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1 Maximum likelihood

• First a simplified example: you are given n
independent samples zi, 1 ≤ i ≤ n, from a
Normal distribution with mean µ and vari-
ance σ2

• The likelihood of (µ, σ) or probability density
of the observed data given (µ, σ) is

p(z1, ..., zn) =

n∏
i=1

1√
2πσ2

exp

(
−(zi − µ)2

2σ2

)

• Estimate (µ, σ2) by maximising log p(z1, ..., zn)
w.r.t. (µ, σ2)

• The ARMA(P,Q) model is

xn =

P∑
p=1

ap xn−p +

Q∑
q=0

bq wn−q

Assume random variables wn are i.i.d. Gaus-
sian with mean zero and variance σ2
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• Given data x0, ..., xN−1 the model parameter

estimates âi, b̂i, and σ̂2 are

arg max
a1,...,aP
b0,...,bQ
σ2

p(x0, ..., xN−1)

• As N → ∞ the estimates converge to the
true values

• The difficulty is searching for the global max-
imizer

• Also, for the ARMA model the data is statis-
tically dependent and the likelihood is more
difficult to calculate

• We will use the probability chain rule for a
collection of dependent random variables z1, z2, ..., zn:

p(z1, ..., zn) = p(z1)

n∏
i=2

p(zi|z1, ..., zi−1)
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2 Maximum likelihood for
AR(P)

• The AR(P) model is

xn =

P∑
p=1

ap xn−p + wn

where wn are i.i.d. Gaussian with mean zero
and variance σ2

• The probability chain rule applied to
p(xP , ..., xN−1|x0, . . . , xP−1)
N−1∏
i=P

p(xi|x0, ..., xi−1) =

N−1∏
i=P

p(xi|xi−P , ..., xi−1)

• and p(xi|xi−P , ..., xi−1) is

1√
2πσ2

exp

(
− 1

2σ2
(xi − a1 xi−1 − · · · − aPxi−P )2

)
• Let ei = xi − a1 xi−1 − · · · − aPxi−P . Thus
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log p(xP , ..., xN−1|x0, . . . , xP−1) is

−0.5(N − P ) log(2πσ2)− 1

2σ2

N−1∑
i=P

e2i

• To avoid having to compute p(x0, . . . , xP−1)
maximise p(xP , ..., xN−1|x0, . . . , xP−1) instead

• This instance of Maximum likelihood is equiv-
alent to least squares for the AR model

• First minimize
∑N−1

i=P e2i w.r.t. (a1, . . . , aP )
to get (a∗1, . . . , a

∗
P )

• Let E =
∑N−1

i=P e2i evaluated at (a∗1, . . . , a
∗
P )

• Now maximise this log-likelihood with respect
to σ2 by differentiating:

d

dσ2
log p(xP , ..., xN−1|x0, . . . , xP−1)

=
−0.5

σ2
(N − P ) +

0.5

(σ2)2
E

and hence at the maximising σ is

σ∗ =

√
E

N − P
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which is an intuitive result.

• AR models are by far the simpler to estimate

• ARMA process may be well approximated
by an AR process with ‘sufficiently’ large P .
Hence practitioners very often work with large
AR models, even when an ARMA structure
is suspected

• To compute p(x0, . . . , xP−1) write the AR(P)
model in state-space form (see Examples pa-
per) xn

...
xn−P+1

 = Λ

 xn−1
...

xn−P

 +

 1
0
...

wn (1)

• When the model is stationary, p(xn−P+1, . . . , xn)
is a Gaussian density with zero mean and co-
variance matrix R for any n. Computing the
variance of the left and right-hand-side of (1)
we get

R = ΛRΛT + σ2bbT (2)

where b = [1, 0, · · · , 0]T
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• Let ri,j = [R]i,j then

ri,j =

P∑
k=1

P∑
l=1

λi,krk,lλj,l

r1,1 = σ2 +

P∑
k=1

P∑
l=1

λ1,krk,lλ1,l

where λi,j = [Λ]i,j

• For example, for an AR(2) model

Λ =

[
a1 a2
1 0

]
r1,2 = a1r1,1 + a2r2,1
r2,1 = a1r1,1 + a2r1,2
r2,2 = r1,1

r1,1 = σ2 + a21r1,1 + a1a2(r1,2 + r2,1) + a22r2,2

which gives

r1,1 = (1− a21 −
2a21a2
1− a2

− a22)−1σ2

r1,2 = r2,1 =
a1

1− a2
r1,1
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• Check: an AR(2) model with roots 0.9 and
0.7 will have transfer function

1−a1z−1−a2z−1 =
(
1− 0.9z−1

) (
1− 0.7z−1

)
which implies a1 = 1.6, a2 = −0.63. For
σ2 = 1, r1,1 = 45.4634, r1,2 = 44.6267 and
(2) will be satisfied
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• To confirm the analysis, shown in the figure
below are plots of samples from a Gaussian
distribution with mean 0 and variance
[45.4634 44.6267; 44.6267 45.4634] (left-hand-
side) and the plot of 1000 samples from the
AR(2) model (1) for these same values of a1,
a2 and σ2 (each dot represents a value of
(xn, xn−1))
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3 Maximum likelihood for
ARMA(P,Q)

• Special case: consider the ARMA(2,2) model

xn = a1xn−1 + a2xn−2 + b0wn + b1wn−1

and lets first assume xi = 0 and wi = 0 for
i < 0 for simplicity

• We can express variables xn in terms of vari-
ables wn explicitly

x0 = b0w0

x1 = a1x0 + b0w1 + b1w0

= (a1b0 + b1)w0 + b0w1

x2 = (a21b0 + a1b1 + a2)w0 + (a1b0 + b1)w1 + b0w2

and in general we will get

[x0, ..., xn]T = L[w0, ..., wn]T

where L is a lower-triangular matrix with di-
agonal components all equal to b0

• For any n ≥ 0, given x0, ..., xn, then we also
know w0, ..., wn
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• Using xn = a1xn−1+a2xn−2+b0wn+b1wn−1,
p(xn|x0, ..., xn−1) is

1√
2πσ2b20

exp

(
−(xn − a1xn−1 − a2xn−2 − b1wn−1)2

2σ2b20

)
• The expression for p(x0, ..., xN−1) follows from

the probability chain rule. There is a sequen-
tial way to evaluate p(x0, ..., xN−1) and its
computational cost grows linearly with N

• We can evaluate the log of the likelihood for
any value of parameter (a1, a2, b0, b1, σ) and
could use an optimization routine that only
needs the function being optimized to be com-
putable at any value of parameter

• The assumption xi = 0 and wi = 0 for i < 0
should have progressive less and less influence
on the maximum likelihood parameter esti-
mates as N grows and asymptotically have
no influence
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• We can express this ARMA(2,2) model in
state-space form:

xn =

[
xn
zn

]
=

[
a1 1
a2 0

] [
xn−1
zn−1

]
+

[
b0
b1

]
wn

yn = [1, 0]xn = cTxn

where x−1 = z−1 = 0. (Verify this)

• Let A =

[
a1 1
a2 0

]
, b =

[
b0
b1

]
• Apply the Kalman filter to this state-space

model to calculate

p(y0, . . . , yN−1) = p(x0, . . . , xN−1)

via the probability chain rule
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Calculating p(x0, . . . , xN−1) without assuming
xi = 0 for i < 0 is possible

• Initialization: x̂−1 = [0, 0]T and R−1 is the
solution to

R−1 = AR−1A
T + bbTσ2

Computation: for n = 0, 1, . . .

• Prediction step

x̂n|n−1 = Ax̂n−1

Rn|n−1 = ARn−1A
T + bbTσ2

• Gain calculation

Kn = Rn|n−1c×
[
cTRn|n−1c

]−1
• Update step

x̂n = x̂n|n−1 + Kn

[
yn − cTx̂n|n−1

]
Rn =

[
I−Knc

T
]
Rn|n−1
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• Likelihood calculation

p(yn|y0, . . . , yn−1)

=
(
2πcTRn|n−1c

)−1/2
exp

(
−

(yn − cTx̂n|n−1)
2

2cTRn|n−1c

)
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• For a general ARMA(P,Q) model, let

r = max(P,Q + 1)

If r > P set

aP+1 = · · · = ar = 0

If r − 1 > Q, set

bQ+1 = · · · = br−1 = 0

xn is a r × 1 vector,

A =


a1 1 0 · · · 0
a2 0 1 0 · · ·

ar−1 0 · · · 0 1
ar 0 · · · 0

 , b =


b0
b1
...

br−1


(See Gardner et. al. (1980) An Algorithm
for Exact Maximum Likelihood Estimation
of Autoregressive-Moving Average Models by
Means of Kalman Filtering, Appl. Statist.,
29, 311-322.)
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