n) e (n) for
∇J (h (n))

•Using this approximation we get the LMS algorithm

e (n) = d (n)− hT (n) u (n) ,

h (n + 1) = h (n) + µe (n) u (n)

3



• This is desirable because
– We do not need knowledge of R and p anymore
– If statistics are changing over time, it adapts accordingly
– Complexity: 2M + 1 multiplications and 2M additions per iteration.
Not M2 multiplications like SD

•Undesirable because we have to choose µ when R not known, subtle
convergence analysis

4



3 Application: Noise Cancellation

•Mic 1: Reference signal

d(n) = s(n)︸︷︷︸
signal of interest

+ v(n)︸︷︷︸
noise

s (n) and v (n) statistically independent

•Aim: recover signal of interest

•Method: use another mic, Mic 2, to record noise only, u(n)

•Although u (n) 6= v (n), u (n) and v (n) are correlated

•Now filter recorded noise u (n) to minimise E{e(n)2}, i.e. to cancel
v(n)

•Recovered signal is e(n) = d(n)− h(n)Tu(n) and not y(n)

•Run Matlab demo on webpage

5



•We are going to see an example with speech s(n) generated as a mean
0 variance 1 Gaussian random variable

•Mic 1’s noise was 0.5 sin(nπ2 + 0.5)

•Mic 2’s noise was 10 sin(nπ2)

•Mic 1 and 2’s noise are both sinusoids but with different amplitudes
and phase shifts

•You could increase the phase shift but you will need a larger value for
M

•Run Matlab demo on webpage

6



4 LMS convergence in mean

•Write the reference signal model as

d (n) = uT (n) hopt + ε (n)

ε (n) = d(n)− uT (n) hopt

where hopt = R−1p denotes the optimal vector (Wiener filter) that
h (n) should converge to

• For this reference signal model, the LMS becomes

h (n + 1) = h (n) + µu (n)

×
(
uT (n) hopt + ε (n)− uT (n) h (n)

)
= h (n) + µu (n) uT (n)

×
(
hopt − h (n)

)
+ µu (n) ε (n)

h (n + 1)− hopt =
(
I−µu (n) uT (n)

) (
h (n)− hopt

)
+ µu (n) ε (n)

7



• This looks like a noisy version of the SD recursion

h (n + 1)− hopt = (I−µR)
(
h (n)− hopt

)
•Verify that E {u(n)ε(n)} = 0 using hopt = R−1p

• Introducing the expectation operator gives

E
{
h (n + 1)− hopt

}
= E

{(
I−µu (n) uT (n)

) (
h (n)− hopt

)}
+ µE {u (n) ε (n)}︸ ︷︷ ︸

=0

≈
(
I−µE

{
u (n) uT (n)

})
E
{
h (n)− hopt

}
(Independence approximation)

= (I−µR)E
{
h (n)− hopt

}

8



• Independence approximation assumes h (n)−hopt is independent of
u (n) uT (n)
– Since h (n) function of u (0), u (1), . . ., u (n− 1) and all previous
desired signals this is not true
– However, the approximation is better justified for a “block” LMS
type update scheme where the filter is updated at multiples of some
block length L, i.e. when n = kL and not otherwise

9



• Idea is to not update h(n) except when n is an integer multiple of L,
i.e. n = kL for k = 0, 1, . . .

h(n + 1) = h(n) + µ(n + 1)e(n)u(n)

e(n) = d(n)− h(n)Tu(n)

µ(n) =

{
µ if n/L = integer
0 otherwise

•Also L should be much larger than filter length M

• This means h(kL) = h(kL + 1) = · · · = h(kL + L− 1)

•Re-use the previous derivation which is still valid:

E
{
h(n + 1)− hopt

}
= E

{(
I− µ(n + 1)u(n)u(n)T

) (
h(n)− hopt

)}

10



•When n + 1 = kL + L we have

E
{
h(n + 1)− hopt

}
= E

{(
I− µu(n)u(n)T

) (
h(kL)− hopt

)}
≈ E

{
I− µu(n)u(n)T

}
E
{
h(kL)− hopt

}
E
{
h(kL + L)− hopt

}
≈ (I− µR)E

{
h(kL)− hopt

}
• This analysis uses the fact that (u(0), . . . , u(i))

and (u(j), . . . , u(j + M − 1)), for j > i, become independent as j − i
increases. True for some ARMA time-series.

•We are back to the SD scenario and so

E {h (n)} → hopt if 0 < µ <
2

λmax

• Behaviour predicted using the analysis of the block LMS agrees with
experiments and computer simulations even for L = 1

•We will always use µ(n) = µ for all n. Block LMS version just to
understand long-term behaviour

11



• The point of the LMS was that we don’t have access to R, so how to
compute λmax?

•Using the fact that

M∑
k=1

λk = tr (R) = ME
{
u2 (n)

}
we have that λmax <

∑M
k=1 λk = ME

{
u2 (n)

}
•Note that we can estimate E

{
u2 (n)

}
by a simple sample average and

the new tighter bound on the stepsize is

0 < µ <
2

ME
{
u2 (n)

} < 2

λmax

12



•With a fixed stepsize, {h (n)}n≥0 will never settle at hopt, but rather
oscillate about hopt. Even if h (n) = hopt then

h (n + 1)− hopt = µu(n)e(n) = µu (n)
(
d(n)− uT (n) hopt

)
,

and because u (n) e (n) is random, h (n + 1) will move away from hopt

5 LMS main points

• Simple to implement

•Works fine is many applications if filter order and stepsize is chosen
properly

• There is a trade-off effect with the stepsize choice
– large µ yields better tracking ability in a non-stationary environment
but will have larger fluctuations of h(n) about converged value
– small µ has poorer tracking ability but less of such fluctuations

13



6 Adaptive stepsize: Normalised LMS (NLMS)

•We showed that LMS was stable provided

µ <
2

ME
{
u2 (n)

}
•What if E

{
u2 (n)

}
varied, which would be true for a non-stationary

input signal

• LMS should be able to adapt its step-size automatically

• The instantaneous estimate of ME
{
u2 (n)

}
is uT (n) u (n)

•Now replace the LMS stepsize with µ′

uT(n)u(n)
= µ′

‖u(n)‖2
where µ′ is

a constant that should < 2, e.g. , 0.25 < µ′ < 0.75. We make µ′

smaller because of the poor quality estimate for ME
{
u2 (n)

}
in the

denominator

14



• This choice of stepsize gives the Normalized Least Mean Squares
(NLMS)

e (n) = d (n)− uT (n) h (n)

h (n + 1) = h (n) +
µ

‖u (n)‖2
e (n) u (n)

where µ′ is relabelled to µ. NLMS is the LMS algorithm with a data-
dependent stepsize

•Note small amplitudes will now adversely effect the NLMS. To better
stabilise the NLMS use

h (n + 1) = h (n) +
µ

‖u (n)‖2 + ε
e (n) u (n)

where ε is a small constant, e.g. 0.0001.

15



7 Comparing NLMS and LMS

• Compare the stability of the LMS and NLMS for different values of
stepsize. You will see that the NLMS is stable for 0 < µ < 2. You
will still need to tune µ to get the desired convergence behaviour (or
fluctuations of h (n) once it has stabilized) though.

•Run the NLMS example on the course website

16


