4F7 Spectrum Estimation
Maximum Likelihood for ARMA model estimation
Sumeetpal Singh
Email : sss40@eng.cam.ac.uk

Modification history:
\leq 2008: S. Godsill, P. Rayner
Revised by S.S. Singh

1 Maximum likelihood

- First a simplified example: you are given n independent samples $z_{i}, 1 \leq i \leq n$, from a Normal distribution with mean μ and variance σ^{2}
- The likelihood of (μ, σ) or probability density of the observed data given (μ, σ) is

$$
p\left(z_{1}, \ldots, z_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(z_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
$$

- Estimate $\left(\mu, \sigma^{2}\right)$ by maximising $\log p\left(z_{1}, \ldots, z_{n}\right)$ w.r.t. $\left(\mu, \sigma^{2}\right)$
- The $\operatorname{ARMA}(\mathrm{P}, \mathrm{Q})$ model is

$$
x_{n}=\sum_{p=1}^{P} a_{p} x_{n-p}+\sum_{q=0}^{Q} b_{q} w_{n-q}
$$

Assume random variables w_{n} are i.i.d. Gaussian with mean zero and variance σ^{2}

- Given data x_{0}, \ldots, x_{N-1} the model parameter estimates $\widehat{a}_{i}, \widehat{b}_{i}$, and $\widehat{\sigma^{2}}$ are

$$
\arg \max _{\substack{a_{1}, \ldots, a_{P} \\ b_{0}, \ldots, b_{Q} \\ \sigma^{2}}} p\left(x_{0}, \ldots, x_{N-1}\right)
$$

- As $N \rightarrow \infty$ the estimates converge to the true values
- The difficulty is searching for the global maximizer
- Also, for the ARMA model the data is statistically dependent and the likelihood is more difficult to calculate
- We will use the probability chain rule for a collection of dependent random variables $z_{1}, z_{2}, \ldots, z_{n}$:

$$
p\left(z_{1}, \ldots, z_{n}\right)=p\left(z_{1}\right) \prod_{i=2}^{n} p\left(z_{i} \mid z_{1}, \ldots, z_{i-1}\right)
$$

2 Maximum likelihood for AR(P)

- The $\mathrm{AR}(\mathrm{P})$ model is

$$
x_{n}=\sum_{p=1}^{P} a_{p} x_{n-p}+w_{n}
$$

where w_{n} are i.i.d. Gaussian with mean zero and variance σ^{2}

- The probability chain rule applied to
$p\left(x_{P}, \ldots, x_{N-1} \mid x_{0}, \ldots, x_{P-1}\right)$
$\prod_{i=P}^{N-1} p\left(x_{i} \mid x_{0}, \ldots, x_{i-1}\right)=\prod_{i=P}^{N-1} p\left(x_{i} \mid x_{i-P}, \ldots, x_{i-1}\right)$
- and $p\left(x_{i} \mid x_{i-P}, \ldots, x_{i-1}\right)$ is

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{i}-a_{1} x_{i-1}-\cdots-a_{P} x_{i-P}\right)^{2}\right)
$$

- Let $e_{i}=x_{i}-a_{1} x_{i-1}-\cdots-a_{P} x_{i-P}$. Thus
$\log p\left(x_{P}, \ldots, x_{N-1} \mid x_{0}, \ldots, x_{P-1}\right)$ is

$$
-0.5(N-P) \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=P}^{N-1} e_{i}^{2}
$$

- To avoid having to compute $p\left(x_{0}, \ldots, x_{P-1}\right)$ maximise $p\left(x_{P}, \ldots, x_{N-1} \mid x_{0}, \ldots, x_{P-1}\right)$ instead
- This instance of Maximum likelihood is equivalent to least squares for the AR model
- First minimize $\sum_{i=P}^{N-1} e_{i}^{2}$ w.r.t. $\left(a_{1}, \ldots, a_{P}\right)$ to get $\left(a_{1}^{*}, \ldots, a_{P}^{*}\right)$
- Let $\mathcal{E}=\sum_{i=P}^{N-1} e_{i}^{2}$ evaluated at $\left(a_{1}^{*}, \ldots, a_{P}^{*}\right)$
- Now maximise this log-likelihood with respect to σ^{2} by differentiating:

$$
\begin{aligned}
& \frac{d}{d \sigma^{2}} \log p\left(x_{P}, \ldots, x_{N-1} \mid x_{0}, \ldots, x_{P-1}\right) \\
& =\frac{-0.5}{\sigma^{2}}(N-P)+\frac{0.5}{\left(\sigma^{2}\right)^{2}} \mathcal{E}
\end{aligned}
$$

and hence at the maximising σ is

$$
\sigma^{*}=\sqrt{\frac{\mathcal{E}}{N-P}}
$$

which is an intuitive result.

- AR models are by far the simpler to estimate
- ARMA process may be well approximated by an AR process with 'sufficiently' large P. Hence practitioners very often work with large AR models, even when an ARMA structure is suspected
- To compute $p\left(x_{0}, \ldots, x_{P-1}\right)$ write the $\mathrm{AR}(\mathrm{P})$ model in state-space form (see Examples paper)

$$
\left[\begin{array}{c}
x_{n} \\
\vdots \\
x_{n-P+1}
\end{array}\right]=\boldsymbol{\Lambda}\left[\begin{array}{c}
x_{n-1} \\
\vdots \\
x_{n-P}
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
\vdots
\end{array}\right] w_{n}(1)
$$

- When the model is stationary, $p\left(x_{n-P+1}, \ldots, x_{n}\right)$ is a Gaussian density with zero mean and covariance matrix \mathbf{R} for any n. Computing the variance of the left and right-hand-side of (1) we get

$$
\begin{equation*}
\mathbf{R}=\boldsymbol{\Lambda} \mathbf{R} \boldsymbol{\Lambda}^{\mathrm{T}}+\sigma^{2} \mathbf{b} \mathbf{b}^{\mathrm{T}} \tag{2}
\end{equation*}
$$

where $\mathbf{b}=[1,0, \cdots, 0]^{\mathrm{T}}$

- Let $r_{i, j}=[\mathbf{R}]_{i, j}$ then

$$
\begin{aligned}
r_{i, j} & =\sum_{k=1}^{P} \sum_{l=1}^{P} \lambda_{i, k} r_{k, l} \lambda_{j, l} \\
r_{1,1} & =\sigma^{2}+\sum_{k=1}^{P} \sum_{l=1}^{P} \lambda_{1, k} r_{k, l} \lambda_{1, l}
\end{aligned}
$$

where $\lambda_{i, j}=[\boldsymbol{\Lambda}]_{i, j}$

- For example, for an $\operatorname{AR}(2)$ model

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& r_{1,2}=a_{1} r_{1,1}+a_{2} r_{2,1} \\
& r_{2,1}=a_{1} r_{1,1}+a_{2} r_{1,2} \\
& r_{2,2}=r_{1,1} \\
& r_{1,1}=\sigma^{2}+a_{1}^{2} r_{1,1}+a_{1} a_{2}\left(r_{1,2}+r_{2,1}\right)+a_{2}^{2} r_{2,2}
\end{aligned}
$$

which gives

$$
\begin{gathered}
r_{1,1}=\left(1-a_{1}^{2}-\frac{2 a_{1}^{2} a_{2}}{1-a_{2}}-a_{2}^{2}\right)^{-1} \sigma^{2} \\
r_{1,2}=r_{2,1}=\frac{a_{1}}{1-a_{2}} r_{1,1} \\
7
\end{gathered}
$$

- Check: an $\mathrm{AR}(2)$ model with roots 0.9 and 0.7 will have transfer function

$$
1-a_{1} z^{-1}-a_{2} z^{-1}=\left(1-0.9 z^{-1}\right)\left(1-0.7 z^{-1}\right)
$$

which implies $a_{1}=1.6, a_{2}=-0.63$. For $\sigma^{2}=1, r_{1,1}=45.4634, r_{1,2}=44.6267$ and
(2) will be satisfied

- To confirm the analysis, shown in the figure below are plots of samples from a Gaussian distribution with mean 0 and variance [45.4634 44.6267; 44.6267 45.4634] (left-handside) and the plot of 1000 samples from the $\mathrm{AR}(2)$ model (1) for these same values of a_{1}, a_{2} and σ^{2} (each dot represents a value of $\left.\left(x_{n}, x_{n-1}\right)\right)$

3 Maximum likelihood for ARMA(P,Q)

- Special case: consider the $\operatorname{ARMA}(2,2)$ model

$$
x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+b_{0} w_{n}+b_{1} w_{n-1}
$$

and lets first assume $x_{i}=0$ and $w_{i}=0$ for $i<0$ for simplicity

- We can express variables x_{n} in terms of variables w_{n} explicitly
$x_{0}=b_{0} w_{0}$
$x_{1}=a_{1} x_{0}+b_{0} w_{1}+b_{1} w_{0}$
$=\left(a_{1} b_{0}+b_{1}\right) w_{0}+b_{0} w_{1}$
$x_{2}=\left(a_{1}^{2} b_{0}+a_{1} b_{1}+a_{2}\right) w_{0}+\left(a_{1} b_{0}+b_{1}\right) w_{1}+b_{0} w_{2}$
and in general we will get

$$
\left[x_{0}, \ldots, x_{n}\right]^{\mathrm{T}}=\mathbf{L}\left[w_{0}, \ldots, w_{n}\right]^{\mathrm{T}}
$$

where \mathbf{L} is a lower-triangular matrix with diagonal components all equal to b_{0}

- For any $n \geq 0$, given x_{0}, \ldots, x_{n}, then we also know w_{0}, \ldots, w_{n}
- Using $x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+b_{0} w_{n}+b_{1} w_{n-1}$, $p\left(x_{n} \mid x_{0}, \ldots, x_{n-1}\right)$ is

$$
\frac{1}{\sqrt{2 \pi \sigma^{2} b_{0}^{2}}} \exp \left(-\frac{\left(x_{n}-a_{1} x_{n-1}-a_{2} x_{n-2}-b_{1} w_{n-1}\right)^{2}}{2 \sigma^{2} b_{0}^{2}}\right)
$$

- The expression for $p\left(x_{0}, \ldots, x_{N-1}\right)$ follows from the probability chain rule. There is a sequential way to evaluate $p\left(x_{0}, \ldots, x_{N-1}\right)$ and its computational cost grows linearly with N
- We can evaluate the \log of the likelihood for any value of parameter $\left(a_{1}, a_{2}, b_{0}, b_{1}, \sigma\right)$ and could use an optimization routine that only needs the function being optimized to be computable at any value of parameter
- The assumption $x_{i}=0$ and $w_{i}=0$ for $i<0$ should have progressive less and less influence on the maximum likelihood parameter estimates as N grows and asymptotically have no influence
- We can express this $\operatorname{ARMA}(2,2)$ model in state-space form:
$\mathbf{x}_{n}=\left[\begin{array}{l}x_{n} \\ z_{n}\end{array}\right]=\left[\begin{array}{ll}a_{1} & 1 \\ a_{2} & 0\end{array}\right]\left[\begin{array}{l}x_{n-1} \\ z_{n-1}\end{array}\right]+\left[\begin{array}{l}b_{0} \\ b_{1}\end{array}\right] w_{n}$
$y_{n}=[1,0] \mathbf{x}_{n}=\mathbf{c}^{\mathrm{T}} \mathbf{x}_{n}$
where $x_{-1}=z_{-1}=0$. (Verify this)
- Let $\mathbf{A}=\left[\begin{array}{ll}a_{1} & 1 \\ a_{2} & 0\end{array}\right], \mathbf{b}=\left[\begin{array}{l}b_{0} \\ b_{1}\end{array}\right]$
- Apply the Kalman filter to this state-space model to calculate

$$
p\left(y_{0}, \ldots, y_{N-1}\right)=p\left(x_{0}, \ldots, x_{N-1}\right)
$$

via the probability chain rule

Calculating $p\left(x_{0}, \ldots, x_{N-1}\right)$ without assuming $x_{i}=0$ for $i<0$ is possible

- Initialization: $\hat{\mathbf{x}}_{-1}=[0,0]^{\mathrm{T}}$ and \mathbf{R}_{-1} is the solution to

$$
\mathbf{R}_{-1}=\mathbf{A R}_{-1} \mathbf{A}^{\mathrm{T}}+\mathbf{b} \mathbf{b}^{\mathrm{T}} \sigma^{2}
$$

Computation: for $n=0,1, \ldots$

- Prediction step

$$
\begin{aligned}
\hat{\mathbf{x}}_{n \mid n-1} & =\mathbf{A} \hat{\mathbf{x}}_{n-1} \\
\mathbf{R}_{n \mid n-1} & =\mathbf{A R}_{n-1} \mathbf{A}^{\mathrm{T}}+\mathbf{b b}^{\mathrm{T}} \sigma^{2}
\end{aligned}
$$

- Gain calculation

$$
\mathbf{K}_{n}=\mathbf{R}_{n \mid n-1} \mathbf{c} \times\left[\mathbf{c}^{\mathrm{T}} \mathbf{R}_{n \mid n-1} \mathbf{c}\right]^{-1}
$$

- Update step

$$
\begin{aligned}
\hat{\mathbf{x}}_{n} & =\hat{\mathbf{x}}_{n \mid n-1}+\mathbf{K}_{n}\left[y_{n}-\mathbf{c}^{\mathrm{T}} \hat{\mathbf{x}}_{n \mid n-1}\right] \\
\mathbf{R}_{n} & =\left[\mathbf{I}-\mathbf{K}_{n} \mathbf{c}^{\mathrm{T}}\right] \mathbf{R}_{n \mid n-1}
\end{aligned}
$$

- Likelihood calculation

$$
\begin{aligned}
& p\left(y_{n} \mid y_{0}, \ldots, y_{n-1}\right) \\
& =\left(2 \pi \mathbf{c}^{\mathrm{T}} \mathbf{R}_{n \mid n-1} \mathbf{c}\right)^{-1 / 2} \exp \left(-\frac{\left(y_{n}-\mathbf{c}^{\mathrm{T}} \hat{\mathbf{x}}_{n \mid n-1}\right)^{2}}{2 \mathbf{c}^{\mathrm{T}} \mathbf{R}_{n \mid n-1} \mathbf{c}}\right)
\end{aligned}
$$

- For a general ARMA(P,Q) model, let

$$
r=\max (P, Q+1)
$$

If $r>P$ set

$$
a_{P+1}=\cdots=a_{r}=0
$$

If $r-1>Q$, set

$$
b_{Q+1}=\cdots=b_{r-1}=0
$$

\mathbf{x}_{n} is a $r \times 1$ vector,
$\mathbf{A}=\left[\begin{array}{ccccc}a_{1} & 1 & 0 & \cdots & 0 \\ a_{2} & 0 & 1 & 0 & \cdots \\ & & & & \\ a_{r-1} & 0 & \cdots & 0 & 1 \\ a_{r} & 0 & \cdots & & 0\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}b_{0} \\ b_{1} \\ \vdots \\ \\ b_{r-1}\end{array}\right]$
(See Gardner et. al. (1980) An Algorithm for Exact Maximum Likelihood Estimation of Autoregressive-Moving Average Models by Means of Kalman Filtering, Appl. Statist., 29, 311-322.)

